Skip to main content

2017 | OriginalPaper | Buchkapitel

Fractional Inverse Generalized Chaos Synchronization Between Different Dimensional Systems

verfasst von : Adel Ouannas, Ahmad Taher Azar, Toufik Ziar, Sundarapandian Vaidyanathan

Erschienen in: Fractional Order Control and Synchronization of Chaotic Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, new control schemes to achieve inverse generalizedsynchronization (IGS) between fractional order chaotic (hyperchaotic) systems with different dimensions are presented. Specifically, given a fractional master system with dimension n and a fractional slave system with dimension m, the proposed approach enables each master system state to be synchronized with a functional relationship of slave system states. The method, based on the fractional Lyapunov approach and stability property of integer-order linear differential systems, presents some useful features: (i) it enables synchronization to be achieved for both cases \(n<m\) and \(n>m\); (ii) it is rigorous, being based on theorems; (iii) it can be readily applied to any chaotic (hyperchaotic) fractional systems. Finally, the capability of the approach is illustrated by synchronization examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hilfer, R. (2000). Applications of fractional calculus in physics. World Scientific. Hilfer, R. (2000). Applications of fractional calculus in physics. World Scientific.
2.
Zurück zum Zitat Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Elsevier. Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Elsevier.
3.
Zurück zum Zitat Sabatier, J., Agrawal, O. P., & Tenreiro Machado, J. A. (2007). Advances in fractional calculus: theoretical developments and applications in physics and engineering. Springer. Sabatier, J., Agrawal, O. P., & Tenreiro Machado, J. A. (2007). Advances in fractional calculus: theoretical developments and applications in physics and engineering. Springer.
4.
Zurück zum Zitat Tenreiro Machado, J. A., Jesus, I. S., Barbosa, R., Silva, M., & Reis, C. (2011). Application of fractional calculus in engineering. In M. M. Peixoto, A. A. Pinto, & D. A. Rand (Eds.), Dynamics, games and science I. Springer. Tenreiro Machado, J. A., Jesus, I. S., Barbosa, R., Silva, M., & Reis, C. (2011). Application of fractional calculus in engineering. In M. M. Peixoto, A. A. Pinto, & D. A. Rand (Eds.), Dynamics, games and science I. Springer.
5.
Zurück zum Zitat Uchaikin, V. V. (2012). Fractional derivatives for physicists and engineers. Higher Education Press. Uchaikin, V. V. (2012). Fractional derivatives for physicists and engineers. Higher Education Press.
6.
Zurück zum Zitat Li, C., Chen, Y. Q., & Kurths, J. (2013). Fractional calculus and its applications. Philosophical Transctions of the Royal Society A, 371, 20130037. Li, C., Chen, Y. Q., & Kurths, J. (2013). Fractional calculus and its applications. Philosophical Transctions of the Royal Society A, 371, 20130037.
7.
Zurück zum Zitat Varsha, D. G. (2013). Fractional calculus: Theory and applications. Narosa Publishing House. Varsha, D. G. (2013). Fractional calculus: Theory and applications. Narosa Publishing House.
8.
Zurück zum Zitat Herrmann, R. (2014). Fractional calculus—an introduction for physicists. World Scientific. Herrmann, R. (2014). Fractional calculus—an introduction for physicists. World Scientific.
9.
Zurück zum Zitat Heaviside, O. (1971). Electromagnetic theory. Chelsea. Heaviside, O. (1971). Electromagnetic theory. Chelsea.
10.
Zurück zum Zitat Sugimoto, N. (1991). Burgers equation with a fractional derivative: Hereditary effects on nonlinear acoustic waves. Journal of Fluid Mechanics, 225, 631–653.MathSciNetMATHCrossRef Sugimoto, N. (1991). Burgers equation with a fractional derivative: Hereditary effects on nonlinear acoustic waves. Journal of Fluid Mechanics, 225, 631–653.MathSciNetMATHCrossRef
11.
Zurück zum Zitat Parada, F. J. V., Tapia, J. A. O., & Ramirez, J. A. (2007). Effective medium equations for fractional Fick’s law in porous media. Physica A, 373, 339–353.CrossRef Parada, F. J. V., Tapia, J. A. O., & Ramirez, J. A. (2007). Effective medium equations for fractional Fick’s law in porous media. Physica A, 373, 339–353.CrossRef
12.
Zurück zum Zitat Bagley, R. L., & Torvik, P. J. (1994). On the appearance of the fractional derivative in the behavior of real materials. Journal of Applied Mechanics, 51, 294–298.MATH Bagley, R. L., & Torvik, P. J. (1994). On the appearance of the fractional derivative in the behavior of real materials. Journal of Applied Mechanics, 51, 294–298.MATH
13.
