Skip to main content
Erschienen in: Wireless Personal Communications 1/2018

20.12.2017

Forecasting Research on the Wireless Mesh Network Throughput Based on the Support Vector Machine

verfasst von: Yan Feng, Xingxing Wu, Yaoke Hu

Erschienen in: Wireless Personal Communications | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Parameters such as network busy rate, number of nodes as well as packet size that affected the wireless mesh network (WMN) throughput were selected as the driving factors which restricted the WMN throughput. A WMN throughput prediction model has been developed based on machine learning methods and experimental study to predict the throughput of IEEE 802.11 WMN. Three kernel functions have been testified and compared through MATLAB. The radial basis kernel function was selected as the support vector regression (SVR) kernel function predication model and its parameters were decided by K-fold cross validation (K-CV) and grid search methods. The proposed prediction model was validated by the data which was simulated in network simulator (NS2). In addition, a prediction model of Mesh network throughput has been established based on back propagation neural network (BPNN). The performance of the models were evaluated using the mean square error and mean absolute error. The experimental results show that the prediction precision of the proposed SVR-based model is a little bit higher than that of the BPNN model. The establishment of the WMN throughput prediction models provides the basis for building, managing and planning rational network structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I. F., et al. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.CrossRefMATH Akyildiz, I. F., et al. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.CrossRefMATH
2.
Zurück zum Zitat Akyildiz, I. F., & Xudong, W. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23–S30.CrossRefMATH Akyildiz, I. F., & Xudong, W. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23–S30.CrossRefMATH
3.
Zurück zum Zitat Xiang, Z., et al. (2014). Predictability of aggregated traffic of gateways in wireless mesh network with AODV and DSDV routing protocols and RWP mobility model. Wireless Personal Communications, 79(2), 891–906.CrossRef Xiang, Z., et al. (2014). Predictability of aggregated traffic of gateways in wireless mesh network with AODV and DSDV routing protocols and RWP mobility model. Wireless Personal Communications, 79(2), 891–906.CrossRef
4.
Zurück zum Zitat Mavroforakis, M. E., & Theodoridis, S. (2006). A geometric approach to support vector machine (SVM) classification. IEEE Transactions on Neural Networks, 17(3), 671–682.CrossRef Mavroforakis, M. E., & Theodoridis, S. (2006). A geometric approach to support vector machine (SVM) classification. IEEE Transactions on Neural Networks, 17(3), 671–682.CrossRef
5.
Zurück zum Zitat Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and computing, 14(3), 199–222.MathSciNetCrossRef Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and computing, 14(3), 199–222.MathSciNetCrossRef
6.
Zurück zum Zitat Beverly, R., et al. (2006). SVM learning of IP address structure for latency prediction. In Proceedings of the 2006 SIGCOMM workshop on mining network data, ACM (pp. 299–304). Beverly, R., et al. (2006). SVM learning of IP address structure for latency prediction. In Proceedings of the 2006 SIGCOMM workshop on mining network data, ACM (pp. 299–304).
7.
Zurück zum Zitat Bermolen, P., & Rossi, D. (2009). Support vector regression for link load prediction. Computer Networks, 53(2), 191–201.CrossRef Bermolen, P., & Rossi, D. (2009). Support vector regression for link load prediction. Computer Networks, 53(2), 191–201.CrossRef
8.
Zurück zum Zitat Feng, H., et al. (2006). SVM-based models for predicting WLAN traffic. In Proceedings of IEEE international conference on communications, 2006. ICC’06. IEEE (pp. 597–602). Feng, H., et al. (2006). SVM-based models for predicting WLAN traffic. In Proceedings of IEEE international conference on communications, 2006. ICC’06. IEEE (pp. 597–602).
9.
