Skip to main content
Erschienen in: Hydrogeology Journal 2/2017

30.11.2016 | Paper

Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

verfasst von: Christine Doughty, Chin-Fu Tsang, Jan-Erik Rosberg, Christopher Juhlin, Patrick F. Dobson, Jens T. Birkholzer

Erschienen in: Hydrogeology Journal | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Dobson P, Tsang CF, Kneafsey T, Borglin S, Piceno Y, Andersen G, Nakagawa S, Nihei K, Rutqvist J, Doughty C, Reagan M (2016) Deep borehole field test research activities at LBNL, Rep. LBNL-106044, Lawrence Berkeley National Laboratory, Berkeley, CA Dobson P, Tsang CF, Kneafsey T, Borglin S, Piceno Y, Andersen G, Nakagawa S, Nihei K, Rutqvist J, Doughty C, Reagan M (2016) Deep borehole field test research activities at LBNL, Rep. LBNL-106044, Lawrence Berkeley National Laboratory, Berkeley, CA
Zurück zum Zitat Doughty C, Tsang CF (2000) BORE II: a code to compute dynamic wellbore electrical conductivity logs with multiple inflow/outflow points including the effects of horizontal flow across the well, Rep. LBL-46833, Lawrence Berkeley National Laboratory, Berkeley, CA, 2000. http://ipo.lbl.gov/lbnl12561673/. Accessed June 2016 Doughty C, Tsang CF (2000) BORE II: a code to compute dynamic wellbore electrical conductivity logs with multiple inflow/outflow points including the effects of horizontal flow across the well, Rep. LBL-46833, Lawrence Berkeley National Laboratory, Berkeley, CA, 2000. http://​ipo.​lbl.​gov/​lbnl12561673/​. Accessed June 2016
Zurück zum Zitat Doughty C, Tsang CF (2005) Signatures in flowing fluid electric conductivity logs. J Hydrol 310:157–180CrossRef Doughty C, Tsang CF (2005) Signatures in flowing fluid electric conductivity logs. J Hydrol 310:157–180CrossRef
Zurück zum Zitat Doughty C, Takeuchi S, Amano K, Shimo M, Tsang CF (2005) Application of multi-rate flowing fluid electric conductivity logging method to Well DH-2, Tono site, Japan. Water Resour Res 41:W10401. doi:10.1029/2004WR003708 CrossRef Doughty C, Takeuchi S, Amano K, Shimo M, Tsang CF (2005) Application of multi-rate flowing fluid electric conductivity logging method to Well DH-2, Tono site, Japan. Water Resour Res 41:W10401. doi:10.​1029/​2004WR003708 CrossRef
Zurück zum Zitat Doughty C, Tsang CF, Hatanaka K, Yabuuchi S, Kurikami H (2008) Application of direct-fitting, mass integral, and multirate methods to analysis of flowing fluid electric conductivity logs from Horonobe, Japan. Water Resour Res 44:W08403. doi:10.1029/2007WR006441 CrossRef Doughty C, Tsang CF, Hatanaka K, Yabuuchi S, Kurikami H (2008) Application of direct-fitting, mass integral, and multirate methods to analysis of flowing fluid electric conductivity logs from Horonobe, Japan. Water Resour Res 44:W08403. doi:10.​1029/​2007WR006441 CrossRef
Zurück zum Zitat Doughty C, Tsang CF, Yabuuchi S, Kunimaru T (2013) Flowing fluid electric conductivity logging for a deep artesian well in fractured rock with regional flow. J Hydrol 482:1–13CrossRef Doughty C, Tsang CF, Yabuuchi S, Kunimaru T (2013) Flowing fluid electric conductivity logging for a deep artesian well in fractured rock with regional flow. J Hydrol 482:1–13CrossRef