Zurück zum Zitat Kulish, V. V., & Lage, J. L. (2002). Application of fractional calculus to fluid mechanics. Journal of Fluids Engineering, 124, 803–806.CrossRef Kulish, V. V., & Lage, J. L. (2002). Application of fractional calculus to fluid mechanics. Journal of Fluids Engineering, 124, 803–806.CrossRef
14.
Zurück zum Zitat Atanackovic, T. M., Pilipovic, S., Stankovic, B., & Zorica, D. (2014). Fractional calculus with applications in mechanics: Vibrations and diffusion processes. Wiley. Atanackovic, T. M., Pilipovic, S., Stankovic, B., & Zorica, D. (2014). Fractional calculus with applications in mechanics: Vibrations and diffusion processes. Wiley.
15.
Zurück zum Zitat Koeller, R. C. (1984). Application of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 51, 299–307.MathSciNetMATHCrossRef Koeller, R. C. (1984). Application of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 51, 299–307.MathSciNetMATHCrossRef
16.
Zurück zum Zitat Bagley, R. L., & Calico, R. A. (1991). Fractional order state equations for the control of viscoelastically damped structures. Journal of Guidance Control and Dynamics, 14, 304–311. Bagley, R. L., & Calico, R. A. (1991). Fractional order state equations for the control of viscoelastically damped structures. Journal of Guidance Control and Dynamics, 14, 304–311.
17.
Zurück zum Zitat Kusnezov, D., Bulgac, A., & Dang, G. D. (1999). Quantum Lévy processes and fractional kinetics. Physical Review Letters, 82, 1136–1139.CrossRef Kusnezov, D., Bulgac, A., & Dang, G. D. (1999). Quantum Lévy processes and fractional kinetics. Physical Review Letters, 82, 1136–1139.CrossRef
18.
Zurück zum Zitat Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (2000). Nonlinear noninteger order circuits and systems—an introduction. World Scientific. Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (2000). Nonlinear noninteger order circuits and systems—an introduction. World Scientific.
19.
Zurück zum Zitat Bode, H. W. (1949). Network analysis and feedback amplifier design. Tung Hwa Book Company. Bode, H. W. (1949). Network analysis and feedback amplifier design. Tung Hwa Book Company.
20.
Zurück zum Zitat Carlson, G. E., & Halijak, C. A. (1964). Approximation of fractional capacitors \(\left( \frac{1}{s}\right) ^{\frac{1}{n}}\) by a regular Newton process. IEEE Transactions on Circuit Theory, 11, 210–213.CrossRef Carlson, G. E., & Halijak, C. A. (1964). Approximation of fractional capacitors \(\left( \frac{1}{s}\right) ^{\frac{1}{n}}\) by a regular Newton process. IEEE Transactions on Circuit Theory, 11, 210–213.CrossRef
21.
Zurück zum Zitat Nakagava, M., & Sorimachi, K. (1992). Basic characteristics of a fractance device. IEICE Transactions on Fundamentals E75-A, 1814–1818. Nakagava, M., & Sorimachi, K. (1992). Basic characteristics of a fractance device. IEICE Transactions on Fundamentals E75-A, 1814–1818.
22.
Zurück zum Zitat Axtell, M., & Bise, E. M. (1990). Fractional calculus applications in control systems. Proceedings of IEEE national aerospace electronics conference (pp. 563–566). Axtell, M., & Bise, E. M. (1990). Fractional calculus applications in control systems. Proceedings of IEEE national aerospace electronics conference (pp. 563–566).
23.
Zurück zum Zitat Podlubny, I. (1999). Fractional-order systems and \(\mathbf{ PI}^{\lambda }\mathbf{D}^{\mu }\)-controllers. IEEE Transactions on Automatic Control, 44, 208–213.MathSciNetMATHCrossRef Podlubny, I. (1999). Fractional-order systems and \(\mathbf{ PI}^{\lambda }\mathbf{D}^{\mu }\)-controllers. IEEE Transactions on Automatic Control, 44, 208–213.MathSciNetMATHCrossRef
24.
Zurück zum Zitat Oustaloup, A. (1995). La derivation non entiere: Theorie, synthese et applications. Hermes. Oustaloup, A. (1995). La derivation non entiere: Theorie, synthese et applications. Hermes.
25.
Zurück zum Zitat da Graca, Marcos M., Duarte, F. B. M., & Machado, J. A. T. (2008). Fractional dynamics in the trajectory control of redundant manipulators. Communications in Nonlinear Science and Numerical Simulation, 13, 1836–1844.CrossRef da Graca, Marcos M., Duarte, F. B. M., & Machado, J. A. T. (2008). Fractional dynamics in the trajectory control of redundant manipulators. Communications in Nonlinear Science and Numerical Simulation, 13, 1836–1844.CrossRef
26.
