Skip to main content
Erschienen in: Physics of Metals and Metallography 12/2019

01.12.2019 | STRENGTH AND PLASTICITY

Formation of the Structural State of a High-Strength Low-Alloy Steel upon Hot Rolling and Controlled Cooling

verfasst von: V. N. Urtsev, V. L. Kornilov, A. V. Shmakov, M. L. Krasnov, P. A. Stekanov, S. I. Platov, E. D. Mokshin, N. V. Urtsev, V. M. Schastlivtsev, I. K. Razumov, Yu. N. Gornostyrev

Erschienen in: Physics of Metals and Metallography | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents a review of current results of theoretical and experimental studies of the specific features of the structure that is formed in high-strength low-alloy steel in the process of hot rolling and which determines the properties of the steel. The current concepts of the physical processes that are developed at different stages of a thermomechanical treatment depending on the temperature–strain-rate regimes and chemical composition of the steel are considered. Particular attention is paid to the problems of the formation of the structural state that continue to be debated. The simulation methods of different scale level used to solve the problems of controlling structure formation at all stages of thermomechanical processing process are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Gladman, The Physical Metallurgy of Microalloyed Steels (Institute of Materials, London, 1997). T. Gladman, The Physical Metallurgy of Microalloyed Steels (Institute of Materials, London, 1997).
2.
Zurück zum Zitat K. Khulka, P. Peters, and F. Khaisterkamp, “Tendencies to the development of steels for large-diameter pipes,” Stal’, No. 10, 62–67 (1997). K. Khulka, P. Peters, and F. Khaisterkamp, “Tendencies to the development of steels for large-diameter pipes,” Stal’, No. 10, 62–67 (1997).
3.
Zurück zum Zitat L. I. Efron, Metal Science in “Large-Scale” Metallurgy. Pipe Steels (Metallurgizdat, Moscow, 2012) [in Russian]. L. I. Efron, Metal Science in “Large-Scale” Metallurgy. Pipe Steels (Metallurgizdat, Moscow, 2012) [in Russian].
4.
Zurück zum Zitat V. Schwinn, W. Schuetz, P. Fluess, and J. Bauer, “Prospects and state of the art of TMCP steel plates for structural and linepipe aplications,” Mater. Sci. Forum 539–543, 4726–4731 (2007).CrossRef V. Schwinn, W. Schuetz, P. Fluess, and J. Bauer, “Prospects and state of the art of TMCP steel plates for structural and linepipe aplications,” Mater. Sci. Forum 539543, 4726–4731 (2007).CrossRef
5.
Zurück zum Zitat Yu. D. Morozov, M. Yu. Matrosov, S. Yu. Nastich, and A. B. Arabei, “High-strength pipes of a new generation of steel with a ferrito-bainitic structure,” Metallurg, No. 8, 39–42 (2008). Yu. D. Morozov, M. Yu. Matrosov, S. Yu. Nastich, and A. B. Arabei, “High-strength pipes of a new generation of steel with a ferrito-bainitic structure,” Metallurg, No. 8, 39–42 (2008).
6.
Zurück zum Zitat R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson, “The role of vanadium in microalloyed steels,” Scand. J. Metall. 28, 1–86 (1999). R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson, “The role of vanadium in microalloyed steels,” Scand. J. Metall. 28, 1–86 (1999).
7.
Zurück zum Zitat B. K. Panigrahi, “Processing of low carbon steel plate and hot strip—An overview,” Bull. Mater. Sci. 24, 361–371 (2001).CrossRef B. K. Panigrahi, “Processing of low carbon steel plate and hot strip—An overview,” Bull. Mater. Sci. 24, 361–371 (2001).CrossRef
8.
Zurück zum Zitat D. Belato Rosado, W. De Waele, D. Vanderschueren, and S. Hertelé, “Latest developments in mechanical properties and metallurgical features of high strength line pipe steels,” Sustainable Const. Des. 4, 1–10 (2013). D. Belato Rosado, W. De Waele, D. Vanderschueren, and S. Hertelé, “Latest developments in mechanical properties and metallurgical features of high strength line pipe steels,” Sustainable Const. Des. 4, 1–10 (2013).
