Skip to main content
Erschienen in: Optical and Quantum Electronics 3/2024

01.03.2024

Formation of solitons with shape changing for a generalized nonlinear Schrödinger equation in an optical fiber

verfasst von: A. Muniyappan, E. Parasuraman, Aly R. Seadawy, S. Ramkumar

Erschienen in: Optical and Quantum Electronics | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In optical fibers, the generalized nonlinear Schrödinger equations with self-steepening (SS), self-frequency shift (SFS), intermodal dispersion (IMD), and third-order dispersion (TOD) play an important role. Our investigation covers a variety of physical parameters based on how optical solitons change their structure as they move through an optical medium. Our study shows that modifying the coefficients for SS, SFS, IMD, and TOD can affect optical solitons’ profiles either by altering their nature or without doing so. We used the extended rational sinh–cosh method, which works with various types of soliton profiles. These profiles include dark, kink-dark, kink, and anti-kink solitons. By selecting appropriate physical parameter values, the behavior of various optical solitons is graphically depicted. As a result, we utilize the eigenvalue spectrum to investigate linear stability analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbagari, S., Houwe, A., Doka, S.Y., Bouetou, T.B., Inc, M., Crepin, Kofane T.: W-shaped profile and multiple optical soliton structure of the coupled nonlinear Schrödinger equation with the four-wave mixing term and modulation instability spectrum. Phys. Lett. A 418, 127710–127722 (2021a)CrossRef Abbagari, S., Houwe, A., Doka, S.Y., Bouetou, T.B., Inc, M., Crepin, Kofane T.: W-shaped profile and multiple optical soliton structure of the coupled nonlinear Schrödinger equation with the four-wave mixing term and modulation instability spectrum. Phys. Lett. A 418, 127710–127722 (2021a)CrossRef
Zurück zum Zitat Abbagari, S., Douvagaï, D., Houwe, A., Doka, S.Y., Inc, M., Crepin, Kofane T.: M-shape and W-shape bright incite by the fluctuations of the polarization in a-helix protein. Phys. Scr. 96, 085501 (2021b) Abbagari, S., Douvagaï, D., Houwe, A., Doka, S.Y., Inc, M., Crepin, Kofane T.: M-shape and W-shape bright incite by the fluctuations of the polarization in a-helix protein. Phys. Scr. 96, 085501 (2021b)
Zurück zum Zitat Agrawal, G.P.: Nonlinear Fiber Optics. Academic, San Diego (2003) Agrawal, G.P.: Nonlinear Fiber Optics. Academic, San Diego (2003)
Zurück zum Zitat Al-Kalbani, K.K., Al-Ghafri, K.S., Krishnan, E.V., Biswas, A.: Optical solitons and modulation instability analysis with Lakshmanan–Porsezian–Daniel model having parabolic law of self-phase modulation. Mathematics 11, 2471 (2023)CrossRef Al-Kalbani, K.K., Al-Ghafri, K.S., Krishnan, E.V., Biswas, A.: Optical solitons and modulation instability analysis with Lakshmanan–Porsezian–Daniel model having parabolic law of self-phase modulation. Mathematics 11, 2471 (2023)CrossRef
Zurück zum Zitat Biasi, A., Evnin, O., Malomed, B.A.: Obstruction to ergodicity in nonlinear Schrödinger equations with resonant potentials. Phys. Rev. E 108, 034204 (2023)PubMedCrossRefADS Biasi, A., Evnin, O., Malomed, B.A.: Obstruction to ergodicity in nonlinear Schrödinger equations with resonant potentials. Phys. Rev. E 108, 034204 (2023)PubMedCrossRefADS
Zurück zum Zitat Boyd, R.W.: Nonlinear Optics. Academic Press, Cambridge (2003) Boyd, R.W.: Nonlinear Optics. Academic Press, Cambridge (2003)
Zurück zum Zitat Butcher, P.N., Cotter, D.: The Elements of Nonlinear Optics. Cambridge University Press, Cambridge (1990)CrossRef Butcher, P.N., Cotter, D.: The Elements of Nonlinear Optics. Cambridge University Press, Cambridge (1990)CrossRef