Zurück zum Zitat Mirza, M., et al. (2010). A machine learning approach to TCP throughput prediction. IEEE/ACM Transactions on Networking (TON), 18(4), 1026–1039.CrossRef Mirza, M., et al. (2010). A machine learning approach to TCP throughput prediction. IEEE/ACM Transactions on Networking (TON), 18(4), 1026–1039.CrossRef
10.
Zurück zum Zitat Chunghan, L., et al. (2012). Analytical modeling of network throughput prediction on the internet. IEICE Transactions on Information and Systems, 95(12), 2870–2878. Chunghan, L., et al. (2012). Analytical modeling of network throughput prediction on the internet. IEICE Transactions on Information and Systems, 95(12), 2870–2878.
11.
Zurück zum Zitat Lee, C., et al. (2011). Predicting network throughput for grid applications on network virtualization areas. In Proceedings of the first international workshop on network-aware data management, ACM (pp. 11–20). Lee, C., et al. (2011). Predicting network throughput for grid applications on network virtualization areas. In Proceedings of the first international workshop on network-aware data management, ACM (pp. 11–20).
12.
Zurück zum Zitat Swany, M., & Wolski, R. (2002) Multivariate resource performance forecasting in the network weather service. In Proceedings of the 2002 ACM/IEEE conference on supercomputing (pp. 1–10). IEEE Computer Society Press. Swany, M., & Wolski, R. (2002) Multivariate resource performance forecasting in the network weather service. In Proceedings of the 2002 ACM/IEEE conference on supercomputing (pp. 1–10). IEEE Computer Society Press.
13.
Zurück zum Zitat Xiang, Z., et al. (2014). Predictability of aggregated traffic of gateways in wireless mesh network with AODV and DSDV routing protocols and RWP mobility model. Wireless Personal Communications: An International Journal, 79(2), 891–906.CrossRef Xiang, Z., et al. (2014). Predictability of aggregated traffic of gateways in wireless mesh network with AODV and DSDV routing protocols and RWP mobility model. Wireless Personal Communications: An International Journal, 79(2), 891–906.CrossRef
14.
Zurück zum Zitat Rong, B., et al. (2016). Traffic prediction for reliable and resilient video communications over multi-location WMNs. Journal of Network and Systems Management, 24(3), 516–533.CrossRef Rong, B., et al. (2016). Traffic prediction for reliable and resilient video communications over multi-location WMNs. Journal of Network and Systems Management, 24(3), 516–533.CrossRef
15.
Zurück zum Zitat Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.MathSciNetCrossRefMATH Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.MathSciNetCrossRefMATH
16.
Zurück zum Zitat Grossglauser, M., & Tse, D. (2001). Mobility increases the capacity of ad-hoc wireless networks. In Proceedings of INFOCOM 2001. Twentieth annual joint conference of the IEEE computer and communications societies (pp. 1360–1369). IEEE. Grossglauser, M., & Tse, D. (2001). Mobility increases the capacity of ad-hoc wireless networks. In Proceedings of INFOCOM 2001. Twentieth annual joint conference of the IEEE computer and communications societies (pp. 1360–1369). IEEE.
17.
Zurück zum Zitat Liu, B., et al. (2003). On the capacity of hybrid wireless networks. In Proceedings of INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (pp. 1543–1552). IEEE. Liu, B., et al. (2003). On the capacity of hybrid wireless networks. In Proceedings of INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (pp. 1543–1552). IEEE.
18.
Zurück zum Zitat Kozat, U. C., & Tassiulas, L. (2003) Throughput capacity of random ad hoc networks with infrastructure support. In Proceedings of the 9th annual international conference on mobile computing and networking (pp. 55–65). ACM. Kozat, U. C., & Tassiulas, L. (2003) Throughput capacity of random ad hoc networks with infrastructure support. In Proceedings of the 9th annual international conference on mobile computing and networking (pp. 55–65). ACM.
19.
Zurück zum Zitat Zemlianov, A., & Veciana, G. D. (2005). Capacity of ad hoc wireless networks with infrastructure support. IEEE Journal on Selected Areas in Communications, 23(3), 657–667.CrossRef Zemlianov, A., & Veciana, G. D. (2005). Capacity of ad hoc wireless networks with infrastructure support. IEEE Journal on Selected Areas in Communications, 23(3), 657–667.CrossRef