9.
Zurück zum Zitat S. Yu. Nastich, “Development of technology for thermomechanical processing of strip and sheet metal from low alloy steel based on the control of the formation of ferrite-bainitic structure,” Doctoral Dissertation Abstract (TsNIIchermet im. I. P. Bardina, Moscow, 2013) [in Russian]. S. Yu. Nastich, “Development of technology for thermomechanical processing of strip and sheet metal from low alloy steel based on the control of the formation of ferrite-bainitic structure,” Doctoral Dissertation Abstract (TsNIIchermet im. I. P. Bardina, Moscow, 2013) [in Russian].
10.
Zurück zum Zitat V. M. Schastlivtsev, I. L. Yakovleva, and V. M. Salganik, “The main structural factors of strengthening low-carbon low-alloyed tube steels after controlled rolling,” Metalloved. Term. Obrab. Met., No. 1, 41–45 (2009). V. M. Schastlivtsev, I. L. Yakovleva, and V. M. Salganik, “The main structural factors of strengthening low-carbon low-alloyed tube steels after controlled rolling,” Metalloved. Term. Obrab. Met., No. 1, 41–45 (2009).
11.
Zurück zum Zitat V. V. Popov, Simulation of Transformations of Carbonitrides under Heat Treatment of Steels (UrO RAN, Ekaterinburg, 2003) [in Russian]. V. V. Popov, Simulation of Transformations of Carbonitrides under Heat Treatment of Steels (UrO RAN, Ekaterinburg, 2003) [in Russian].
12.
Zurück zum Zitat C. Klinkenberg and H. Klein, “Synchrotron investigation on the precipitation behaviour of niobium microalloyed steel,” Mat. Sci. Forum 879, 948–953 (2017).CrossRef C. Klinkenberg and H. Klein, “Synchrotron investigation on the precipitation behaviour of niobium microalloyed steel,” Mat. Sci. Forum 879, 948–953 (2017).CrossRef
13.
Zurück zum Zitat P. Suwanpinij, “The synchrotron radiation for steel research,” Adv. Mat. Sci. Eng. 2016, Article ID 2479345 (2016). P. Suwanpinij, “The synchrotron radiation for steel research,” Adv. Mat. Sci. Eng. 2016, Article ID 2479345 (2016).
14.
Zurück zum Zitat B. Sundman, B. Jansson, and J. O. Andersson, “Thermo-calc databank system,” CALPHAD, No. 9, 153–190 (1985).CrossRef B. Sundman, B. Jansson, and J. O. Andersson, “Thermo-calc databank system,” CALPHAD, No. 9, 153–190 (1985).CrossRef
15.
Zurück zum Zitat O. I. Gorbatov, Yu. N. Gornostyrev, P. A. Korzhavyi, and A. V. Ruban, “Ab initio modeling of decomposition in iron based alloys,” Phys. Met. Metallogr. 117, 1293–1327 (2016).CrossRef O. I. Gorbatov, Yu. N. Gornostyrev, P. A. Korzhavyi, and A. V. Ruban, “Ab initio modeling of decomposition in iron based alloys,” Phys. Met. Metallogr. 117, 1293–1327 (2016).CrossRef
16.
Zurück zum Zitat A. V. Ponomareva, Yu. N. Gornostyrev, and I. A. Abrikosov, “Ab initio calculation of the solution enthalpies of substitutional and interstitial impurities in paramagnetic fcc Fe,” Phys. Rev. B 90, 014439 (2014).CrossRef A. V. Ponomareva, Yu. N. Gornostyrev, and I. A. Abrikosov, “Ab initio calculation of the solution enthalpies of substitutional and interstitial impurities in paramagnetic fcc Fe,” Phys. Rev. B 90, 014439 (2014).CrossRef
17.