Zurück zum Zitat Vinagre, B. M., Chen, Y. Q., & Petráš, I. (2003). Two direct Tustin discretization methods for fractional-order differentiator/integrator. Journal of the Franklin Institute, 340, 349–362.MathSciNetMATHCrossRef Vinagre, B. M., Chen, Y. Q., & Petráš, I. (2003). Two direct Tustin discretization methods for fractional-order differentiator/integrator. Journal of the Franklin Institute, 340, 349–362.MathSciNetMATHCrossRef
27.
Zurück zum Zitat Pires, E. J. S., Machado, J. A. T., & de Moura, P. B. (2003). Fractional order dynamics in a GA planner. Signal Process, 83, 2377–2386.MATHCrossRef Pires, E. J. S., Machado, J. A. T., & de Moura, P. B. (2003). Fractional order dynamics in a GA planner. Signal Process, 83, 2377–2386.MATHCrossRef
28.
Zurück zum Zitat Tseng, C. C. (2007). Design of FIR and IIR fractional order Simpson digital integrators. Signal Process, 87, 1045–1057.MATHCrossRef Tseng, C. C. (2007). Design of FIR and IIR fractional order Simpson digital integrators. Signal Process, 87, 1045–1057.MATHCrossRef
29.
Zurück zum Zitat Magin, R. L. (2006). Fractional calculus in bioengineering. Begell House Publishers. Magin, R. L. (2006). Fractional calculus in bioengineering. Begell House Publishers.
30.
Zurück zum Zitat Ray, S. S. (2015). Fractional calculus with applications for nuclear reactor dynamics. CRC Press. Ray, S. S. (2015). Fractional calculus with applications for nuclear reactor dynamics. CRC Press.
31.
Zurück zum Zitat Wang, J. C. (1987). Realizations of generalized Warburg impedance with RC ladder networks and transmission lines. Journal of the Electrochemical Society, 134, 1915–1920.CrossRef Wang, J. C. (1987). Realizations of generalized Warburg impedance with RC ladder networks and transmission lines. Journal of the Electrochemical Society, 134, 1915–1920.CrossRef
32.
Zurück zum Zitat Westerlund, S. (2002). Dead matter has memory!. causal consulting. Westerlund, S. (2002). Dead matter has memory!. causal consulting.
33.
Zurück zum Zitat Petráš, I. (2011). Fractional-order nonlinear systems: Modeling, analysis and simulation. Springer. Petráš, I. (2011). Fractional-order nonlinear systems: Modeling, analysis and simulation. Springer.
34.
Zurück zum Zitat Strogatz, S. H. (2001). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Studies in Nonlinearity: Westview Press.MATH Strogatz, S. H. (2001). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Studies in Nonlinearity: Westview Press.MATH
36.
Zurück zum Zitat Li, D., Chenga, Y., Wanga, L., Wanga, H., Wanga, L., & Zhou, H. (2011). Prediction method for risks of coal and gas outbursts based on spatial chaos theory using gas desorption index of drill cuttings. International Journal of Mining Science and Technology, 21, 439–443. Li, D., Chenga, Y., Wanga, L., Wanga, H., Wanga, L., & Zhou, H. (2011). Prediction method for risks of coal and gas outbursts based on spatial chaos theory using gas desorption index of drill cuttings. International Journal of Mining Science and Technology, 21, 439–443.
37.
Zurück zum Zitat Li, M., Huanga, X., Liu, H., Liu, B., Wu, Y., Xiong, A., et al. (2013). Prediction of gas solubility in polymers by back propagation artificial neural network based on self-adaptive particle swarm optimization algorithm and chaos theory. Journal of Fluid Phase Equilibria, 356, 11–17. Li, M., Huanga, X., Liu, H., Liu, B., Wu, Y., Xiong, A., et al. (2013). Prediction of gas solubility in polymers by back propagation artificial neural network based on self-adaptive particle swarm optimization algorithm and chaos theory. Journal of Fluid Phase Equilibria, 356, 11–17.
38.
Zurück zum Zitat Bozoki, Zsolt. (1997). Chaos theory and power spectrum analysis in computerized cardiotocography. European Journal of Obstetrics and Gynecology and Reproductive Biology, 71, 163–168.CrossRef Bozoki, Zsolt. (1997). Chaos theory and power spectrum analysis in computerized cardiotocography. European Journal of Obstetrics and Gynecology and Reproductive Biology, 71, 163–168.CrossRef
39.