Zurück zum Zitat Cao Long, V., Dinh Xuan, K., Marek, T.: Introduction to Nonlinear Optics. Vinh (2003) Cao Long, V., Dinh Xuan, K., Marek, T.: Introduction to Nonlinear Optics. Vinh (2003)
Zurück zum Zitat Cao Long, V.: Propagation of technique for ultrashort pulses. Rev. Adv. Mater. Sci. 23, 8–20 (2010) Cao Long, V.: Propagation of technique for ultrashort pulses. Rev. Adv. Mater. Sci. 23, 8–20 (2010)
Zurück zum Zitat Cao Long, V.: Propagation of ultrashort pulses in nonlinear media. Commun. Phys. 26, 301–323 (2016) Cao Long, V.: Propagation of ultrashort pulses in nonlinear media. Commun. Phys. 26, 301–323 (2016)
Zurück zum Zitat Cao, Q.H., Dai, C.Q.: Symmetric and anti-symmetric solitons of the fractional second and third-order nonlinear Schrodinger equation. Chin. Phys. Lett. 38, 090501 (2021)CrossRefADS Cao, Q.H., Dai, C.Q.: Symmetric and anti-symmetric solitons of the fractional second and third-order nonlinear Schrodinger equation. Chin. Phys. Lett. 38, 090501 (2021)CrossRefADS
Zurück zum Zitat Choudhuri, A., Porsezian, K.: Dark-in-the-Bright solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms. Opt. Commun. 285, 364–367 (2012)CrossRefADS Choudhuri, A., Porsezian, K.: Dark-in-the-Bright solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms. Opt. Commun. 285, 364–367 (2012)CrossRefADS
Zurück zum Zitat Cundiff, S.T., Soto-Crespo, J.M., Akhmediev, N.: Experimental evidence for soliton explosions. Phys. Rev. Lett. 88, 073903 (2002)PubMedCrossRefADS Cundiff, S.T., Soto-Crespo, J.M., Akhmediev, N.: Experimental evidence for soliton explosions. Phys. Rev. Lett. 88, 073903 (2002)PubMedCrossRefADS
Zurück zum Zitat Dianchen, L., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 140, 136–144 (2017)CrossRefADS Dianchen, L., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 140, 136–144 (2017)CrossRefADS
Zurück zum Zitat Gerasimchuk, I.V., Gorobets, Y.I., Gerasimchuk, V.S.: Nonlinear Schrödinger equation for description of small-amplitude spin waves in multilayer magnetic materials. J. Nano-Electron. Phys. 8, 02020 (2016)CrossRef Gerasimchuk, I.V., Gorobets, Y.I., Gerasimchuk, V.S.: Nonlinear Schrödinger equation for description of small-amplitude spin waves in multilayer magnetic materials. J. Nano-Electron. Phys. 8, 02020 (2016)CrossRef
Zurück zum Zitat Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996) Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)
Zurück zum Zitat Goodman, R.H., Marzuola, J.L., Weinstein, M.I.: Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger/Gross–Pitaevskii equation. Discrete Contin. Dyn. Syst. 35(1), 225–246 (2015)MathSciNetCrossRef Goodman, R.H., Marzuola, J.L., Weinstein, M.I.: Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger/Gross–Pitaevskii equation. Discrete Contin. Dyn. Syst. 35(1), 225–246 (2015)MathSciNetCrossRef
Zurück zum Zitat Hasegawa, A., Kodama, Y.: Solitons in Optical Communication. Oxford University Press, New York (1995)CrossRef Hasegawa, A., Kodama, Y.: Solitons in Optical Communication. Oxford University Press, New York (1995)CrossRef
Zurück zum Zitat Houwe, A., Abbagari, S., Djorwe, P., et al.: W-shaped profile and breather-like soliton of the fractional nonlinear Schrödinger equation describing the polarization mode in optical fibers. Opt. Quantum Electron. 54, 483 (2022)CrossRef Houwe, A., Abbagari, S., Djorwe, P., et al.: W-shaped profile and breather-like soliton of the fractional nonlinear Schrödinger equation describing the polarization mode in optical fibers. Opt. Quantum Electron. 54, 483 (2022)CrossRef
