Skip to main content
Erschienen in: Experiments in Fluids 4/2007

01.10.2007 | Research Article

Flow structure and skin friction in the vicinity of a streamwise-angled injection hole fed by a short pipe

verfasst von: Sean D. Peterson, Michael W. Plesniak

Erschienen in: Experiments in Fluids | Ausgabe 4/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The velocity field and skin friction distribution around a row of five jets issuing into a crossflow from short (L/D ≃ 1) pipes inclined by 35° with respect to the streamwise direction, (i.e., “short holes”) are presented for two different jet supply flow directions. Velocity was measured using PIV, while the skin friction was measured with oil-film interferometry. The flow features are compared with previously published data for jets issuing through holes oriented normal to the crossflow and with numerical simulations of similar geometries. The distinguishing features of the flow field include a reduced recirculation region in comparison to the 90° case and markedly different in-hole flow physics. The jetting process caused by in-hole separations force the bulk of the jet fluid to issue from the leading half of the streamwise-angled injection hole, as previously reported by Brundage et al. (Tech Rep ASME 99-GT-35, 1999) and predicted by Walters and Leylek (ASME J Turbomach 122:101–112, 2000). The flow structure impacts the skin friction distribution around the holes, resulting in higher near-hole shear stress for a counter-flow supply plenum (jet fluid supplied by a high speed plenum flowing opposite to the free stream direction). In contrast, the counter-flow supply plenum was previously found to have the lowest near-hole wall shear stress for normal injection holes (Peterson and Plesniak in Exp Fluids 37:497–503, 2004b). Streamwise-angled injection generally reduces the near-hole skin friction due to the reduced jet trajectory resulting from the lower wall-normal jet momentum. Far downstream, the skin friction distributions are similar for the two injection angle cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andreopoulos J (1982) Measurements in a jet-pipe flow issuing penpendicularly into a cross stream. J Fluids Eng 104:493–499CrossRef Andreopoulos J (1982) Measurements in a jet-pipe flow issuing penpendicularly into a cross stream. J Fluids Eng 104:493–499CrossRef
Zurück zum Zitat Azzi A, Jubran BA (2003) Numerical modeling of film cooling from short length stream-wise injection holes. Heat Mass Transf 39:349–353 Azzi A, Jubran BA (2003) Numerical modeling of film cooling from short length stream-wise injection holes. Heat Mass Transf 39:349–353
Zurück zum Zitat Berhe MK, Patankar SV (1996) A numerical study of discrete hole film-cooling. Tech Rep ASME 96-WA/HT-8 Berhe MK, Patankar SV (1996) A numerical study of discrete hole film-cooling. Tech Rep ASME 96-WA/HT-8
Zurück zum Zitat Bogard DG, Thole KA (2006) Gas turbine film cooling. J Propuls Power 22:249–270 Bogard DG, Thole KA (2006) Gas turbine film cooling. J Propuls Power 22:249–270
Zurück zum Zitat Broadwell JE, Breidenthal RE (1984) Structure and mixing of a transverse jet in incompressible flow. J Fluid Mech 148:405–412CrossRef Broadwell JE, Breidenthal RE (1984) Structure and mixing of a transverse jet in incompressible flow. J Fluid Mech 148:405–412CrossRef
Zurück zum Zitat Brundage AL, Plesniak MW, Ramadhyani S (1999) Influence of coolant feed direction and hole length on film cooling jet velocity profiles. Tech Rep ASME 99-GT-35 Brundage AL, Plesniak MW, Ramadhyani S (1999) Influence of coolant feed direction and hole length on film cooling jet velocity profiles. Tech Rep ASME 99-GT-35