Zurück zum Zitat J. Svoboda, F. D. Fischer, P. Fratzl, and E. Kozeschnik, “Modelling of kinetics in multi-component multi-phase systems with spherical precipitates. I: Theory,” Mater. Sci. Eng., A 385, 166–174 (2004). J. Svoboda, F. D. Fischer, P. Fratzl, and E. Kozeschnik, “Modelling of kinetics in multi-component multi-phase systems with spherical precipitates. I: Theory,” Mater. Sci. Eng., A 385, 166–174 (2004).
18.
Zurück zum Zitat E. Kozeschnik, J. Svoboda, and F. D. Fischer, “Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems,” CALPHAD 28, 379–382 (2004).CrossRef E. Kozeschnik, J. Svoboda, and F. D. Fischer, “Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems,” CALPHAD 28, 379–382 (2004).CrossRef
19.
Zurück zum Zitat S. Zamberger, M. Pudar, K. Spiradek-Hahn, M. Reischl, and E. Kozeschnik, “Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting,” Int. J. Mater. Res. 103, 680–687 (2012).CrossRef S. Zamberger, M. Pudar, K. Spiradek-Hahn, M. Reischl, and E. Kozeschnik, “Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting,” Int. J. Mater. Res. 103, 680–687 (2012).CrossRef
20.
Zurück zum Zitat R. Radis and E. Kozeschnik, “Numerical simulation of NbC precipitation in microalloyed steel,” Modell. Simul. Mater. Sci. Eng. 20, 55010–55024 (2012).CrossRef R. Radis and E. Kozeschnik, “Numerical simulation of NbC precipitation in microalloyed steel,” Modell. Simul. Mater. Sci. Eng. 20, 55010–55024 (2012).CrossRef
21.
Zurück zum Zitat V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).CrossRef V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).CrossRef
22.
Zurück zum Zitat I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1127–1134 (2015).CrossRef I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1127–1134 (2015).CrossRef
23.
Zurück zum Zitat H. J. McQueen and J. J. Jonas, “Role of the dynamic and static softening mechanisms in multistage hot working,” J. Appl. Metalwork. 3, 410–420 (1985).CrossRef H. J. McQueen and J. J. Jonas, “Role of the dynamic and static softening mechanisms in multistage hot working,” J. Appl. Metalwork. 3, 410–420 (1985).CrossRef
24.
Zurück zum Zitat Y. Xu, D. Tang, Y. Song, and X. Pan, “Dynamic recrystallization kinetics model of X70 pipeline steel,” Mater. Des. 39, 168–174 (2012).CrossRef Y. Xu, D. Tang, Y. Song, and X. Pan, “Dynamic recrystallization kinetics model of X70 pipeline steel,” Mater. Des. 39, 168–174 (2012).CrossRef
25.
Zurück zum Zitat C. A. Martins, E. Poliak, L. B. Godefroid, and N. Fonstein, “Determining the conditions for dinamic recrystallization in hot deformation of C–Mn–V steels and the effects of Cr and Mo additions,” ISIJ Int. 54, 227–234 (2014).CrossRef C. A. Martins, E. Poliak, L. B. Godefroid, and N. Fonstein, “Determining the conditions for dinamic recrystallization in hot deformation of C–Mn–V steels and the effects of Cr and Mo additions,” ISIJ Int. 54, 227–234 (2014).CrossRef
26.
Zurück zum Zitat A. M. Chastukhin, Regularities of austenite recrystallization processes and improvement of the technology for the controlled rolling of microalloyed pipe steels of high cold resistance, Candidate’s Dissertation (Moscow, 2017) [in Russian]. A. M. Chastukhin, Regularities of austenite recrystallization processes and improvement of the technology for the controlled rolling of microalloyed pipe steels of high cold resistance, Candidate’s Dissertation (Moscow, 2017) [in Russian].
27.