20.
Zurück zum Zitat Bisnik, N., & Abouzeid, A. A. (2006). Queuing delay and achievable throughput in random access wireless ad hoc networks. In 2006 3rd annual IEEE communications society on proceedings of sensor and ad hoc communications and networks, 2006. SECON’06 (pp. 874–880). Bisnik, N., & Abouzeid, A. A. (2006). Queuing delay and achievable throughput in random access wireless ad hoc networks. In 2006 3rd annual IEEE communications society on proceedings of sensor and ad hoc communications and networks, 2006. SECON’06 (pp. 874–880).
21.
Zurück zum Zitat Mizuno, K., et al. (2013). On the throughput evaluation of wireless mesh network deployed in disaster areas. In Proceedings of international conference on computing, networking and communications (pp. 413–417). Mizuno, K., et al. (2013). On the throughput evaluation of wireless mesh network deployed in disaster areas. In Proceedings of international conference on computing, networking and communications (pp. 413–417).
22.
Zurück zum Zitat Berwick, R. (2003). An Idiot’s guide to support vector machines (SVMs). Retrieved on October, 21, 2011. Berwick, R. (2003). An Idiot’s guide to support vector machines (SVMs). Retrieved on October, 21, 2011.
23.
Zurück zum Zitat Bennett, K. P., & Campbell, C. (2000). Support vector machines: Hype or hallelujah? ACM SIGKDD Explorations Newsletter, 2(2), 1–13.CrossRef Bennett, K. P., & Campbell, C. (2000). Support vector machines: Hype or hallelujah? ACM SIGKDD Explorations Newsletter, 2(2), 1–13.CrossRef
24.
Zurück zum Zitat Suganyadevi, M. V., & Babulal, C. K. (2014). Support vector regression model for the prediction of loadability margin of a power system. Applied Soft Computing Journal, 24, 304–315.CrossRef Suganyadevi, M. V., & Babulal, C. K. (2014). Support vector regression model for the prediction of loadability margin of a power system. Applied Soft Computing Journal, 24, 304–315.CrossRef
25.
Zurück zum Zitat Erzin, Y., & Cetin, T. (2012). The use of neural networks for the prediction of the critical factor of safety of an artificial slope subjected to earthquake forces. Scientia Iranica, 19(2), 188–194.CrossRef Erzin, Y., & Cetin, T. (2012). The use of neural networks for the prediction of the critical factor of safety of an artificial slope subjected to earthquake forces. Scientia Iranica, 19(2), 188–194.CrossRef
26.
Zurück zum Zitat Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines (pp. 1–27). New York: ACM. Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines (pp. 1–27). New York: ACM.
27.
Zurück zum Zitat Issariyakul, T., & Hossain, E. (2011). Introduction to network simulator NS2. Berlin: Springer. Issariyakul, T., & Hossain, E. (2011). Introduction to network simulator NS2. Berlin: Springer.
28.
Zurück zum Zitat Clausen, T., & Jacquet, P. (Eds.). (2003). Optimized link state routing protocol (OLSR). Manet Working Group, 527(2), 1–4. Clausen, T., & Jacquet, P. (Eds.). (2003). Optimized link state routing protocol (OLSR). Manet Working Group, 527(2), 1–4.
30.
Zurück zum Zitat Feng, Y., et al. (2010). Comparisons of channel assignment algorithms for wireless mesh networks. International Journal of Internet Protocol Technology, 5(3), 132–141.CrossRef Feng, Y., et al. (2010). Comparisons of channel assignment algorithms for wireless mesh networks. International Journal of Internet Protocol Technology, 5(3), 132–141.CrossRef
31.
Zurück zum Zitat Ding, S., et al. (2011). An optimizing BP neural network algorithm based on genetic algorithm. Artificial Intelligence Review, 36(2), 153–162.CrossRef Ding, S., et al. (2011). An optimizing BP neural network algorithm based on genetic algorithm. Artificial Intelligence Review, 36(2), 153–162.CrossRef
Metadaten
Titel
Forecasting Research on the Wireless Mesh Network Throughput Based on the Support Vector Machine
verfasst von
Yan Feng
Xingxing Wu
Yaoke Hu
Publikationsdatum
20.12.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-5135-x

Weitere Artikel der Ausgabe 1/2018

Wireless Personal Communications 1/2018 Zur Ausgabe

Neuer Inhalt