Zurück zum Zitat Burd S, Simon T (1998) Measurements in film cooling flows: hole l/d and turbulence intensity effects. ASME J Turbomach 120:791–798 Burd S, Simon T (1998) Measurements in film cooling flows: hole l/d and turbulence intensity effects. ASME J Turbomach 120:791–798
Zurück zum Zitat Cortelezzi L, Karagozian AR (2001) On the formation of the counter-rotating vortex pair in transverse jets. J Fluid Mech 446:347–373MATHMathSciNet Cortelezzi L, Karagozian AR (2001) On the formation of the counter-rotating vortex pair in transverse jets. J Fluid Mech 446:347–373MATHMathSciNet
Zurück zum Zitat Driver DM (2003) Application of oil-film interferometry skin-friction measurements to large wind tunnels. Exp Fluids 34:717–725CrossRef Driver DM (2003) Application of oil-film interferometry skin-friction measurements to large wind tunnels. Exp Fluids 34:717–725CrossRef
Zurück zum Zitat Fric TF, Roshko A (1989) Vortical structure in the wake of a transverse jet. J Fluid Mech 279:1–47CrossRef Fric TF, Roshko A (1989) Vortical structure in the wake of a transverse jet. J Fluid Mech 279:1–47CrossRef
Zurück zum Zitat Guo X, Schröder W, Meinke M (2006) Large-eddy simulations of film cooling flows. Comput Fluids 35:587–606MATHCrossRef Guo X, Schröder W, Meinke M (2006) Large-eddy simulations of film cooling flows. Comput Fluids 35:587–606MATHCrossRef
Zurück zum Zitat Hale CA (1999) Short hole film cooling hydrodynamics and convective heat transfer in the near-hole region. Ph.D. dissertation. School of Mechanical Engineering, Purdue University, West Lafayette, IN Hale CA (1999) Short hole film cooling hydrodynamics and convective heat transfer in the near-hole region. Ph.D. dissertation. School of Mechanical Engineering, Purdue University, West Lafayette, IN
Zurück zum Zitat Hale CA, Plesniak MW, Ramadhyani S (2000a) Film cooling effectiveness for short holes fed by a narrow plenum. ASME J Turbomach 122:553–557CrossRef Hale CA, Plesniak MW, Ramadhyani S (2000a) Film cooling effectiveness for short holes fed by a narrow plenum. ASME J Turbomach 122:553–557CrossRef
Zurück zum Zitat Hale CA, Plesniak MW, Ramadhyani S (2000b) Structural features and surface heat transfer associated with a row of short-hole jets in crossflow. Int J Heat Fluid Flow 21:542–553CrossRef Hale CA, Plesniak MW, Ramadhyani S (2000b) Structural features and surface heat transfer associated with a row of short-hole jets in crossflow. Int J Heat Fluid Flow 21:542–553CrossRef
Zurück zum Zitat Harrington MK, McWaters MA, Bogard DG, Lemmon CA, Thole KA (2001) Full-coverage film cooling with short injection holes. ASME J Turbomach 123:798–805CrossRef Harrington MK, McWaters MA, Bogard DG, Lemmon CA, Thole KA (2001) Full-coverage film cooling with short injection holes. ASME J Turbomach 123:798–805CrossRef
Zurück zum Zitat Jovanović MB, de Lange HC, van Steenhoven AA (2006) Influence of hole imperfection on jet cross flow interaction. Int J Heat Fluid Flow 27:42–53CrossRef Jovanović MB, de Lange HC, van Steenhoven AA (2006) Influence of hole imperfection on jet cross flow interaction. Int J Heat Fluid Flow 27:42–53CrossRef
Zurück zum Zitat Kohli A, Bogard D (1997) Adiabatic effectiveness, thermal fields, and velocity fields for film cooling with large angle injection. ASME J Turbomach 119:352–358CrossRef Kohli A, Bogard D (1997) Adiabatic effectiveness, thermal fields, and velocity fields for film cooling with large angle injection. ASME J Turbomach 119:352–358CrossRef
