Skip to main content
Erschienen in: Archive of Applied Mechanics 12/2021

21.09.2021 | Original

Fourth-order tensor algebraic operations and matrix representation in continuum mechanics

verfasst von: David C. Kellermann, Mario M. Attard, Daniel J. O’Shea

Erschienen in: Archive of Applied Mechanics | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a system of cyclic tensor algebra for operations involving fourth-order tensors. The advantages are that the system is objectively and consistently defined in three ways that each fall into one of three universal classes. Operators within a given class are called conjugate operators such that many familiar and fundamental identities of scalars and second-order tensors are maintained in fourth order; this provides greater insight along with anthropological and pedagogical advantages over current systems, while also revealing new identities and solutions. The relationship between operators of a different class is such that a property of cyclic symmetry arises whereby mixed-class product operators can be cycled around without invalidating an equation. In defining this system, we have considered the following: preservation from identities in zeroth- (scalar) and second-order tensor identities to fourth-order tensor identities; possible permutations of definitions and subsequent logical restrictions; the visual notational consistency throughout the system; and maintenance to legacy definitions and operator symbols. Additionally, we present many new and useful algebraic identities and provide a comparison to some selected contemporary systems used in the literature. We also provide, to complete at least a basic exposition of our proposed system, a set of identities for matrix-equivalent operations, which facilitate programming for numerical computing. This article is designed to be used as a reference work for anyone choosing to adopt this system of tensor operations in continuum mechanics theory involving fourth-order tensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Author’s note: we put exhaustive effort into maintaining this consistency, and it required the re-definition of the circledot operator for the tensor product.
 
2
Note that Itskov’s circledot is our circlestar for previously detailed reasons.
 
3
Having chosen the right-handed rather than the left-handed definitions (not to be confused with left and right contractions).
 