Zurück zum Zitat Huang, C., Zheng, J., Zhong, S.: Interface kink solitons in defocusing saturable nonlinear media. Opt. Commun. 284, 4225–4228 (2011)CrossRefADS Huang, C., Zheng, J., Zhong, S.: Interface kink solitons in defocusing saturable nonlinear media. Opt. Commun. 284, 4225–4228 (2011)CrossRefADS
Zurück zum Zitat Huang, C., Zhong, S., Li, C.: Surface vector kink solitons. J. Opt. Soc. Am. B 29, 203–208 (2012)CrossRefADS Huang, C., Zhong, S., Li, C.: Surface vector kink solitons. J. Opt. Soc. Am. B 29, 203–208 (2012)CrossRefADS
Zurück zum Zitat Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Ali Shah, N., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Res. Phys. 49, 106520 (2023) Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Ali Shah, N., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Res. Phys. 49, 106520 (2023)
Zurück zum Zitat Kavitha, L., Parasuraman, E., Muniyappan, A., Gopi, D., Zdravković, S.: Localized discrete breather modes in neuronal microtubules. Nonlinear Dyn. 88, 2013–2033 (2017)CrossRef Kavitha, L., Parasuraman, E., Muniyappan, A., Gopi, D., Zdravković, S.: Localized discrete breather modes in neuronal microtubules. Nonlinear Dyn. 88, 2013–2033 (2017)CrossRef
Zurück zum Zitat Keiser, G.: Optical Fiber Communications. McGraw-Hill, Singapore (2000) Keiser, G.: Optical Fiber Communications. McGraw-Hill, Singapore (2000)
Zurück zum Zitat Kivshar, Y.S., Agrawal, G.P.: Optical Solitons. From Fibers to Photonic Crystals. Academic Press, Newe York (2003) Kivshar, Y.S., Agrawal, G.P.: Optical Solitons. From Fibers to Photonic Crystals. Academic Press, Newe York (2003)
Zurück zum Zitat Muniyappan, A., Monisha, P., Kaviya Priya, E., Nivetha, V.: Generation of wing-shaped dark soliton for perturbed Gerdjikov–Ivanov equation in optical fibre. Optik 230, 166328 (2021a) Muniyappan, A., Monisha, P., Kaviya Priya, E., Nivetha, V.: Generation of wing-shaped dark soliton for perturbed Gerdjikov–Ivanov equation in optical fibre. Optik 230, 166328 (2021a)
Zurück zum Zitat Muniyappan, A., Athira Priya, O., Amirthani, S., Brintha, K., Biswas, A., Ekici, M., Dakova, A., Alshehri, H.M., Belic, M.R.: Peakon and Cuspon excitations in optical fibers for eighth order nonlinear Schrödinger’s model. Optik 243, 167509 (2021b) Muniyappan, A., Athira Priya, O., Amirthani, S., Brintha, K., Biswas, A., Ekici, M., Dakova, A., Alshehri, H.M., Belic, M.R.: Peakon and Cuspon excitations in optical fibers for eighth order nonlinear Schrödinger’s model. Optik 243, 167509 (2021b)
Zurück zum Zitat Muniyappan, A., Suruthi, A., Monisha, B., SharonLeela, N., Vijaychales, J.: Dromion-like structures in a cubic–quintic nonlinear Schrödinger equation using analytical methods. Nonlinear Dyn. 104, 1533–1544 (2021c) Muniyappan, A., Suruthi, A., Monisha, B., SharonLeela, N., Vijaychales, J.: Dromion-like structures in a cubic–quintic nonlinear Schrödinger equation using analytical methods. Nonlinear Dyn. 104, 1533–1544 (2021c)
Zurück zum Zitat Muniyappan, A., Nivetha, V., Sahasraari, L., Anitha, S., Zhou, Q., Biswas, A., Ekici, M., Alshehri, H.M., Belic, M.R.: Algorithm for dark solitons with Radhakrishnan–Kundu–Lakshmanan model in an optical fiber. Res. Phys. 30, 104806 (2021d) Muniyappan, A., Nivetha, V., Sahasraari, L., Anitha, S., Zhou, Q., Biswas, A., Ekici, M., Alshehri, H.M., Belic, M.R.: Algorithm for dark solitons with Radhakrishnan–Kundu–Lakshmanan model in an optical fiber. Res. Phys. 30, 104806 (2021d)
Zurück zum Zitat Muniyappan, A., Hemamalini, D., Akila, E., Elakkiya, V., Anitha, S., Devadharshini, S., Biswas, A., Yildirim, Y., Alshehri, H.M.: Bright solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiber. Optik 254, 168612 (2022a) Muniyappan, A., Hemamalini, D., Akila, E., Elakkiya, V., Anitha, S., Devadharshini, S., Biswas, A., Yildirim, Y., Alshehri, H.M.: Bright solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiber. Optik 254, 168612 (2022a)