Zurück zum Zitat H. Mirzadeh and A. Najafizadeh, “Prediction of the critical conditions for initiation of dynamic recrystallization,” Mater. Des. 31, 1174–1179 (2010).CrossRef H. Mirzadeh and A. Najafizadeh, “Prediction of the critical conditions for initiation of dynamic recrystallization,” Mater. Des. 31, 1174–1179 (2010).CrossRef
28.
Zurück zum Zitat A. V. Supov, V. P. Kanev, P. D. Odeskii, and V. N. Zikeev, Metallurgy and Heat Treatment of Steel and Cast Iron. Vol. 3 Thermal and Thermomechanical Treatment of Steel and Cast Iron (Intermet Inzhiniring, Moscow, 2007) [in Russian]. A. V. Supov, V. P. Kanev, P. D. Odeskii, and V. N. Zikeev, Metallurgy and Heat Treatment of Steel and Cast Iron. Vol. 3 Thermal and Thermomechanical Treatment of Steel and Cast Iron (Intermet Inzhiniring, Moscow, 2007) [in Russian].
29.
Zurück zum Zitat H. J. McQuenn and N. D. Ryan, “Constitutive analysis in hot working,” Mat. Sci. Eng., A 322, 43–63 (2002).CrossRef H. J. McQuenn and N. D. Ryan, “Constitutive analysis in hot working,” Mat. Sci. Eng., A 322, 43–63 (2002).CrossRef
30.
Zurück zum Zitat S. V. Subramanian, G. Zhu, C. Klinkenberg, and K. Hulka, “Ultra-fine grain size by dynamic recrystallization in strip rolling of Nb microalloyed steel,” Mater. Sci. Forum 475–479, 141–144 (2005).CrossRef S. V. Subramanian, G. Zhu, C. Klinkenberg, and K. Hulka, “Ultra-fine grain size by dynamic recrystallization in strip rolling of Nb microalloyed steel,” Mater. Sci. Forum 475–479, 141–144 (2005).CrossRef
31.
Zurück zum Zitat S. Yu. Nastich, “The influence of the morphology of the bainitic component of the microstructure of low-alloy steel X70 on the cold resistance of rolled products of large thicknesses,” Metallurg, No. 3, 61–69 (2012). S. Yu. Nastich, “The influence of the morphology of the bainitic component of the microstructure of low-alloy steel X70 on the cold resistance of rolled products of large thicknesses,” Metallurg, No. 3, 61–69 (2012).
32.
Zurück zum Zitat S. Yu. Nastich and M. Yu. Matrosov, “Structuring of high-strength pipe steels during thermomechanical processing,” Metallurg, No. 9, 47–54 (2015). S. Yu. Nastich and M. Yu. Matrosov, “Structuring of high-strength pipe steels during thermomechanical processing,” Metallurg, No. 9, 47–54 (2015).
33.
Zurück zum Zitat I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnelson, “Towards the ab initio based theory of phase transformations in iron and steel,” Phys. Met. Metallogr. 118, 362–388 (2017).CrossRef I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnelson, “Towards the ab initio based theory of phase transformations in iron and steel,” Phys. Met. Metallogr. 118, 362–388 (2017).CrossRef
34.
Zurück zum Zitat I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Simulation of the effect of hot deformation on the austenite grain size of low-alloyed steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 551–557 (2018).CrossRef I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Simulation of the effect of hot deformation on the austenite grain size of low-alloyed steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 551–557 (2018).CrossRef
35.
Zurück zum Zitat J. C. Neu and L. L. Bonilla, “Classical kinetic theory of nucleation and coarsening”, in Math. Modelling for Polymer Processing, Ed by Capasso (Springer, Berlin, 2003) pp. 31–58. J. C. Neu and L. L. Bonilla, “Classical kinetic theory of nucleation and coarsening”, in Math. Modelling for Polymer Processing, Ed by Capasso (Springer, Berlin, 2003) pp. 31–58.
36.
