Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2018

02.02.2018

Flexible special-structured Janus nanofiber synchronously endued with tunable trifunctionality of enhanced photoluminescence, electrical conductivity and superparamagnetism

verfasst von: Xue Xi, Qianli Ma, Xiangting Dong, Dan Li, Wensheng Yu, Jinxian Wang, Guixia Liu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report a facile and highly-effective method to assemble luminescent–magnetic–electrical tri-functionalities into the special-structured Janus nanofibers. Novel and brand-new flexible special-structured [coaxial nanocable]//[nanofiber] Janus nanofibers synchronously endued with tuned and enhanced luminescent–magnetic–electrical trifunctionality have been prepared via electrospinning technology using a homemade coaxis//monoaxis spinneret for the first time. Each special-structured Janus nanofiber consists of a coaxial nanocable made of Fe3O4/PVP core and Eu(BA)3phen/PVP shell as a half side with luminescent–magnetic bifunctionality and polyaniline (PANI)/PVP nanofiber as the other half side with electrically conductive functionality. The special and novel Janus nanofiber not only can guarantee effective separation of Fe3O4 nanoparticles (NPs) and PANI from rare earth complex, but also ensure the continuity of PANI in the matrix. It is satisfactorily found that the luminescent intensity of the novel special-structured Janus nanofibers respectively reaches up to 10 and 22 times higher than those of counterpart conventional [nanofiber]//[nanofiber] Janus nanofibers and composite nanofibers owing to its peculiar nanostructure. Compared with the counterpart conventional Janus nanofibers of two independent partitions, coaxial nanocable is used as one side of the special-structured Janus nanofiber instead of nanofiber, and three independent partitions are successfully realized in the special-structured Janus nanofiber, thus the interferences among various functions are further reduced, leading to the fact that more excellent multifunctionalities can be obtained. The novel Janus nanofibers possess excellent fluorescence, superparamagnetism and electric conductivity, and further, these performances can be respectively tunable via modulating the respective Eu(BA)3phen, Fe3O4 and PANI contents. The design philosophy and the construction technique for the special-structured Janus nanofibers are of universal significance for the fabrication of other multifunctional Janus nanofiber of various performances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y.X. Sun, L.X. Zhang, Y.B. Wang, P. Chen, S.X. Xin, H.F. Jiu, J.W. Liu, J. Alloys Compd. 586, 441–447 (2014) Y.X. Sun, L.X. Zhang, Y.B. Wang, P. Chen, S.X. Xin, H.F. Jiu, J.W. Liu, J. Alloys Compd. 586, 441–447 (2014)
2.
Zurück zum Zitat G.X. Yang, R.C. Lv, S.L. Gai, Y.L. Dai, F. He, P.P. Yang, Inorg. Chem. 53, 10917–10927 (2014) G.X. Yang, R.C. Lv, S.L. Gai, Y.L. Dai, F. He, P.P. Yang, Inorg. Chem. 53, 10917–10927 (2014)
3.
Zurück zum Zitat J.P. Cheng, B.B. Wang, M.G. Zhao, F. Liu, X.B. Zhang, Sens. Actuators. B 190, 78–85 (2014) J.P. Cheng, B.B. Wang, M.G. Zhao, F. Liu, X.B. Zhang, Sens. Actuators. B 190, 78–85 (2014)
4.
Zurück zum Zitat S.J. Peng, L.L. Li, Y.X. Hu, M. Srinivasan, F.Y. Cheng, J. Chen, S. Ramakrishna, ACS Nano 9, 1945–1954 (2015) S.J. Peng, L.L. Li, Y.X. Hu, M. Srinivasan, F.Y. Cheng, J. Chen, S. Ramakrishna, ACS Nano 9, 1945–1954 (2015)
5.
Zurück zum Zitat C.Y. Tay, M.I. Setyawati, J.P. Xie, W.J. Parak, D.T. Leong, Adv. Funct. Mater. 24, 5936–5955 (2014) C.Y. Tay, M.I. Setyawati, J.P. Xie, W.J. Parak, D.T. Leong, Adv. Funct. Mater. 24, 5936–5955 (2014)
6.