Zurück zum Zitat Muniyappan, A., Sahasraari, L., Anitha, S., Ilakiya, S., Biswas, A., Yıldırım, Y., Triki, H., Alshehri, H.M., Belic, M.R.: Family of optical solitons for perturbed Fokas–Lenells equation. Optik 249, 168224 (2022b) Muniyappan, A., Sahasraari, L., Anitha, S., Ilakiya, S., Biswas, A., Yıldırım, Y., Triki, H., Alshehri, H.M., Belic, M.R.: Family of optical solitons for perturbed Fokas–Lenells equation. Optik 249, 168224 (2022b)
Zurück zum Zitat Muniyappan, A., Amirthani, S., Chandrika, P., Biswas, A., Yildirim, Y., Alshehri, H.M., Maturi, D.A.A., Al-Bogami, D.H.: Dark solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiber. Optik 255, 168641 (2022c) Muniyappan, A., Amirthani, S., Chandrika, P., Biswas, A., Yildirim, Y., Alshehri, H.M., Maturi, D.A.A., Al-Bogami, D.H.: Dark solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiber. Optik 255, 168641 (2022c)
Zurück zum Zitat Muniyappan, A., Parasuraman, E., Kavitha, L.: Stability analysis and discrete breather dynamics in the microtubulin lattices. Chaos Solitons Fractals 168, 113210 (2023)CrossRef Muniyappan, A., Parasuraman, E., Kavitha, L.: Stability analysis and discrete breather dynamics in the microtubulin lattices. Chaos Solitons Fractals 168, 113210 (2023)CrossRef
Zurück zum Zitat Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model. Results Phys. 51, 106722 (2023a) Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model. Results Phys. 51, 106722 (2023a)
Zurück zum Zitat Nasreen, N., Seadawy, A.R., Lu, D., Arshad, M.: Optical fibers to model pulses of ultrashort via generalized third-order nonlinear Schrödinger equation by using extended and modified rational expansion method. J. Nonlinear Opt. Phys. Mater. (2023b). https://doi.org/10.1142/S0218863523500583 Nasreen, N., Seadawy, A.R., Lu, D., Arshad, M.: Optical fibers to model pulses of ultrashort via generalized third-order nonlinear Schrödinger equation by using extended and modified rational expansion method. J. Nonlinear Opt. Phys. Mater. (2023b). https://​doi.​org/​10.​1142/​S021886352350058​3
Zurück zum Zitat Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, Ameenah N.: Propagation of optical pulses in fiber optics modelled by coupled space-time fractional dynamical system. Alex. Eng. J. 73, 173–187 (2023c) Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, Ameenah N.: Propagation of optical pulses in fiber optics modelled by coupled space-time fractional dynamical system. Alex. Eng. J. 73, 173–187 (2023c)
Zurück zum Zitat Nasreen, N., Younas, U., Lu, D., et al.: Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system. Opt. Quantum Electron. 55, 868 (2023d) Nasreen, N., Younas, U., Lu, D., et al.: Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system. Opt. Quantum Electron. 55, 868 (2023d)
Zurück zum Zitat Palacios, S.L., Fernández-Diaz, J.M.: Bright solitary waves in high dispersive media with parabolic nonlinearity law: the influence of third order dispersion. J. Mod. Opt. 48(11), 1691–1699 (2001)CrossRefADS Palacios, S.L., Fernández-Diaz, J.M.: Bright solitary waves in high dispersive media with parabolic nonlinearity law: the influence of third order dispersion. J. Mod. Opt. 48(11), 1691–1699 (2001)CrossRefADS
Zurück zum Zitat Qin Zhou, Yu., Zhong, H.T., et al.: Chirped bright and kink solitons in nonlinear optical fibers with weak nonlocality and cubic–quantic–septic nonlinearity. Chin. Phys. Lett. 39, 044202 (2022)CrossRefADS Qin Zhou, Yu., Zhong, H.T., et al.: Chirped bright and kink solitons in nonlinear optical fibers with weak nonlocality and cubic–quantic–septic nonlinearity. Chin. Phys. Lett. 39, 044202 (2022)CrossRefADS
