Skip to main content
Erschienen in: Journal of Polymer Research 7/2020

01.07.2020 | ORIGINAL PAPER

Formation of holographic lens upon non-stationary photopolymerization

verfasst von: Sergey Nickolaevich Mensov, Yuri Victorovich Polushtaytsev

Erschienen in: Journal of Polymer Research | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The possibility of optical creation of quasi-periodical film structures in transparent photo-recording media by discrete moving the illumination boundary along the polymerized layer is considered. The dependence of the formed profile of the refractive index on the parameters of the photopolymer medium and the acting radiation is studied. The process of a holographic lens formation by visible light was experimentally implemented in a photopolymerizable composition based on OCM-2 with methanol.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mensov SN, Polushtaytsev YV (2013) Stable holographic lenses formation from multi-component photopolymerizable compositions. Opt Mem Neural Netw 22(2):90–96 Mensov SN, Polushtaytsev YV (2013) Stable holographic lenses formation from multi-component photopolymerizable compositions. Opt Mem Neural Netw 22(2):90–96
2.
Zurück zum Zitat Obukhovskii VV, Smirnova TN (1993) Model of holographic recording on photopolymerizing composites. Opt Spectrosc 74(4):462–466 Obukhovskii VV, Smirnova TN (1993) Model of holographic recording on photopolymerizing composites. Opt Spectrosc 74(4):462–466
3.
Zurück zum Zitat Baten’kin MA, Mensov SN, Romanov AV (2008) The use of low-viscosity neutral components for increasing the diffraction efficiency of photopolymer holograms. Opt Spectrosc 104(1):135–139 Baten’kin MA, Mensov SN, Romanov AV (2008) The use of low-viscosity neutral components for increasing the diffraction efficiency of photopolymer holograms. Opt Spectrosc 104(1):135–139
4.
Zurück zum Zitat Veniaminov AV, Mahilny VV (2013) Holographic polymer materials with diffusion development: principles, arrangement, investigation, and applications. Opt Spectrosc 115(6):906–930 Veniaminov AV, Mahilny VV (2013) Holographic polymer materials with diffusion development: principles, arrangement, investigation, and applications. Opt Spectrosc 115(6):906–930
5.
Zurück zum Zitat Tomita Y, Hata E, Momose K, Takayama S, Liu X, Chikama K, Klepp J, Pruner C, Fally M (2016) Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics. J Mod Opt 63(S3):S1–S31PubMedPubMedCentral Tomita Y, Hata E, Momose K, Takayama S, Liu X, Chikama K, Klepp J, Pruner C, Fally M (2016) Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics. J Mod Opt 63(S3):S1–S31PubMedPubMedCentral
6.
Zurück zum Zitat Baten'kin M, Mensov SN, Romanov AV (2008) Optical formation of relief holograms from photopolymerizing composites with nonpolymerization-capable additives. J Opt Technol 75(5):311–313 Baten'kin M, Mensov SN, Romanov AV (2008) Optical formation of relief holograms from photopolymerizing composites with nonpolymerization-capable additives. J Opt Technol 75(5):311–313
7.
Zurück zum Zitat Ganzherli NM, Gulyaev SN, Gurin AS, Kramushchenko DD, Maurer IA, Chernykh DF (2009) Formation of random and regular relief-phase structures on silver halide photographic emulsions by holographic methods. Tech Phys 54(7):1002–1006 Ganzherli NM, Gulyaev SN, Gurin AS, Kramushchenko DD, Maurer IA, Chernykh DF (2009) Formation of random and regular relief-phase structures on silver halide photographic emulsions by holographic methods. Tech Phys 54(7):1002–1006
8.
Zurück zum Zitat Mazzulla A, Pagliusi P, Provenzano C, Russo G, Carbone G, Cipparrone G (2004) Surface relief gratings on polymer dispersed liquid crystalsby polarization holography. Appl Phys Lett 85(13):2505–2507 Mazzulla A, Pagliusi P, Provenzano C, Russo G, Carbone G, Cipparrone G (2004) Surface relief gratings on polymer dispersed liquid crystalsby polarization holography. Appl Phys Lett 85(13):2505–2507
9.
Zurück zum Zitat Evtikhiev NN, Evtikhieva OA, Kompanets IN, Krasnov AE, Kul’chin YN, Odinokov SB, Rinkevichus BS (2000) Information optics. MEI, Moscow Evtikhiev NN, Evtikhieva OA, Kompanets IN, Krasnov AE, Kul’chin YN, Odinokov SB, Rinkevichus BS (2000) Information optics. MEI, Moscow
10.