Zurück zum Zitat Y. Wang, Y. Cui, Y.T. Zhao, B. He, X.L. Shi, D.H. Di, Q. Zhang, S.L. Wang, Eur. J. Pharm. Biopharm. 117, 105–115 (2017) Y. Wang, Y. Cui, Y.T. Zhao, B. He, X.L. Shi, D.H. Di, Q. Zhang, S.L. Wang, Eur. J. Pharm. Biopharm. 117, 105–115 (2017)
7.
Zurück zum Zitat D. Jaque, C. Richard, B. Viana, K. Soga, X.G. Liu, J. García Solé, Adv. Opt. Photonics 8, 1–103 (2016) D. Jaque, C. Richard, B. Viana, K. Soga, X.G. Liu, J. García Solé, Adv. Opt. Photonics 8, 1–103 (2016)
8.
Zurück zum Zitat S. Rittikulsittichai, B. Singhana, W.W. Bryan, S. Sarangi, A.C. Jamison, A. Brazdeikis, RSC Adv. 3, 7838–7849 (2013) S. Rittikulsittichai, B. Singhana, W.W. Bryan, S. Sarangi, A.C. Jamison, A. Brazdeikis, RSC Adv. 3, 7838–7849 (2013)
9.
Zurück zum Zitat W. Park, A.C. Gordon, S. Cho, X.K. Huang, K.R. Harris, A.C. Larson, D.H. Kim, ACS Appl. Mater. Inter. 9, 13819–13824 (2017) W. Park, A.C. Gordon, S. Cho, X.K. Huang, K.R. Harris, A.C. Larson, D.H. Kim, ACS Appl. Mater. Inter. 9, 13819–13824 (2017)
10.
Zurück zum Zitat R. Singh, D.W. Ho, L.Y. Lim, K.S. Iyer, N.M. Smith, ACS Omega 1, 1114–1120 (2016) R. Singh, D.W. Ho, L.Y. Lim, K.S. Iyer, N.M. Smith, ACS Omega 1, 1114–1120 (2016)
11.
Zurück zum Zitat M. Bayat, H. Yang, F.K. Ko, D. Michelson, A. Mei, Polymer 55, 936–943 (2014) M. Bayat, H. Yang, F.K. Ko, D. Michelson, A. Mei, Polymer 55, 936–943 (2014)
12.
Zurück zum Zitat S. Biswas, S.S. Panja, S. Bose, Mater. Chem. Front. 1, 132–145 (2016) S. Biswas, S.S. Panja, S. Bose, Mater. Chem. Front. 1, 132–145 (2016)
13.
Zurück zum Zitat J.H. Zhu, S.Y. Wei, N. Haldolaarachchige, D.P. Young, Z.H. Guo, J. Phys. Chem. C 115, 15304–15310 (2011) J.H. Zhu, S.Y. Wei, N. Haldolaarachchige, D.P. Young, Z.H. Guo, J. Phys. Chem. C 115, 15304–15310 (2011)
14.
Zurück zum Zitat D. Zhang, J. Cheng, X. Yang, B. Zhao, M. Cao, J. Mater. Sci. 49, 7221–7230 (2014) D. Zhang, J. Cheng, X. Yang, B. Zhao, M. Cao, J. Mater. Sci. 49, 7221–7230 (2014)
15.
Zurück zum Zitat Q.M. Kainz, O. Reise, Accounts Chem. Res. 47, 667–677 (2014) Q.M. Kainz, O. Reise, Accounts Chem. Res. 47, 667–677 (2014)
16.
Zurück zum Zitat D.F. Zhang, F.X. Xu, J. Lin, Z.D. Yang, M. Zhang, Carbon 80, 103–111 (2014) D.F. Zhang, F.X. Xu, J. Lin, Z.D. Yang, M. Zhang, Carbon 80, 103–111 (2014)
17.