Zurück zum Zitat A. Ziabicki, “Generalized theory of nucleation kinetics. I. General formulations,“ J. Chem. Phys. 48, 4368–4374 (1968).CrossRef A. Ziabicki, “Generalized theory of nucleation kinetics. I. General formulations,“ J. Chem. Phys. 48, 4368–4374 (1968).CrossRef
37.
Zurück zum Zitat I. V. Markov, Crystal Growth for Beginners (World Scientific, Singapore, 1995).CrossRef I. V. Markov, Crystal Growth for Beginners (World Scientific, Singapore, 1995).CrossRef
39.
Zurück zum Zitat G. Y. Qiao, F. R. Xiao, X. B. Zhang, S. H. Chen, and B. Liao, “Effects of Nb on strain-induced precipitation of NbC and static recrystallization for high Nb pipeline steels,” Adv. Mater. Res. 146–147, 1315–1321 (2011). G. Y. Qiao, F. R. Xiao, X. B. Zhang, S. H. Chen, and B. Liao, “Effects of Nb on strain-induced precipitation of NbC and static recrystallization for high Nb pipeline steels,” Adv. Mater. Res. 146–147, 1315–1321 (2011).
40.
Zurück zum Zitat L. Jiang, A. O. Humphreys, and J. J. Jonas, “Effect of silicon on the interaction between recrystallization and precipitation in niobium microalloyed steels,” ISIJ Int. 44, 381–387 (2004).CrossRef L. Jiang, A. O. Humphreys, and J. J. Jonas, “Effect of silicon on the interaction between recrystallization and precipitation in niobium microalloyed steels,” ISIJ Int. 44, 381–387 (2004).CrossRef
41.
Zurück zum Zitat W. C. Leslie and E. Hornbogen, “Physical metallurgy of steels”, in Physical Metallurgy, Ed. by R. W. Cahn and P. Haasen (Elsevier, New York, 1996), pp. 1555–1620.CrossRef W. C. Leslie and E. Hornbogen, “Physical metallurgy of steels”, in Physical Metallurgy, Ed. by R. W. Cahn and P. Haasen (Elsevier, New York, 1996), pp. 1555–1620.CrossRef
42.
Zurück zum Zitat I. K. Razumov, D. V. Boukhvalov, M. V. Petrik, V. N. Urtsev, A. V. Shmakov, M. I. Katsnelson, and Yu. N. Gornostyrev, “Role of magnetic degrees of freedom in a scenario of phase transformations in steel,” Phys. Rev. B 90, 094101 (2014).CrossRef I. K. Razumov, D. V. Boukhvalov, M. V. Petrik, V. N. Urtsev, A. V. Shmakov, M. I. Katsnelson, and Yu. N. Gornostyrev, “Role of magnetic degrees of freedom in a scenario of phase transformations in steel,” Phys. Rev. B 90, 094101 (2014).CrossRef
43.
Zurück zum Zitat I. Leonov, A. I. Poteryaev, Yu. N. Gornostyrev, A. I. Lichtenstein, M. I. Katsnelson, V. I. Anisimov, and D. Vollhardt, “Electronic correlations determine the phase stability of iron up to the melting temperature,” Sci. Rep. 4, Article number 5585 (2014).CrossRef I. Leonov, A. I. Poteryaev, Yu. N. Gornostyrev, A. I. Lichtenstein, M. I. Katsnelson, V. I. Anisimov, and D. Vollhardt, “Electronic correlations determine the phase stability of iron up to the melting temperature,” Sci. Rep. 4, Article number 5585 (2014).CrossRef
44.
Zurück zum Zitat M. Shaban, S. Gozalzadeh, and B. Eghbali, “Dynamic strain induced transformation of austenite to ferrite during high temperature extrusion of low carbon steel,” Mater. Trans. 52, 8–11 (2011).CrossRef M. Shaban, S. Gozalzadeh, and B. Eghbali, “Dynamic strain induced transformation of austenite to ferrite during high temperature extrusion of low carbon steel,” Mater. Trans. 52, 8–11 (2011).CrossRef
45.
