Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 2/2024

14.07.2023 | Original Article

Formative semi-supervised learning based on adaptive combined model for brain–computer interface

verfasst von: Yunyuan Gao, Mengting Li, Zhen Cao, Ming Meng

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The recognition of Electroencephalogram (EEG) signals has been an important research field in Brain–computer interface. The semi-supervised classification can improve the classification performance of EEG. Formative Semi-Supervised Learning (FSSL) uses the affinity matrix between samples and Expectation-maximization (EM) to mine hidden features between samples. It isn’t effective to apply FSSL to EEG classification directly due to the non-stationary and nonlinear of EEG. FSSL only uses Euclidean distances in the affinity matrix, which is not sufficient to process EEG signals and may restrict the effect of subsequent feature extraction. In response to this problem, combined model formative Semi-Supervised Learning (CMFSSL) was proposed to construct a combined model based on Euclidean metric and Riemannian metric. The weight update strategy is designed to constrain the model in the EM algorithm, and the weights of the combined model are constantly adjusted to construct a better basic model. Then the hidden features extracted based on the combined model are used to construct the training set and the Broad Learning System is used for classification. The algorithm is verified on three BCI data sets and compared with several state-of-the-art methods. The experimental results show that the algorithm achieves better results on three data sets: 74.86%, 73.52%, 75.49% and has a good effect on cross-domain classification. The combined model uses adaptive weights to build a better data model for subsequent hidden features, which not only maintains the original security advantages, but also improves the classification results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Banan A, Nasiri A, Taheri-Garavand A (2020) Deep learning-based appearance features extraction for automated carp species identification[J]. Aquacult Eng 89:102053CrossRef Banan A, Nasiri A, Taheri-Garavand A (2020) Deep learning-based appearance features extraction for automated carp species identification[J]. Aquacult Eng 89:102053CrossRef
2.
Zurück zum Zitat Barachant A, Bonnet S, Congedo M et al (2011) Multiclass brain-computer interface classification by Riemannian geometry[J]. IEEE Trans Biomed Eng 59(4):920–928CrossRef Barachant A, Bonnet S, Congedo M et al (2011) Multiclass brain-computer interface classification by Riemannian geometry[J]. IEEE Trans Biomed Eng 59(4):920–928CrossRef
3.
Zurück zum Zitat Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning[M]. Springer, New York Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning[M]. Springer, New York
4.
Zurück zum Zitat Blankertz B, Dornhege G, Krauledat M et al (2007) The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects[J]. NeuroImage 37(2):539–550CrossRef Blankertz B, Dornhege G, Krauledat M et al (2007) The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects[J]. NeuroImage 37(2):539–550CrossRef
5.
Zurück zum Zitat Blum A, Chawla S, et al (2001) Learning from labeled and unlabeled data using graph mincuts[C]. Proceedings of the 18th international conference on machine learning: 19-26 Blum A, Chawla S, et al (2001) Learning from labeled and unlabeled data using graph mincuts[C]. Proceedings of the 18th international conference on machine learning: 19-26
6.
Zurück zum Zitat Chen CLP, Liu Z (2017) Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Trans Neural Netw Learn Syst 29(1):10–24MathSciNetCrossRef Chen CLP, Liu Z (2017) Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Trans Neural Netw Learn Syst 29(1):10–24MathSciNetCrossRef