Zurück zum Zitat S.C. Wuang, K.G. Neoh, E.T. Kang, D.W. Pack, D.E. Leckband, J. Mater. Chem. 17, 3354–3362 (2007) S.C. Wuang, K.G. Neoh, E.T. Kang, D.W. Pack, D.E. Leckband, J. Mater. Chem. 17, 3354–3362 (2007)
18.
Zurück zum Zitat J.H. Gao, H.W. Gu, B. Xu, Accounts Chem. Res. 42, 1097–1107 (2009) J.H. Gao, H.W. Gu, B. Xu, Accounts Chem. Res. 42, 1097–1107 (2009)
19.
Zurück zum Zitat R. Hao, R.J. Xing, Z.C. Xu, Y.L. Hou, S. Gao, S.H. Sun, Adv. Mater. 22, 2729–2742 (2010) R. Hao, R.J. Xing, Z.C. Xu, Y.L. Hou, S. Gao, S.H. Sun, Adv. Mater. 22, 2729–2742 (2010)
20.
Zurück zum Zitat X.F. Lu, C. Wang, Y. Wei, Small 5, 2349–2370 (2009) X.F. Lu, C. Wang, Y. Wei, Small 5, 2349–2370 (2009)
21.
Zurück zum Zitat K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 279, 231–240 (2015) K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 279, 231–240 (2015)
22.
Zurück zum Zitat Z.Y. Hou, P.P. Yang, C.X. Li, L.L. Wang, H.Z. Lian, Z.W. Quan, J. Lin, Chem. Mater. 20, 6686–6696 (2008) Z.Y. Hou, P.P. Yang, C.X. Li, L.L. Wang, H.Z. Lian, Z.W. Quan, J. Lin, Chem. Mater. 20, 6686–6696 (2008)
23.
Zurück zum Zitat J. Tian, Q.L. Ma, X.T. Dong, M. Yang, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 26, 8413–8420 (2015) J. Tian, Q.L. Ma, X.T. Dong, M. Yang, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 26, 8413–8420 (2015)
24.
Zurück zum Zitat X. Xi, Q.L. Ma, X.T. Dong, X.T. Wang, W.S. Yu, G.X. Liu, IEEE Trans. Nanotechnol. 14, 243–249 (2015) X. Xi, Q.L. Ma, X.T. Dong, X.T. Wang, W.S. Yu, G.X. Liu, IEEE Trans. Nanotechnol. 14, 243–249 (2015)
25.
Zurück zum Zitat L. Han, Y.H. Hu, M.M. Pan, Y.F. Xie, Y.Y. Liu, D. Li, X.T. Dong, CrystEngComm. 17, 2529–2535 (2015) L. Han, Y.H. Hu, M.M. Pan, Y.F. Xie, Y.Y. Liu, D. Li, X.T. Dong, CrystEngComm. 17, 2529–2535 (2015)
26.
Zurück zum Zitat L. Han, M.M. Pan, Y.H. Hu, Y.F. Xie, Y.Y. Liu, D. Li, X.T. Dong, J. Am. Ceram. Soc. 98, 2817–2822 (2015) L. Han, M.M. Pan, Y.H. Hu, Y.F. Xie, Y.Y. Liu, D. Li, X.T. Dong, J. Am. Ceram. Soc. 98, 2817–2822 (2015)
27.
Zurück zum Zitat L. Han, Q.L. Ma, X.T. Dong, RSC Adv. 5, 95674–95681 (2015) L. Han, Q.L. Ma, X.T. Dong, RSC Adv. 5, 95674–95681 (2015)
28.
Zurück zum Zitat F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, New J. Chem. 39, 3444–3451 (2015) F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, New J. Chem. 39, 3444–3451 (2015)
29.
Zurück zum Zitat F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, ChemPlusChem. 79, 1713–1719 (2014) F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, ChemPlusChem. 79, 1713–1719 (2014)
30.
Zurück zum Zitat D.D. Yin, Q.L. Ma, X.T. Dong, N. Lv, J.X. Wang, N. Lv, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem. 80, 568–575 (2015) D.D. Yin, Q.L. Ma, X.T. Dong, N. Lv, J.X. Wang, N. Lv, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem. 80, 568–575 (2015)
31.