Zurück zum Zitat Born M, Wolf E (1999) Principles of Optics. Cambridge University, Cambridge Born M, Wolf E (1999) Principles of Optics. Cambridge University, Cambridge
11.
Zurück zum Zitat Smirnova TN, Kokhtich LM, Sakhno OV, Stumpe J (2011) Holographic nanocomposites for recording polymer-nanoparticle periodic structures. Opt Spectrosc 110(1):129[part I]–137[part II] Smirnova TN, Kokhtich LM, Sakhno OV, Stumpe J (2011) Holographic nanocomposites for recording polymer-nanoparticle periodic structures. Opt Spectrosc 110(1):129[part I]–137[part II]
12.
Zurück zum Zitat Veltri A, Caputo R, Umeton C, Sukhov AV (2004) Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials. Appl Phys Lett 84(18):3492–3494 Veltri A, Caputo R, Umeton C, Sukhov AV (2004) Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials. Appl Phys Lett 84(18):3492–3494
13.
Zurück zum Zitat Matyunin SA, Paranin VD (2011) Amplitude-phase controlled diffraction optical elements. Foton-Express 94(6):174–175 Matyunin SA, Paranin VD (2011) Amplitude-phase controlled diffraction optical elements. Foton-Express 94(6):174–175
14.
Zurück zum Zitat Aristov VV, Babin SV, Erko AI (1990) Microelectronic technology for computer optics. Comput Opt 2(2):157–160 Aristov VV, Babin SV, Erko AI (1990) Microelectronic technology for computer optics. Comput Opt 2(2):157–160
15.
Zurück zum Zitat Akayev AA, Mayorov SA (1988) Optical methods of information processing. Vyssh, Shkola, Moscow Akayev AA, Mayorov SA (1988) Optical methods of information processing. Vyssh, Shkola, Moscow
16.
Zurück zum Zitat Ostrovsky YI (1977) Holography and Its Application. Mir Publishers, Moscow Ostrovsky YI (1977) Holography and Its Application. Mir Publishers, Moscow
17.
Zurück zum Zitat Dzubenko AG (1976) Application of holography in engineering. Znaniye, Moscow Dzubenko AG (1976) Application of holography in engineering. Znaniye, Moscow
18.
Zurück zum Zitat Landsberg GS (2003) Optics. Physmatlit, Moscow Landsberg GS (2003) Optics. Physmatlit, Moscow
19.
Zurück zum Zitat Tolstik E, Egorova E, Hoff D, Matusevich V, Yakimtsova LB, Matusevich YI, Kowarschik R, Krul LP (2012) New thermostable copolymers for holographic storage based on methylmethacrylate with methacrylamide or methacrylic acid. J Polym Res 19:9742 Tolstik E, Egorova E, Hoff D, Matusevich V, Yakimtsova LB, Matusevich YI, Kowarschik R, Krul LP (2012) New thermostable copolymers for holographic storage based on methylmethacrylate with methacrylamide or methacrylic acid. J Polym Res 19:9742
20.
Zurück zum Zitat Liu J-H, Wu F-T (2004) Holographic Gratings in Photosensitive Acrylic Polymers with High Refractive Index Diphenyl Sulfide. J Polym Res 11(1):43–51 Liu J-H, Wu F-T (2004) Holographic Gratings in Photosensitive Acrylic Polymers with High Refractive Index Diphenyl Sulfide. J Polym Res 11(1):43–51
21.
Zurück zum Zitat Dovol’nov EA, Sharangovich SN (2008) Nonlinear model of sequential recording of superimposed holographic gratings in photopolymer composites with allowance for the self-diffraction from spatial harmonics. Opt Spectrosc 105(2):310–319 Dovol’nov EA, Sharangovich SN (2008) Nonlinear model of sequential recording of superimposed holographic gratings in photopolymer composites with allowance for the self-diffraction from spatial harmonics. Opt Spectrosc 105(2):310–319
22.
Zurück zum Zitat Baten’kin MA, Mensov SN (2015) Optical formation of polymeric materials with heterogeneously distributed nanopores from a photopolymerizable composite. J Polym Res 22(4):64 Baten’kin MA, Mensov SN (2015) Optical formation of polymeric materials with heterogeneously distributed nanopores from a photopolymerizable composite. J Polym Res 22(4):64
23.
Zurück zum Zitat Baten’kin MA, Konev AN, Mensov SN, Chesnokov SA (2011) Formation of heterogeneous polymer structures during photoinduced crosslinking of olygo(ester acrylates) in the presence of a nonpolymerizable component. Polym Sci Ser A 53(7):558–568 Baten’kin MA, Konev AN, Mensov SN, Chesnokov SA (2011) Formation of heterogeneous polymer structures during photoinduced crosslinking of olygo(ester acrylates) in the presence of a nonpolymerizable component. Polym Sci Ser A 53(7):558–568
24.