Literatur
2.
Zurück zum Zitat Cardoso, J. F.: Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem. In: Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International Conference on, 3–6 Apr 1990 1990. Pp. 2655–2658 vol. 2655. https://doi.org/10.1109/ICASSP.1990.116165 Cardoso, J. F.: Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem. In: Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International Conference on, 3–6 Apr 1990 1990. Pp. 2655–2658 vol. 2655. https://​doi.​org/​10.​1109/​ICASSP.​1990.​116165
12.
Zurück zum Zitat Ghosh, A., Descoteaux, M., Deriche, R.: Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008, vol 5241. Lecture Notes in Computer Science, pp. 858–865. Springer, Berli (2008). https://doi.org/10.1007/978-3-540-85988-8_102 Ghosh, A., Descoteaux, M., Deriche, R.: Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008, vol 5241. Lecture Notes in Computer Science, pp. 858–865. Springer, Berli (2008). https://​doi.​org/​10.​1007/​978-3-540-85988-8_​102
13.
Zurück zum Zitat Ebbing, V., Schröder, J., Neff, P.: Construction of polyconvex energies for non-trivial anisotropy classes. In: Poly-, Quasi-and Rank-One Convexity in Applied Mechanics, pp. 107–130. Springer (2010) Ebbing, V., Schröder, J., Neff, P.: Construction of polyconvex energies for non-trivial anisotropy classes. In: Poly-, Quasi-and Rank-One Convexity in Applied Mechanics, pp. 107–130. Springer (2010)
15.
Zurück zum Zitat Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers: With Applications to Continuum Mechanics. Mathematical Engineering, 3rd edn. Springer, Berlin (2013)CrossRef Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers: With Applications to Continuum Mechanics. Mathematical Engineering, 3rd edn. Springer, Berlin (2013)CrossRef
16.
Zurück zum Zitat Itskov, M.: On the theory of fourth-order tensors and their applications in computational mechanics. Comput. Methods Appl. Mech. Eng. 189(2), 419–438 (2000)MathSciNetCrossRef Itskov, M.: On the theory of fourth-order tensors and their applications in computational mechanics. Comput. Methods Appl. Mech. Eng. 189(2), 419–438 (2000)MathSciNetCrossRef
19.
Zurück zum Zitat Ogden, R.W.: Non-Linear Elastic Deformations. Courier Dover Publications (1997) Ogden, R.W.: Non-Linear Elastic Deformations. Courier Dover Publications (1997)
20.
Zurück zum Zitat Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: The Non-linear Field Theories of Mechanics, pp. 1–579. Springer (2004) Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: The Non-linear Field Theories of Mechanics, pp. 1–579. Springer (2004)
21.
Zurück zum Zitat Truesdell, C., Toupin, R.: The Classical Field Theories. Encyclopedia of Physics. Vol III/1 S. Flugge (ed), pp. 226–793. Springer, Berlin (1960) Truesdell, C., Toupin, R.: The Classical Field Theories. Encyclopedia of Physics. Vol III/1 S. Flugge (ed), pp. 226–793. Springer, Berlin (1960)
22.
Zurück zum Zitat Cosserat, E., Cosserat, F.: Théorie des corps déformables. Bull. Am. Math. Soc. 19(1913), 242–246 (1913)MATH Cosserat, E., Cosserat, F.: Théorie des corps déformables. Bull. Am. Math. Soc. 19(1913), 242–246 (1913)MATH
23.
Zurück zum Zitat Eringen, A.: Theory of Micropolar Elasticity DTIC. DTIC Document (1967) Eringen, A.: Theory of Micropolar Elasticity DTIC. DTIC Document (1967)
24.
Zurück zum Zitat Eringen, A.C.: Simple Microfluids (1963) Eringen, A.C.: Simple Microfluids (1963)
25.
Zurück zum Zitat Kellermann, D.C., Attard, M.M.: An invariant-free formulation of neo-Hookean hyperelasticity. ZAMM-J. Appl. Math. Mech. 96(2), 233–252 (2016)MathSciNetCrossRef Kellermann, D.C., Attard, M.M.: An invariant-free formulation of neo-Hookean hyperelasticity. ZAMM-J. Appl. Math. Mech. 96(2), 233–252 (2016)MathSciNetCrossRef
29.
Zurück zum Zitat Kelly, P.: Foundations of continuum mechanics. In: Kelly, P. (ed) Mechanics Lecture Notes, vol III. The University of Auckland, Auckland (2013) Kelly, P.: Foundations of continuum mechanics. In: Kelly, P. (ed) Mechanics Lecture Notes, vol III. The University of Auckland, Auckland (2013)
30.
Zurück zum Zitat Kintzel, O., Başar, Y.: Fourth-order tensors–tensor differentiation with applications to continuum mechanics. Part I: classical tensor analysis. ZAMM 86(4), 291–311 (2006)MathSciNetCrossRef Kintzel, O., Başar, Y.: Fourth-order tensors–tensor differentiation with applications to continuum mechanics. Part I: classical tensor analysis. ZAMM 86(4), 291–311 (2006)MathSciNetCrossRef
31.