Zurück zum Zitat Kohli A, Thole KA (1998) Entrance effects on diffused film cooling holes. Tech Rep ASME 98-GT-402 Kohli A, Thole KA (1998) Entrance effects on diffused film cooling holes. Tech Rep ASME 98-GT-402
Zurück zum Zitat Leylek JH, Zerkle RD (1994) Discrete-jet film cooling: a comparison of computational results with experiments. ASME J Turbomach 116:358–368 Leylek JH, Zerkle RD (1994) Discrete-jet film cooling: a comparison of computational results with experiments. ASME J Turbomach 116:358–368
Zurück zum Zitat Margason RJ (1993) Fifty years of jet in cross flow research. Tech Rep AGARD-CP-534 Margason RJ (1993) Fifty years of jet in cross flow research. Tech Rep AGARD-CP-534
Zurück zum Zitat Miao JM, Ching HK (2006) Numerical simulation of film-cooling concave plate as coolant jet passes through two rows of holes with various orientations of coolant flow. Int J Heat Mass Transf 49:557–574CrossRef Miao JM, Ching HK (2006) Numerical simulation of film-cooling concave plate as coolant jet passes through two rows of holes with various orientations of coolant flow. Int J Heat Mass Transf 49:557–574CrossRef
Zurück zum Zitat Monson DJ, Mateer GG, Menter F (1993) Boundary-layer transition and global skin friction measurements with an oil-fringe imaging technique. Aerotech’93, Costa Mesa, CA, SAE 932550 Monson DJ, Mateer GG, Menter F (1993) Boundary-layer transition and global skin friction measurements with an oil-fringe imaging technique. Aerotech’93, Costa Mesa, CA, SAE 932550
Zurück zum Zitat Morton BR, Ibbetson A (1996) Jets deflected in a crossflow. Exp Thermal Fluid Sci 12:112–133CrossRef Morton BR, Ibbetson A (1996) Jets deflected in a crossflow. Exp Thermal Fluid Sci 12:112–133CrossRef
Zurück zum Zitat Naughton JW, Brown JL (1997) Uncertainty analysis for oil-film interferometry skin-friction measurement techniques. Tech Rep ASME FEDSM-3475 Naughton JW, Brown JL (1997) Uncertainty analysis for oil-film interferometry skin-friction measurement techniques. Tech Rep ASME FEDSM-3475
Zurück zum Zitat Naughton JW, Sheplak M (2002) Modern developments in shear-stress measurement. Progr Aerosp Sci 38:515–570CrossRef Naughton JW, Sheplak M (2002) Modern developments in shear-stress measurement. Progr Aerosp Sci 38:515–570CrossRef
Zurück zum Zitat Peterson SD, Plesniak MW (2002) Short hole jet-in-crossflow velocity field and its relationship to film-cooling performance. Exp Fluids 33:889–898 Peterson SD, Plesniak MW (2002) Short hole jet-in-crossflow velocity field and its relationship to film-cooling performance. Exp Fluids 33:889–898
Zurück zum Zitat Peterson SD, Plesniak MW (2004a) Evolution of jets emanating from short holes into crossflow. J Fluid Mech 503:57–91MATHCrossRef Peterson SD, Plesniak MW (2004a) Evolution of jets emanating from short holes into crossflow. J Fluid Mech 503:57–91MATHCrossRef
Zurück zum Zitat Peterson SD, Plesniak MW (2004b) Surface shear stress measurements around multiple jets in crossflow using the fringe imaging skin friction technique. Exp Fluids 37:497–503CrossRef Peterson SD, Plesniak MW (2004b) Surface shear stress measurements around multiple jets in crossflow using the fringe imaging skin friction technique. Exp Fluids 37:497–503CrossRef
Zurück zum Zitat Pietrzyk JR, Bogard DG, Crawford ME (1988) Hydrodynamcic measurements of jets in crossflow for gas turbine film cooling applications. Tech Rep ASME 88-GT-194 Pietrzyk JR, Bogard DG, Crawford ME (1988) Hydrodynamcic measurements of jets in crossflow for gas turbine film cooling applications. Tech Rep ASME 88-GT-194