Zurück zum Zitat Sakhno OV, Goldenberg LM, Stumpe J, Smirnova TN (2009) Effective volume holographic structures based on organic-inorganic photopolymer nanocomposites. J Opt A Pure Appl Opt 11(2):024013 Sakhno OV, Goldenberg LM, Stumpe J, Smirnova TN (2009) Effective volume holographic structures based on organic-inorganic photopolymer nanocomposites. J Opt A Pure Appl Opt 11(2):024013
25.
Zurück zum Zitat Pikas DJ, Kirkpatrick SM, Tomlin DW, Natarajan L, Tondiglia V, Bunning TJ (2002) Electrically switchable reflection holograms formed using two-photon photopolymerization. Appl Phys A Mater Sci Process 74(6):767–772 Pikas DJ, Kirkpatrick SM, Tomlin DW, Natarajan L, Tondiglia V, Bunning TJ (2002) Electrically switchable reflection holograms formed using two-photon photopolymerization. Appl Phys A Mater Sci Process 74(6):767–772
26.
Zurück zum Zitat Mensov SN, Polushtaitsev YV (2012) Optical formation of stable waveguiding structures from a photopolymerisable composition with a nonpolymerisable component. Quantum Electron 42:545–550 Mensov SN, Polushtaitsev YV (2012) Optical formation of stable waveguiding structures from a photopolymerisable composition with a nonpolymerisable component. Quantum Electron 42:545–550
27.
Zurück zum Zitat Caulfield HJ (1979) Handbook of optical holography. Academic, New York Caulfield HJ (1979) Handbook of optical holography. Academic, New York
28.
Zurück zum Zitat Collier RJ, Burckhardt C, Lin LH (1971) Optical holography. Academic, New York Collier RJ, Burckhardt C, Lin LH (1971) Optical holography. Academic, New York
29.
Zurück zum Zitat Ginzburg VM (1974) Holography, methods and apparatus. Sov. Radio, Moscow Ginzburg VM (1974) Holography, methods and apparatus. Sov. Radio, Moscow
30.
Zurück zum Zitat Mensov SN, Morozova MA, Polushtaytsev YV (2018) Optical formation and transport of a local region with an increased content of a neutral component in a photopolymerizable composite layer. JETP Lett 108(8):553–556 Mensov SN, Morozova MA, Polushtaytsev YV (2018) Optical formation and transport of a local region with an increased content of a neutral component in a photopolymerizable composite layer. JETP Lett 108(8):553–556
31.
Zurück zum Zitat Baten’kin MA, Mensov SN, Morozova MA, Polushtaytsev YV (2015) Neutral component localization in the volume of photopolymerizable medium by the counter moving boundaries of initiating radiation action. J Polym Res 22(12):247 Baten’kin MA, Mensov SN, Morozova MA, Polushtaytsev YV (2015) Neutral component localization in the volume of photopolymerizable medium by the counter moving boundaries of initiating radiation action. J Polym Res 22(12):247
32.
Zurück zum Zitat Polushtaytsev YV, Mensov SN (2019) Formation of gradient polymer lenses by non-stationary luminous flux. J Polym Res 26(12):273 Polushtaytsev YV, Mensov SN (2019) Formation of gradient polymer lenses by non-stationary luminous flux. J Polym Res 26(12):273
33.
Zurück zum Zitat Mensov SN, Morozova MA, Polushtaytsev YV (2016) Formation of periodic phase structures in a photopolymerizable layer by nonstationary light beams. Opt Spectrosc 121(3):438–444 Mensov SN, Morozova MA, Polushtaytsev YV (2016) Formation of periodic phase structures in a photopolymerizable layer by nonstationary light beams. Opt Spectrosc 121(3):438–444
34.
Zurück zum Zitat Davtyan SP, Berlin AA, Tonoyan AO (2011) Advances and problems of frontal polymerization processes. Rev J Chem 1(1):56–92 Davtyan SP, Berlin AA, Tonoyan AO (2011) Advances and problems of frontal polymerization processes. Rev J Chem 1(1):56–92
35.
Zurück zum Zitat Yao KZ, McAuley KB (2001) Simulation of continuous solid-phase polymerization of nylon 6,6 (II): processes with moving bed level and changing particle properties. Chem Eng Sci 56:5327–5342 Yao KZ, McAuley KB (2001) Simulation of continuous solid-phase polymerization of nylon 6,6 (II): processes with moving bed level and changing particle properties. Chem Eng Sci 56:5327–5342
36.