Zurück zum Zitat D. Li, Q.L. Ma, Y. Song, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 18, 27536–27544 (2016) D. Li, Q.L. Ma, Y. Song, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 18, 27536–27544 (2016)
32.
Zurück zum Zitat H. Shao, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 21845–21855 (2015) H. Shao, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 21845–21855 (2015)
33.
Zurück zum Zitat L.W. Huang, J.T. Arena, S.S. Manickam, X.Q. Jiang, B.G. Willis, J.R. Mccutcheon, J. Membr. Sci. 460, 241–249 (2014) L.W. Huang, J.T. Arena, S.S. Manickam, X.Q. Jiang, B.G. Willis, J.R. Mccutcheon, J. Membr. Sci. 460, 241–249 (2014)
34.
Zurück zum Zitat J.M. Corres, Y.R. Garcia, F.J. Arregui, I.R. Matias, IEEE Sens. J. 11, 2383–2387 (2011) J.M. Corres, Y.R. Garcia, F.J. Arregui, I.R. Matias, IEEE Sens. J. 11, 2383–2387 (2011)
35.
Zurück zum Zitat Y. Mizuno, E. Hosono, T. Saito, M. Okubo, D. Nishio-Hamane, K. Oh-Ishi, T. Kudo, H.S. Zhou, J. Phys. Chem. C 116, 10774–10780 (2012) Y. Mizuno, E. Hosono, T. Saito, M. Okubo, D. Nishio-Hamane, K. Oh-Ishi, T. Kudo, H.S. Zhou, J. Phys. Chem. C 116, 10774–10780 (2012)
36.
Zurück zum Zitat S.N. Jayasinghe, Analyst 138, 2215–2223 (2013) S.N. Jayasinghe, Analyst 138, 2215–2223 (2013)
37.
Zurück zum Zitat K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Ying, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 279, 231–240 (2015) K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Ying, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 279, 231–240 (2015)
38.
Zurück zum Zitat Y.W. Liu, Q.L. Ma, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 22977–22984 (2015) Y.W. Liu, Q.L. Ma, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 22977–22984 (2015)
39.
Zurück zum Zitat S.J. Sheng, Q.L. Ma, J.X. Wang, L. Nan, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 25, 1309–1316 (2014) S.J. Sheng, Q.L. Ma, J.X. Wang, L. Nan, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 25, 1309–1316 (2014)
40.
Zurück zum Zitat Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Adv. Funct. Mater. 25, 2436–2443 (2015) Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Adv. Funct. Mater. 25, 2436–2443 (2015)
41.
Zurück zum Zitat N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 243, 500–508 (2014) N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 243, 500–508 (2014)
42.
Zurück zum Zitat N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem. 79, 690–697 (2014) N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem. 79, 690–697 (2014)
43.
Zurück zum Zitat Y.Y. Zheng, X.B. Wang, L. Shang, C.R. Li, C. Cui, W.J. Dong, W.H. Tang, B.Y. Chen, Mater. Charact. 61, 489–492 (2010) Y.Y. Zheng, X.B. Wang, L. Shang, C.R. Li, C. Cui, W.J. Dong, W.H. Tang, B.Y. Chen, Mater. Charact. 61, 489–492 (2010)
44.
Zurück zum Zitat S. Meshkova, J. Fluoresc. 10, 333–337 (2000) S. Meshkova, J. Fluoresc. 10, 333–337 (2000)
Metadaten
Titel
Flexible special-structured Janus nanofiber synchronously endued with tunable trifunctionality of enhanced photoluminescence, electrical conductivity and superparamagnetism
verfasst von
Xue Xi
Qianli Ma
Xiangting Dong
Dan Li
Wensheng Yu
Jinxian Wang
Guixia Liu
Publikationsdatum
02.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-8700-5

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Science: Materials in Electronics 9/2018 Zur Ausgabe

Neuer Inhalt