Zurück zum Zitat J. Sa, T. Kvackaj, O. Milkovic, and M. Zemko, “Influence of hot plastic deformation in γ and (γ + α) area on the structure and mechanical properties of high-strength low-alloy (HSLA) steel,” Materials 9, 971–979 (2016).CrossRef J. Sa, T. Kvackaj, O. Milkovic, and M. Zemko, “Influence of hot plastic deformation in γ and (γ + α) area on the structure and mechanical properties of high-strength low-alloy (HSLA) steel,” Materials 9, 971–979 (2016).CrossRef
46.
Zurück zum Zitat V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Perlite in Carbon Steels (UrO RAN, Ekaterinburg, 2006) [in Russian]. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Perlite in Carbon Steels (UrO RAN, Ekaterinburg, 2006) [in Russian].
47.
Zurück zum Zitat L. F. Porter, “The present status and future of boron steels”, in Boron in Steel, Ed. by S. K. Banerji and J. E. Morral (TMS–AIME, Warrendale, 1980), pp. 199–211. L. F. Porter, “The present status and future of boron steels”, in Boron in Steel, Ed. by S. K. Banerji and J. E. Morral (TMS–AIME, Warrendale, 1980), pp. 199–211.
48.
Zurück zum Zitat R. A. Grange, “Estimating the hardenability of carbon steels,” Metall. Trans. B 4, 2231–2244 (1973).CrossRef R. A. Grange, “Estimating the hardenability of carbon steels,” Metall. Trans. B 4, 2231–2244 (1973).CrossRef
49.
Zurück zum Zitat S. Khare, K. Lee, and H. K. D. H. Bhadeshia, “Relative effects of Mo and B on ferrite and bainite kinetics in strong steels,” Int. J. Mater. Res. 100, 1513–1520 (2009).CrossRef S. Khare, K. Lee, and H. K. D. H. Bhadeshia, “Relative effects of Mo and B on ferrite and bainite kinetics in strong steels,” Int. J. Mater. Res. 100, 1513–1520 (2009).CrossRef
50.
Zurück zum Zitat C. Capdevila, J. P. Ferrer, C. García-Mateo, F. G. Caballero, V. López, and C. G. de Andrés, “Influence of deformation and molybdenum content on acicular ferrite formation in medium carbon steels,” ISIJ Int. 46, 1093–1100 (2006).CrossRef C. Capdevila, J. P. Ferrer, C. García-Mateo, F. G. Caballero, V. López, and C. G. de Andrés, “Influence of deformation and molybdenum content on acicular ferrite formation in medium carbon steels,” ISIJ Int. 46, 1093–1100 (2006).CrossRef
51.
Zurück zum Zitat G. Krauss, Steels: Heat Treatment and Processing Principles (Materials Park, OH, 1995). G. Krauss, Steels: Heat Treatment and Processing Principles (Materials Park, OH, 1995).
52.
Zurück zum Zitat H. Dong and X. Sun, “Deformation induced ferrite transformation in low carbon steels,” Curr. Opin. Solid State Mater. Sci. 9, 269–276 (2005).CrossRef H. Dong and X. Sun, “Deformation induced ferrite transformation in low carbon steels,” Curr. Opin. Solid State Mater. Sci. 9, 269–276 (2005).CrossRef
53.
Zurück zum Zitat H. Beladi, G. L. Kelly, A. Shokouhi, and P. D. Hodgson, “Effect of thermomechanical parameters on the critical strain for ultrafine ferrite formation through hot torsion testing,” Mater. Sci. Eng., A 367, 152–161 (2004).CrossRef H. Beladi, G. L. Kelly, A. Shokouhi, and P. D. Hodgson, “Effect of thermomechanical parameters on the critical strain for ultrafine ferrite formation through hot torsion testing,” Mater. Sci. Eng., A 367, 152–161 (2004).CrossRef
54.