Zurück zum Zitat Kintzel, O.: Fourth-order tensors–tensor differentiation with applications to continuum mechanics. Part II: tensor analysis on manifolds. ZAMM 86(4), 312–334 (2006)MathSciNetCrossRef Kintzel, O.: Fourth-order tensors–tensor differentiation with applications to continuum mechanics. Part II: tensor analysis on manifolds. ZAMM 86(4), 312–334 (2006)MathSciNetCrossRef
32.
Zurück zum Zitat Bonet, J., Gil, A.J., Ortigosa, R.: A computational framework for polyconvex large strain elasticity. Comput. Methods Appl. Mech. Eng. 283, 1061–1094 (2015)MathSciNetCrossRef Bonet, J., Gil, A.J., Ortigosa, R.: A computational framework for polyconvex large strain elasticity. Comput. Methods Appl. Mech. Eng. 283, 1061–1094 (2015)MathSciNetCrossRef
33.
Zurück zum Zitat Bonet, J., Gil, A.J., Ortigosa, R.: On a tensor cross product based formulation of large strain solid mechanics. Int. J. Solids Struct. 84, 49–63 (2016)CrossRef Bonet, J., Gil, A.J., Ortigosa, R.: On a tensor cross product based formulation of large strain solid mechanics. Int. J. Solids Struct. 84, 49–63 (2016)CrossRef
34.
Zurück zum Zitat de Boer, R.: Vektor-und Tensorrechnung für Ingenieure. Springer (1982)CrossRef de Boer, R.: Vektor-und Tensorrechnung für Ingenieure. Springer (1982)CrossRef
35.
Zurück zum Zitat Gibbs, J., Wilson, E.: Vector Analysis, 9th edn. Yale University Press (1947) Gibbs, J., Wilson, E.: Vector Analysis, 9th edn. Yale University Press (1947)
36.
Zurück zum Zitat Poya, R., Gil, A.J., Ortigosa, R.: A high performance data parallel tensor contraction framework: application to coupled electro-mechanics. Comput. Phys. Commun. 216, 35–52 (2017)CrossRef Poya, R., Gil, A.J., Ortigosa, R.: A high performance data parallel tensor contraction framework: application to coupled electro-mechanics. Comput. Phys. Commun. 216, 35–52 (2017)CrossRef
37.
Zurück zum Zitat Basar, Y., Weichert, D.: Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts. Springer (2000)CrossRef Basar, Y., Weichert, D.: Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts. Springer (2000)CrossRef
39.
Zurück zum Zitat Sylvester, J.: Sur l′equation en matrices px = xq. C. R. Acad. Sci. Paris 99(67–71), 115–116 (1884) Sylvester, J.: Sur l′equation en matrices px = xq. C. R. Acad. Sci. Paris 99(67–71), 115–116 (1884)
44.
Zurück zum Zitat Scheidler, M.: The tensor equation AX+XA=Φ(A, H), with applications to kinematics of continua. J. Elast. 36(2), 117–153 (1994)MathSciNetCrossRef Scheidler, M.: The tensor equation AX+XA=Φ(A, H), with applications to kinematics of continua. J. Elast. 36(2), 117–153 (1994)MathSciNetCrossRef
46.
48.
Zurück zum Zitat Voigt, W.: Lehrbuch der Kristallphysik:(Mit Ausschluss der Kristalloptik), vol. 34. BG Teubner (1910)MATH Voigt, W.: Lehrbuch der Kristallphysik:(Mit Ausschluss der Kristalloptik), vol. 34. BG Teubner (1910)MATH
49.
Zurück zum Zitat Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)MATH Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)MATH
51.
Zurück zum Zitat O′Shea, D., Attard, M., Kellermann, D.: Anisotropic hyperelasticity using a fourth-order structural tensor approach. Int. J. Solids Struct. 198, 149–169 (2020)CrossRef O′Shea, D., Attard, M., Kellermann, D.: Anisotropic hyperelasticity using a fourth-order structural tensor approach. Int. J. Solids Struct. 198, 149–169 (2020)CrossRef
52.
Zurück zum Zitat O′Shea, D.J., Attard, M.M., Kellermann, D.C.: Hyperelastic constitutive modelling for transversely isotropic composites and orthotropic biological tissues. Int. J. Solids Struct. 169, 1–20 (2019)CrossRef O′Shea, D.J., Attard, M.M., Kellermann, D.C.: Hyperelastic constitutive modelling for transversely isotropic composites and orthotropic biological tissues. Int. J. Solids Struct. 169, 1–20 (2019)CrossRef
53.
Zurück zum Zitat O′Shea, D.J., Attard, M.M., Kellermann, D.C., Sansour, C.: Nonlinear finite element formulation based on invariant-free hyperelasticity for orthotropic materials. Int. J. Solids Struct. 185, 191–201 (2020)CrossRef O′Shea, D.J., Attard, M.M., Kellermann, D.C., Sansour, C.: Nonlinear finite element formulation based on invariant-free hyperelasticity for orthotropic materials. Int. J. Solids Struct. 185, 191–201 (2020)CrossRef
Metadaten
Titel
Fourth-order tensor algebraic operations and matrix representation in continuum mechanics
verfasst von
David C. Kellermann
Mario M. Attard
Daniel J. O’Shea
Publikationsdatum
21.09.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 12/2021
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-01926-0

Weitere Artikel der Ausgabe 12/2021

Archive of Applied Mechanics 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.