7.
Zurück zum Zitat Chen W, Sharifrazi D, Liang G et al (2022) Accurate discharge coefficient prediction of streamlined weirs by coupling linear regression and deep convolutional gated recurrent unit[J]. Eng Appl Comput Fluid Mech 16(1):965–976 Chen W, Sharifrazi D, Liang G et al (2022) Accurate discharge coefficient prediction of streamlined weirs by coupling linear regression and deep convolutional gated recurrent unit[J]. Eng Appl Comput Fluid Mech 16(1):965–976
8.
Zurück zum Zitat Congedo M, Barachant A, Bhatia R (2017) Riemannian geometry for EEG-based brain-computer interfaces: a primer and a review[J]. Brain Comput Interfaces 4(3):155–174CrossRef Congedo M, Barachant A, Bhatia R (2017) Riemannian geometry for EEG-based brain-computer interfaces: a primer and a review[J]. Brain Comput Interfaces 4(3):155–174CrossRef
9.
Zurück zum Zitat Dong A, Chung FL, Deng Z et al (2015) Semi-supervised SVM with extended hidden features[J]. IEEE Trans Cybern 46(12):2924–2937CrossRef Dong A, Chung FL, Deng Z et al (2015) Semi-supervised SVM with extended hidden features[J]. IEEE Trans Cybern 46(12):2924–2937CrossRef
10.
Zurück zum Zitat Dong A, Chung F, Wang S (2016) Semi-supervised classification method through oversampling and common hidden space[J]. Inform Sci 349:216–228CrossRef Dong A, Chung F, Wang S (2016) Semi-supervised classification method through oversampling and common hidden space[J]. Inform Sci 349:216–228CrossRef
11.
Zurück zum Zitat Dornhege G, Blankertz B, Curio G et al (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms[J]. IEEE Trans Biomed Eng 51(6):993–1002CrossRef Dornhege G, Blankertz B, Curio G et al (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms[J]. IEEE Trans Biomed Eng 51(6):993–1002CrossRef
12.
Zurück zum Zitat Fan Y, Xu K, Wu H et al (2020) Spatiotemporal modeling for nonlinear distributed thermal processes based on KL decomposition, MLP and LSTM network[J]. IEEE Access 8:25111–25121CrossRef Fan Y, Xu K, Wu H et al (2020) Spatiotemporal modeling for nonlinear distributed thermal processes based on KL decomposition, MLP and LSTM network[J]. IEEE Access 8:25111–25121CrossRef
13.
Zurück zum Zitat Gan H, Sang N, Huang R (2015) Manifold regularized semi-supervised Gaussian mixture model[J]. J Opt Soc Am A 32(4):566–575CrossRef Gan H, Sang N, Huang R (2015) Manifold regularized semi-supervised Gaussian mixture model[J]. J Opt Soc Am A 32(4):566–575CrossRef
14.
Zurück zum Zitat Gong X, Zhang T, Chen C L P, et al (2021) Research review for broad learning system: algorithms, theory, and applications[J]. IEEE Trans Cybern Gong X, Zhang T, Chen C L P, et al (2021) Research review for broad learning system: algorithms, theory, and applications[J]. IEEE Trans Cybern
15.
Zurück zum Zitat Graimann B, Allison B, Pfurtscheller G (2010) Brain-computer interfaces: a gentle introduction[J]. Revolut Hum Comput Interact Brain Comput Interfaces: 1–27 Graimann B, Allison B, Pfurtscheller G (2010) Brain-computer interfaces: a gentle introduction[J]. Revolut Hum Comput Interact Brain Comput Interfaces: 1–27
16.
Zurück zum Zitat Li Y, Guan C (2006) A semi-supervised SVM learning algorithm for joint feature extraction and classification in brain computer interfaces[C]. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2570-2573 Li Y, Guan C (2006) A semi-supervised SVM learning algorithm for joint feature extraction and classification in brain computer interfaces[C]. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2570-2573
17.
Zurück zum Zitat Huang G, Song S, Gupta JND et al (2014) Semi-supervised and unsupervised extreme learning machines[J]. IEEE Trans Cybern 44(12):2405–2417CrossRef Huang G, Song S, Gupta JND et al (2014) Semi-supervised and unsupervised extreme learning machines[J]. IEEE Trans Cybern 44(12):2405–2417CrossRef