Zurück zum Zitat Kholpanov LP, Zakiev SE, Pomogailo AD (2006) Two-phase frontal polymerization of metal-containing monomers. Polymer Sci Ser A 48(1):11–17 Kholpanov LP, Zakiev SE, Pomogailo AD (2006) Two-phase frontal polymerization of metal-containing monomers. Polymer Sci Ser A 48(1):11–17
37.
Zurück zum Zitat Huh DS, Kim MS, Choe SJ (2001) Polymerization of diacrylate by thermal front. Bull Kor Chem Soc 22(7):769–771 Huh DS, Kim MS, Choe SJ (2001) Polymerization of diacrylate by thermal front. Bull Kor Chem Soc 22(7):769–771
38.
Zurück zum Zitat Asakura K, Nihei E, Harasawa H, Ikumo A, Osanai S (2003) Spontaneous frontal polymerization: propagating front spontaneously generated by locally autoaccelerated free-radical polymerization. ACS Symp Ser 869:135–146 Asakura K, Nihei E, Harasawa H, Ikumo A, Osanai S (2003) Spontaneous frontal polymerization: propagating front spontaneously generated by locally autoaccelerated free-radical polymerization. ACS Symp Ser 869:135–146
39.
Zurück zum Zitat Pojman JA, Ilyashenko VM, Khan AM (1996) Free-radical frontal polymerization: Self-propagating thermal reaction waves. J Chem Soc Faraday Trans 96(16):2825–2837 Pojman JA, Ilyashenko VM, Khan AM (1996) Free-radical frontal polymerization: Self-propagating thermal reaction waves. J Chem Soc Faraday Trans 96(16):2825–2837
40.
Zurück zum Zitat Treushnikov VM, Viktorova EA (2015) Principles of manufacturing biocompatible and biostable polymer implants (review). Sovremennye Tehnologii v Med 7(3):149–171 Treushnikov VM, Viktorova EA (2015) Principles of manufacturing biocompatible and biostable polymer implants (review). Sovremennye Tehnologii v Med 7(3):149–171
41.
Zurück zum Zitat Lenkova GA, Korolkov VP, Koronkevich VP, Nasyrov RK, Gutman AS, Iskakov IA, Treushnikov VM (2008) Diffractive-refractive intraocular lenses. Optoelectron Instrument Data Proc 44(4):342–352 Lenkova GA, Korolkov VP, Koronkevich VP, Nasyrov RK, Gutman AS, Iskakov IA, Treushnikov VM (2008) Diffractive-refractive intraocular lenses. Optoelectron Instrument Data Proc 44(4):342–352
42.
Zurück zum Zitat Chesnokov SA, Treushnikov VM, Chechet YV, Cherkasov VK, Mamysheva ON (2008) General conditions and experimental design of sustained frontal photopolymerization in photopolymerizable liquid compositions. Polymer Sci Ser A 50(3):291–298 Chesnokov SA, Treushnikov VM, Chechet YV, Cherkasov VK, Mamysheva ON (2008) General conditions and experimental design of sustained frontal photopolymerization in photopolymerizable liquid compositions. Polymer Sci Ser A 50(3):291–298
43.
Zurück zum Zitat Davtyan SP, Tonoyan AO, Gevorkyan LA, Berlin AA (2012) Stationary state of frontal radical polymerization processes. Polymer Sci Ser B 54(3–4):193–196 Davtyan SP, Tonoyan AO, Gevorkyan LA, Berlin AA (2012) Stationary state of frontal radical polymerization processes. Polymer Sci Ser B 54(3–4):193–196
44.
Zurück zum Zitat Chesnokov SA, Cherkasov VK, Abakumov GA, Mamysheva ON, Chechet YV, Nevodchikov VI (2001) Influence of o-benzoquinone nature on initiation of radical polymerization by the o-benzoquinone – tert-amine system. Russ Chem Bull 50(12):2366–2371 Chesnokov SA, Cherkasov VK, Abakumov GA, Mamysheva ON, Chechet YV, Nevodchikov VI (2001) Influence of o-benzoquinone nature on initiation of radical polymerization by the o-benzoquinone – tert-amine system. Russ Chem Bull 50(12):2366–2371
Metadaten
Titel
Formation of holographic lens upon non-stationary photopolymerization
verfasst von
Sergey Nickolaevich Mensov
Yuri Victorovich Polushtaytsev
Publikationsdatum
01.07.2020
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 7/2020
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-020-02113-5

Weitere Artikel der Ausgabe 7/2020

Journal of Polymer Research 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.