Zurück zum Zitat Follin S, Hartley L, Rhén I, Jackson P, Joyce S, Roberts D, Swift B (2014) A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22:313–333CrossRef Follin S, Hartley L, Rhén I, Jackson P, Joyce S, Roberts D, Swift B (2014) A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22:313–333CrossRef
Zurück zum Zitat Lorenz H, Rosberg JE, Juhlin C, Bjelm L, Almqvist BSG, Berthet T, Conze R, Gee DG, Klonowska I, Pascal C, Pedersen K, Roberts NMW, Tsang CF (2015) COSC-1: drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia. Sci Drill 19:1–11. doi:10.5194/sd-19-1-2015 CrossRef Lorenz H, Rosberg JE, Juhlin C, Bjelm L, Almqvist BSG, Berthet T, Conze R, Gee DG, Klonowska I, Pascal C, Pedersen K, Roberts NMW, Tsang CF (2015) COSC-1: drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia. Sci Drill 19:1–11. doi:10.​5194/​sd-19-1-2015 CrossRef
Zurück zum Zitat Moir RS, Parker AH, Bown RT (2014) A simple inverse method for the interpretation of pumped flowing fluid electrical conductivity logs. Water Resour Res 50:6466–6478. doi:10.1002/2013WR013871 CrossRef Moir RS, Parker AH, Bown RT (2014) A simple inverse method for the interpretation of pumped flowing fluid electrical conductivity logs. Water Resour Res 50:6466–6478. doi:10.​1002/​2013WR013871 CrossRef
Zurück zum Zitat Rhén I, Forsmark T, Hartley L, Jackson P, Roberts D, Swan D, Gylling B (2008) Hydrogeological conceptualisation and parameterisation, Site descriptive modeling SDM-Site, Laxemar, SKB report R-08-78. www.skb.com/publications/ . Accessed June 2016 Rhén I, Forsmark T, Hartley L, Jackson P, Roberts D, Swan D, Gylling B (2008) Hydrogeological conceptualisation and parameterisation, Site descriptive modeling SDM-Site, Laxemar, SKB report R-08-78. www.skb.com/publications/ . Accessed June 2016
Zurück zum Zitat Thiem G (1906) Hydrologische methoden [Hydrogeological methods]. Gebhardt, Leipzig, Germany, 56 pp Thiem G (1906) Hydrologische methoden [Hydrogeological methods]. Gebhardt, Leipzig, Germany, 56 pp
Zurück zum Zitat Tsang CF, Hufschmied P, Hale FV (1990) Determination of fracture inflow parameters with a borehole fluid conductivity logging method. Water Resour Res 26:561–578CrossRef Tsang CF, Hufschmied P, Hale FV (1990) Determination of fracture inflow parameters with a borehole fluid conductivity logging method. Water Resour Res 26:561–578CrossRef
Zurück zum Zitat Tsang CF, Rosberg JE, Sharma P, Berthet T, Juhlin C, Niemi A (2016) Hydrologic testing during drilling: application of the flowing fluid electrical conductivity (FFEC) logging method to drilling of a deep borehole. Hydrogeol J. doi:10.1007/s10040-016-1405-z Tsang CF, Rosberg JE, Sharma P, Berthet T, Juhlin C, Niemi A (2016) Hydrologic testing during drilling: application of the flowing fluid electrical conductivity (FFEC) logging method to drilling of a deep borehole. Hydrogeol J. doi:10.​1007/​s10040-016-1405-z
Metadaten
Titel
Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones
verfasst von
Christine Doughty
Chin-Fu Tsang
Jan-Erik Rosberg
Christopher Juhlin
Patrick F. Dobson
Jens T. Birkholzer
Publikationsdatum
30.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Hydrogeology Journal / Ausgabe 2/2017
Print ISSN: 1431-2174
Elektronische ISSN: 1435-0157
DOI
https://doi.org/10.1007/s10040-016-1497-5

Weitere Artikel der Ausgabe 2/2017

Hydrogeology Journal 2/2017 Zur Ausgabe