18.
Zurück zum Zitat Joachims T (1999) Transductive inference for text classification using support vector machines[C]. In: Proceedings of the 16th international conference on machine learning 99: 200–209 Joachims T (1999) Transductive inference for text classification using support vector machines[C]. In: Proceedings of the 16th international conference on machine learning 99: 200–209
19.
Zurück zum Zitat Li YF, Zhou ZH (2014) Towards making unlabeled data never hurt[J]. IEEE Trans Pattern Anal Mach Intell 37(1):175–188 Li YF, Zhou ZH (2014) Towards making unlabeled data never hurt[J]. IEEE Trans Pattern Anal Mach Intell 37(1):175–188
20.
Zurück zum Zitat Li YF, Guo LZ, Zhou ZH (2019) Towards safe weakly supervised learning[J]. IEEE Trans Pattern Anal Mach Intell 43(1):334–346 Li YF, Guo LZ, Zhou ZH (2019) Towards safe weakly supervised learning[J]. IEEE Trans Pattern Anal Mach Intell 43(1):334–346
21.
Zurück zum Zitat Liu Z, Zhou J, Chen C L P (2017) Broad learning system: feature extraction based on K-means clustering algorithm[C]. In: 2017 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS). IEEE: 683-687 Liu Z, Zhou J, Chen C L P (2017) Broad learning system: feature extraction based on K-means clustering algorithm[C]. In: 2017 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS). IEEE: 683-687
22.
Zurück zum Zitat McFarland DJ, Wolpaw JR (2017) EEG-based brain-computer interfaces[J]. Curr Opin Biomed Eng 4:194–200CrossRef McFarland DJ, Wolpaw JR (2017) EEG-based brain-computer interfaces[J]. Curr Opin Biomed Eng 4:194–200CrossRef
23.
Zurück zum Zitat Moakher M (2005) A differential geometric approach to the geometric mean of symmetric positive-definite matrices[J]. SIAM J Matrix Anal Appl 26(3):735–747MathSciNetCrossRef Moakher M (2005) A differential geometric approach to the geometric mean of symmetric positive-definite matrices[J]. SIAM J Matrix Anal Appl 26(3):735–747MathSciNetCrossRef
24.
Zurück zum Zitat Nam CS, Anton N, Fabien L, (eds) (2018) Brain-computer interfaces handbook: technological and theoretical advances[M]. CRC Press Nam CS, Anton N, Fabien L, (eds) (2018) Brain-computer interfaces handbook: technological and theoretical advances[M]. CRC Press
25.
Zurück zum Zitat Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication[J]. Proc IEEE 89(7):1123–1134CrossRef Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication[J]. Proc IEEE 89(7):1123–1134CrossRef
26.
Zurück zum Zitat Rao RPN (2013) Brain-computer interfacing: an introduction[M]. Cambridge University Press, CambridgeCrossRef Rao RPN (2013) Brain-computer interfacing: an introduction[M]. Cambridge University Press, CambridgeCrossRef
27.
Zurück zum Zitat Shanechi MM (2019) Brain-machine interfaces from motor to mood[J]. Nat Neurosci 22(10):1554–1564CrossRef Shanechi MM (2019) Brain-machine interfaces from motor to mood[J]. Nat Neurosci 22(10):1554–1564CrossRef
28.
Zurück zum Zitat She Q, Zou J, Meng M et al (2021) Balanced graph-based regularized semi-supervised extreme learning machine for EEG classification[J]. Int J Mach Learn Cybern 12:903–916CrossRef She Q, Zou J, Meng M et al (2021) Balanced graph-based regularized semi-supervised extreme learning machine for EEG classification[J]. Int J Mach Learn Cybern 12:903–916CrossRef
29.
Zurück zum Zitat Song Z, Yang X, Xu Z, et al (2022) Graph-based semi-supervised learning: a comprehensive review[J]. IEEE Trans Neural Netw Learn Syst Song Z, Yang X, Xu Z, et al (2022) Graph-based semi-supervised learning: a comprehensive review[J]. IEEE Trans Neural Netw Learn Syst
30.