Zurück zum Zitat U. A. Pazilova, E. I. Khlusova, and T. V. Knyazyuk, “The influence of the modes of hot plastic deformation during quenching from rolling heating on the structure and properties of economically alloyed high-strength steel,” Vopr. Materialoved., No. 3, 7–19 (2017). U. A. Pazilova, E. I. Khlusova, and T. V. Knyazyuk, “The influence of the modes of hot plastic deformation during quenching from rolling heating on the structure and properties of economically alloyed high-strength steel,” Vopr. Materialoved., No. 3, 7–19 (2017).
55.
Zurück zum Zitat M. Militzer, R. Pandi, and E. B. Hawbolt, “Ferrite nucleation and growth during continuous cooling,” Metall. Mater. Trans. A 27, 1547–1556 (1996).CrossRef M. Militzer, R. Pandi, and E. B. Hawbolt, “Ferrite nucleation and growth during continuous cooling,” Metall. Mater. Trans. A 27, 1547–1556 (1996).CrossRef
56.
Zurück zum Zitat S. Yu. Nastich, Yu. D. Morozov, M. Yu. Matrosov, S. V. Denisov, V. V. Galkin, and P. A. Stekanov, “Mastering the manufacturing of rolled metal from low alloy steels with increased characteristics of strength and cold resistance at mill 5000 of MMK OJSC,” Metallurg, No. 11, 57–64 (2011). S. Yu. Nastich, Yu. D. Morozov, M. Yu. Matrosov, S. V. Denisov, V. V. Galkin, and P. A. Stekanov, “Mastering the manufacturing of rolled metal from low alloy steels with increased characteristics of strength and cold resistance at mill 5000 of MMK OJSC,” Metallurg, No. 11, 57–64 (2011).
57.
Zurück zum Zitat M. Yu. Matrosov, L. I. Efron, V. I. Il’inskii, I. Yu. Severinets, Yu. I. Lipunov, and K. Yu. Eismondt, “The use of accelerated cooling to improve the mechanical and technological properties of plate for the manufacture of large diameter gas pipes,” Metallurg, No. 6, 49–54 (2005). M. Yu. Matrosov, L. I. Efron, V. I. Il’inskii, I. Yu. Severinets, Yu. I. Lipunov, and K. Yu. Eismondt, “The use of accelerated cooling to improve the mechanical and technological properties of plate for the manufacture of large diameter gas pipes,” Metallurg, No. 6, 49–54 (2005).
58.
Zurück zum Zitat W. Stevens and A. G. Haynes, “The temperature of formation of martensite and bainite in low-alloy steels,” J. Iron Steel Inst. 183, 349–359 (1956). W. Stevens and A. G. Haynes, “The temperature of formation of martensite and bainite in low-alloy steels,” J. Iron Steel Inst. 183, 349–359 (1956).
59.
Zurück zum Zitat J. K. Lee, “Empirical formula of isothermal bainite start temperature of steels,” J. Mater. Sci. Lett. 21, 1253–1255 (2002).CrossRef J. K. Lee, “Empirical formula of isothermal bainite start temperature of steels,” J. Mater. Sci. Lett. 21, 1253–1255 (2002).CrossRef
60.
Zurück zum Zitat M. Suehiro, T. Senuma, H. Yada, Y. Matsumura, and T. Ariyoshi, “A kinetic model for phase transformations of low carbon steels during continuous cooling,” Trans. Iron Steel Inst. Jpn. 73, 1026–1033 (1987).CrossRef M. Suehiro, T. Senuma, H. Yada, Y. Matsumura, and T. Ariyoshi, “A kinetic model for phase transformations of low carbon steels during continuous cooling,” Trans. Iron Steel Inst. Jpn. 73, 1026–1033 (1987).CrossRef
61.
Zurück zum Zitat R. L. Bodnar, T. Ohhashi, and R. I. Jaffee, “Effects of Mn, Si, and purity on the design of 3.5 NiCrMoV, 1CrMoV, and 2.25 Cr–1Mo bainitic alloy steels,” Metall. Trans. A 20, 1445–1460 (1989).CrossRef R. L. Bodnar, T. Ohhashi, and R. I. Jaffee, “Effects of Mn, Si, and purity on the design of 3.5 NiCrMoV, 1CrMoV, and 2.25 Cr–1Mo bainitic alloy steels,” Metall. Trans. A 20, 1445–1460 (1989).CrossRef
62.