Zurück zum Zitat Rao, J., Cheng, Y., Porsezian, K., Mihalache, D., He, J.: \(PT\)-symmetric nonlocal Davey–Stewartson I equation: soliton solutions with nonzero background. Phys. D 401, 132180 (2020)MathSciNetCrossRef Rao, J., Cheng, Y., Porsezian, K., Mihalache, D., He, J.: \(PT\)-symmetric nonlocal Davey–Stewartson I equation: soliton solutions with nonzero background. Phys. D 401, 132180 (2020)MathSciNetCrossRef
Zurück zum Zitat Rizvi, S.T.R., Seadawy, A.R., Nimra, et al.: Study of lump, rogue, multi, M shaped, periodic cross kink, breather lump, kink-cross rational waves and other interactions to the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Opt. Quantum Electron. 55, 813 (2023a) Rizvi, S.T.R., Seadawy, A.R., Nimra, et al.: Study of lump, rogue, multi, M shaped, periodic cross kink, breather lump, kink-cross rational waves and other interactions to the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Opt. Quantum Electron. 55, 813 (2023a)
Zurück zum Zitat Rizvi, S.T.R., Seadawy, A.R., Alsallami, S.A.M.: Grey-black optical solitons, homoclinic breather, combined solitons via Chupin Liu’s theorem for improved perturbed NLSE with dual-power law nonlinearity. Mathematics 11, 2122 (2023b) Rizvi, S.T.R., Seadawy, A.R., Alsallami, S.A.M.: Grey-black optical solitons, homoclinic breather, combined solitons via Chupin Liu’s theorem for improved perturbed NLSE with dual-power law nonlinearity. Mathematics 11, 2122 (2023b)
Zurück zum Zitat Saini, A., Vyas, V.M., Soloman Raju, T., Pandey, S.N., Panigrahi, P.K.: Super and subluminal propagation in nonlinear Schrödinger equation model with self-steepening and self-frequency shift. J. Nonlinear Opt. Phys. Mater. 24, 1550033 (2015)CrossRefADS Saini, A., Vyas, V.M., Soloman Raju, T., Pandey, S.N., Panigrahi, P.K.: Super and subluminal propagation in nonlinear Schrödinger equation model with self-steepening and self-frequency shift. J. Nonlinear Opt. Phys. Mater. 24, 1550033 (2015)CrossRefADS
Zurück zum Zitat Seadawy, A.R., Nasreen, N., Lu, D.: Complex model ultra-short pulses in optical fibers via generalized third-order nonlinear Schrödinger dynamical equation. Int. J. Mod. Phys. B 34, 2050143 (2020)CrossRefADS Seadawy, A.R., Nasreen, N., Lu, D.: Complex model ultra-short pulses in optical fibers via generalized third-order nonlinear Schrödinger dynamical equation. Int. J. Mod. Phys. B 34, 2050143 (2020)CrossRefADS
Zurück zum Zitat Seadawy, A.R., Rizvi, S.T.R., Ahmed, S., et al.: Study of dissipative NLSE for dark and bright, multiwave, breather and M-shaped solitons along with some interactions in monochromatic waves. Opt. Quantum Electron. 54, 782 (2022)CrossRef Seadawy, A.R., Rizvi, S.T.R., Ahmed, S., et al.: Study of dissipative NLSE for dark and bright, multiwave, breather and M-shaped solitons along with some interactions in monochromatic waves. Opt. Quantum Electron. 54, 782 (2022)CrossRef
Zurück zum Zitat Soloman Raju, T., Panigrahi, P.K., Porsezian, K.: Self-similar propagation and compression of chirped self-similar waves in asymmetric twin-core fibers with nonlinear gain. Phys. Rev. E 72, 046612 (2005)CrossRefADS Soloman Raju, T., Panigrahi, P.K., Porsezian, K.: Self-similar propagation and compression of chirped self-similar waves in asymmetric twin-core fibers with nonlinear gain. Phys. Rev. E 72, 046612 (2005)CrossRefADS
Zurück zum Zitat Soloman Raju, T., Panigrahi, P.K.: Exact solutions of the modified Gross–Pitaevskii equation in ‘smart’ periodic potentials in the presence of external source. J. Nonlinear Math. Phys. 18, 367–376 (2011)MathSciNetCrossRefADS Soloman Raju, T., Panigrahi, P.K.: Exact solutions of the modified Gross–Pitaevskii equation in ‘smart’ periodic potentials in the presence of external source. J. Nonlinear Math. Phys. 18, 367–376 (2011)MathSciNetCrossRefADS