Zurück zum Zitat Sun S, Zhou J (2014) A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces[C]. In: 2014 International Joint Conference on Neural Networks (IJCNN). IEEE: 1746-1753 Sun S, Zhou J (2014) A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces[C]. In: 2014 International Joint Conference on Neural Networks (IJCNN). IEEE: 1746-1753
31.
Zurück zum Zitat Tu W, Sun S (2013) Semi-supervised feature extraction for EEG classification[J]. Pattern Anal Appl 16:213–222MathSciNetCrossRef Tu W, Sun S (2013) Semi-supervised feature extraction for EEG classification[J]. Pattern Anal Appl 16:213–222MathSciNetCrossRef
32.
Zurück zum Zitat Vaid S, Singh P, Kaur C (2015) EEG signal analysis for BCI interface: A review[C]. In: 2015 fifth international conference on advanced computing and communication technologies. IEEE, 143-147 Vaid S, Singh P, Kaur C (2015) EEG signal analysis for BCI interface: A review[C]. In: 2015 fifth international conference on advanced computing and communication technologies. IEEE, 143-147
33.
34.
Zurück zum Zitat Waytowich NR, Lawhern VJ, Bohannon AW et al (2016) Spectral transfer learning using information geometry for a user-independent brain-computer interface[J]. Front Neurosci 10:430CrossRef Waytowich NR, Lawhern VJ, Bohannon AW et al (2016) Spectral transfer learning using information geometry for a user-independent brain-computer interface[J]. Front Neurosci 10:430CrossRef
35.
Zurück zum Zitat Xu Y, Hua J, Zhang H, et al. (2019) Improved transductive support vector machine for a small labelled set in motor imagery-based brain-computer interface[J]. Comput Intell Neurosci 2019 Xu Y, Hua J, Zhang H, et al. (2019) Improved transductive support vector machine for a small labelled set in motor imagery-based brain-computer interface[J]. Comput Intell Neurosci 2019
36.
Zurück zum Zitat Yang T, Priebe CE (2011) The effect of model misspecification on semi-supervised classification[J]. IEEE Trans Pattern Anal Mach Intell 33(10):2093–2103CrossRef Yang T, Priebe CE (2011) The effect of model misspecification on semi-supervised classification[J]. IEEE Trans Pattern Anal Mach Intell 33(10):2093–2103CrossRef
37.
Zurück zum Zitat Yger F, Berar M, Lotte F (2016) Riemannian approaches in brain-computer interfaces: a review[J]. IEEE Trans Neural Syst Rehabilit Eng 25(10):1753–1762CrossRef Yger F, Berar M, Lotte F (2016) Riemannian approaches in brain-computer interfaces: a review[J]. IEEE Trans Neural Syst Rehabilit Eng 25(10):1753–1762CrossRef
38.
Zurück zum Zitat Zanini P, Congedo M, Jutten C et al (2017) Transfer learning: a riemannian geometry framework with applications to brain-computer interfaces[J]. IEEE Trans Biomed Eng 65(5):1107–1116CrossRef Zanini P, Congedo M, Jutten C et al (2017) Transfer learning: a riemannian geometry framework with applications to brain-computer interfaces[J]. IEEE Trans Biomed Eng 65(5):1107–1116CrossRef
39.
Zurück zum Zitat Zhu X (2011) Cross-domain semi-supervised learning using feature formulation[J]. IEEE Trans Syst Man Cybern Part B (Cybern) 41(6):1627–1638CrossRef Zhu X (2011) Cross-domain semi-supervised learning using feature formulation[J]. IEEE Trans Syst Man Cybern Part B (Cybern) 41(6):1627–1638CrossRef
40.
Zurück zum Zitat Zhu X, Wu X (2004) Class noise vs. attribute noise: a quantitative study[J]. Artifi Intell Rev 2:177–210CrossRef Zhu X, Wu X (2004) Class noise vs. attribute noise: a quantitative study[J]. Artifi Intell Rev 2:177–210CrossRef
Metadaten
Titel
Formative semi-supervised learning based on adaptive combined model for brain–computer interface
verfasst von
Yunyuan Gao
Mengting Li
Zhen Cao
Ming Meng
Publikationsdatum
14.07.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 2/2024
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01914-6

Weitere Artikel der Ausgabe 2/2024

International Journal of Machine Learning and Cybernetics 2/2024 Zur Ausgabe

Neuer Inhalt