Zurück zum Zitat T. Kunitake and Y. Okada, “The estimation of bainite transformation temperatures in steels by empirical formulas,” J. Iron Steel Inst. 84, 137–141 (1998).CrossRef T. Kunitake and Y. Okada, “The estimation of bainite transformation temperatures in steels by empirical formulas,” J. Iron Steel Inst. 84, 137–141 (1998).CrossRef
63.
Zurück zum Zitat J. Zhao, C. Liu, Y. Liu, and D. O. Northwood, “A new empirical formula for the bainite uppertemperature limit of steel,” J. Mater. Sci. 36, 5045–5056 (2001).CrossRef J. Zhao, C. Liu, Y. Liu, and D. O. Northwood, “A new empirical formula for the bainite uppertemperature limit of steel,” J. Mater. Sci. 36, 5045–5056 (2001).CrossRef
64.
Zurück zum Zitat van Bohemen S.M.C. Bainite and martensite start temperature calculated with exponential carbon dependence, Mater. Sci. Technol. 2012, 28, 487–495.CrossRef van Bohemen S.M.C. Bainite and martensite start temperature calculated with exponential carbon dependence, Mater. Sci. Technol. 2012, 28, 487–495.CrossRef
65.
Zurück zum Zitat A. R. Gareev, S. A. Murikov, S. I. Platov, V. N. Urtsev, A. V. Shmakov, “Analysis and experimental verification of the heat release model during phase transformations,” Proizvod. Prokata, No. 2, 30–34 (2015). A. R. Gareev, S. A. Murikov, S. I. Platov, V. N. Urtsev, A. V. Shmakov, “Analysis and experimental verification of the heat release model during phase transformations,” Proizvod. Prokata, No. 2, 30–34 (2015).
66.
Zurück zum Zitat M. L. Lobanov, M. L. Krasnov, V. N. Urtsev, S. V. Danilov, and V. I. Pastukhov, “Effect of cooling rate on the structure of low-carbon low-alloy steel after controlled thermomechanical treatment,” Metalloved. Term. Obrab. Met., No. 1, 31–37 (2019). M. L. Lobanov, M. L. Krasnov, V. N. Urtsev, S. V. Danilov, and V. I. Pastukhov, “Effect of cooling rate on the structure of low-carbon low-alloy steel after controlled thermomechanical treatment,” Metalloved. Term. Obrab. Met., No. 1, 31–37 (2019).
67.
Zurück zum Zitat M. L. Lobanov, G. M. Rusakov, V. N. Urtsev, M. L. Krasnov, E. D. Mokshin, A. V. Shmakov, and S. I. Platov, “Thermal effect of bainitic transformation in tube steel by accelerated cooling,” Lett. Mater. 8, 246–251 (2018).CrossRef M. L. Lobanov, G. M. Rusakov, V. N. Urtsev, M. L. Krasnov, E. D. Mokshin, A. V. Shmakov, and S. I. Platov, “Thermal effect of bainitic transformation in tube steel by accelerated cooling,” Lett. Mater. 8, 246–251 (2018).CrossRef
Metadaten
Titel
Formation of the Structural State of a High-Strength Low-Alloy Steel upon Hot Rolling and Controlled Cooling
verfasst von
V. N. Urtsev
V. L. Kornilov
A. V. Shmakov
M. L. Krasnov
P. A. Stekanov
S. I. Platov
E. D. Mokshin
N. V. Urtsev
V. M. Schastlivtsev
I. K. Razumov
Yu. N. Gornostyrev
Publikationsdatum
01.12.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 12/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19120160

Weitere Artikel der Ausgabe 12/2019

Physics of Metals and Metallography 12/2019 Zur Ausgabe