Zurück zum Zitat Ramsey JW, Goldstein RJ (1971) Interaction of heated jet with a deflecting stream. J Heat Transf 93:365–373 Ramsey JW, Goldstein RJ (1971) Interaction of heated jet with a deflecting stream. J Heat Transf 93:365–373
Zurück zum Zitat Rudman M (1994) Numerical simulation of a jet in crossflow. Tech Rep International Colloquium on Jets, Wakes and Shear Layers. Commonwealth Scientific and Research Organization, Melbourne, AU Rudman M (1994) Numerical simulation of a jet in crossflow. Tech Rep International Colloquium on Jets, Wakes and Shear Layers. Commonwealth Scientific and Research Organization, Melbourne, AU
Zurück zum Zitat Sinha AK, Bogard DG, Crawford ME (1991) Film-cooling effectiveness downstream of a single row of holes with variable density ratio. ASME J Turbomach 13:442–449CrossRef Sinha AK, Bogard DG, Crawford ME (1991) Film-cooling effectiveness downstream of a single row of holes with variable density ratio. ASME J Turbomach 13:442–449CrossRef
Zurück zum Zitat Thole KA, Gritsch M, Schulz A, Wittig S (1997) Effect of a crossflow and the entrance to a film-cooling hole. J Fluids Eng 119:533–540 Thole KA, Gritsch M, Schulz A, Wittig S (1997) Effect of a crossflow and the entrance to a film-cooling hole. J Fluids Eng 119:533–540
Zurück zum Zitat Walters DK, Leylek JH (1997) A systematic computational methodology applied to a three-dimensional film-cooling flowfield. ASME J Turbomach 119:777–785 Walters DK, Leylek JH (1997) A systematic computational methodology applied to a three-dimensional film-cooling flowfield. ASME J Turbomach 119:777–785
Zurück zum Zitat Walters DK, Leylek JH (2000) A detailed analysis of film-cooling physics: part I—streamwise injection with cylindrical holes. ASME J Turbomach 122:101–112 Walters DK, Leylek JH (2000) A detailed analysis of film-cooling physics: part I—streamwise injection with cylindrical holes. ASME J Turbomach 122:101–112
Zurück zum Zitat Wittig S, Schulz A, Gritsch M, Thole KA (1996) Transonic film-cooling investigations: effects of hole shapes and orientations. Tech Rep ASME 99-GT-222 Wittig S, Schulz A, Gritsch M, Thole KA (1996) Transonic film-cooling investigations: effects of hole shapes and orientations. Tech Rep ASME 99-GT-222
Zurück zum Zitat Wolochuck MC, Plesniak MW, Braun JE (1994) Evaluation of vortex shedding flow meters for HVAC applications. Tech Rep ME-TSPC/HERL-TR-94-1, Purdue University, West Lafayette, IN Wolochuck MC, Plesniak MW, Braun JE (1994) Evaluation of vortex shedding flow meters for HVAC applications. Tech Rep ME-TSPC/HERL-TR-94-1, Purdue University, West Lafayette, IN
Zurück zum Zitat Zilliac GG (1996) Further developments of the fringe-imaging skin friction technique. Tech Rep NASA TM-110425, NASA Ames Research Center, USA Zilliac GG (1996) Further developments of the fringe-imaging skin friction technique. Tech Rep NASA TM-110425, NASA Ames Research Center, USA
Zurück zum Zitat Zilliac GG (1999) The fringe-imaging skin friction technique. Tech Rep NASA/TM-1999-208794, NASA Ames Research Center, USA Zilliac GG (1999) The fringe-imaging skin friction technique. Tech Rep NASA/TM-1999-208794, NASA Ames Research Center, USA
Metadaten
Titel
Flow structure and skin friction in the vicinity of a streamwise-angled injection hole fed by a short pipe
verfasst von
Sean D. Peterson
Michael W. Plesniak
Publikationsdatum
01.10.2007
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 4/2007
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-007-0350-y

Weitere Artikel der Ausgabe 4/2007

Experiments in Fluids 4/2007 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.