Zurück zum Zitat Song, L., Wang, W.: Approximate rational Jacobi elliptic function solutions of the fractional differential equations via the enhanced Adomian decomposition method. Phys. Lett. A 374, 3190–3196 (2010)MathSciNetCrossRefADS Song, L., Wang, W.: Approximate rational Jacobi elliptic function solutions of the fractional differential equations via the enhanced Adomian decomposition method. Phys. Lett. A 374, 3190–3196 (2010)MathSciNetCrossRefADS
Zurück zum Zitat Tang, T.: Optical solitons and traveling wave solutions for the higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms. Optik 271, 170115 (2022)CrossRefADS Tang, T.: Optical solitons and traveling wave solutions for the higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms. Optik 271, 170115 (2022)CrossRefADS
Zurück zum Zitat Tantawy, M., Abdel-Gawad, H.I.: On multi-geometric structures optical waves propagation in self-phase modulation medium: Sasa–Satsuma equation. Eur. Phys. J. Plus 135, 928 (2020)CrossRef Tantawy, M., Abdel-Gawad, H.I.: On multi-geometric structures optical waves propagation in self-phase modulation medium: Sasa–Satsuma equation. Eur. Phys. J. Plus 135, 928 (2020)CrossRef
Zurück zum Zitat Van, C.L., Khoa, D.X., Trippenbach, M.: Introduction to Nonlinear Optics. Vinh (2003) Van, C.L., Khoa, D.X., Trippenbach, M.: Introduction to Nonlinear Optics. Vinh (2003)
Zurück zum Zitat Voronin, A.A., Zheltikov, A.M.: Soliton self-frequency shift decelerated by self-steepening. Opt. Lett. 33(15), 1723 (2008)PubMedCrossRefADS Voronin, A.A., Zheltikov, A.M.: Soliton self-frequency shift decelerated by self-steepening. Opt. Lett. 33(15), 1723 (2008)PubMedCrossRefADS
Zurück zum Zitat Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)CrossRef Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)CrossRef
Zurück zum Zitat Yu, W., Liu, W., Zhang, H.: Soliton molecules in the kink, antikink and oscillatory background. Chaos Solitons Fractals 159, 112132 (2022)MathSciNetCrossRef Yu, W., Liu, W., Zhang, H.: Soliton molecules in the kink, antikink and oscillatory background. Chaos Solitons Fractals 159, 112132 (2022)MathSciNetCrossRef
Zurück zum Zitat Yue, C., Lu, D., Arshad, M., Nasreen, N., Qian, X.: Bright-dark and multi solitons solutions of (3+1)-dimensional cubic–quintic complex Ginzburg–Landau dynamical equation with applications and stability. Entropy (Basel) 22(2), 202 (2020)MathSciNetPubMedCrossRefADS Yue, C., Lu, D., Arshad, M., Nasreen, N., Qian, X.: Bright-dark and multi solitons solutions of (3+1)-dimensional cubic–quintic complex Ginzburg–Landau dynamical equation with applications and stability. Entropy (Basel) 22(2), 202 (2020)MathSciNetPubMedCrossRefADS
Zurück zum Zitat Zhao, Z., He, L.: Bäcklund transformations and Riemann–Bäcklund method to a (3+1)-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus 135, 639 (2020)CrossRef Zhao, Z., He, L.: Bäcklund transformations and Riemann–Bäcklund method to a (3+1)-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus 135, 639 (2020)CrossRef
Metadaten
Titel
Formation of solitons with shape changing for a generalized nonlinear Schrödinger equation in an optical fiber
verfasst von
A. Muniyappan
E. Parasuraman
Aly R. Seadawy
S. Ramkumar
Publikationsdatum
01.03.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 3/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05965-5

Weitere Artikel der Ausgabe 3/2024

Optical and Quantum Electronics 3/2024 Zur Ausgabe

Neuer Inhalt