Zurück zum Zitat Sivakumar, B. (2000). Chaos theory in hydrology: Important issues and interpretations. Journal of Hydrology, 227, 1–20.CrossRef Sivakumar, B. (2000). Chaos theory in hydrology: Important issues and interpretations. Journal of Hydrology, 227, 1–20.CrossRef
40.
Zurück zum Zitat Fernando, J. (2011). Applying the theory of chaos and a complex model of health to establish relations among financial indicators. Procedia Computer Science, 3, 982–986.CrossRef Fernando, J. (2011). Applying the theory of chaos and a complex model of health to establish relations among financial indicators. Procedia Computer Science, 3, 982–986.CrossRef
41.
Zurück zum Zitat Kyrtsou, C., & Labys, W. (2006). Evidence for chaotic dependence between US inflation and commodity prices. Journal of Macroeconomics, 28, 256–266.CrossRef Kyrtsou, C., & Labys, W. (2006). Evidence for chaotic dependence between US inflation and commodity prices. Journal of Macroeconomics, 28, 256–266.CrossRef
42.
Zurück zum Zitat Kyrtsou, C., & Terraza, M. (2003). Is it possible to study chaotic and ARCH behaviour jointly? Application of a noisy Mackey-Glass equation with heteroskedastic errors to the Paris Stock Exchange returns series. Computational Economics, 21, 257–276.MATHCrossRef Kyrtsou, C., & Terraza, M. (2003). Is it possible to study chaotic and ARCH behaviour jointly? Application of a noisy Mackey-Glass equation with heteroskedastic errors to the Paris Stock Exchange returns series. Computational Economics, 21, 257–276.MATHCrossRef
43.
Zurück zum Zitat Wang, X., & Zhao, J. (2012). An improved key agreement protocol based on chaos. Communications in Nonlinear Science and Numerical Simulation, 15, 4052–4057.MathSciNetMATHCrossRef Wang, X., & Zhao, J. (2012). An improved key agreement protocol based on chaos. Communications in Nonlinear Science and Numerical Simulation, 15, 4052–4057.MathSciNetMATHCrossRef
44.
Zurück zum Zitat Babaei, M. (2013). A novel text and image encryption method based on chaos theory and DNA computing. Natural Computing, 12, 101–107.MathSciNetMATHCrossRef Babaei, M. (2013). A novel text and image encryption method based on chaos theory and DNA computing. Natural Computing, 12, 101–107.MathSciNetMATHCrossRef
45.
Zurück zum Zitat Nehmzow, U., & Keith, W. (2005). Quantitative description of robot-environment interaction using chaos theory. Robotics and Autonomous System, 53, 177–193.CrossRef Nehmzow, U., & Keith, W. (2005). Quantitative description of robot-environment interaction using chaos theory. Robotics and Autonomous System, 53, 177–193.CrossRef
46.
Zurück zum Zitat Ambarish, G., Benoit, T., & Bernard, E. (1998). A study of the passive gait of a compass-like biped robot: Symmetry and chaos. International Journal of Robot Research, 17, 1282–1301.CrossRef Ambarish, G., Benoit, T., & Bernard, E. (1998). A study of the passive gait of a compass-like biped robot: Symmetry and chaos. International Journal of Robot Research, 17, 1282–1301.CrossRef
47.
Zurück zum Zitat Vaidyanathan, S., & Christos Volos, C. (2016). Advances and applications in chaotic systems. Studies in computational intelligence. Springer. Vaidyanathan, S., & Christos Volos, C. (2016). Advances and applications in chaotic systems. Studies in computational intelligence. Springer.
48.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design, studies in computational intelligence (Vol. 581). Germany: Springer.MATH Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design, studies in computational intelligence (Vol. 581). Germany: Springer.MATH
49.
Zurück zum Zitat Azar, A. T., Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. ISBN 978-3-319-30338-3. Azar, A. T., Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. ISBN 978-3-319-30338-3.
50.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Studies in computational intelligence (Vol. 575). Germany: Springer. ISBN 978-3-319-11016-5. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Studies in computational intelligence (Vol. 575). Germany: Springer. ISBN 978-3-319-11016-5.
51.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015). Handbook of research on advanced intelligent control engineering and automation. In Advances in computational intelligence and robotics (ACIR) book series, IGI Global, USA. ISBN 9781466672482. Azar, A. T., & Vaidyanathan, S. (2015). Handbook of research on advanced intelligent control engineering and automation. In Advances in computational intelligence and robotics (ACIR) book series, IGI Global, USA. ISBN 9781466672482.
52.
Zurück zum Zitat Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing (Vol. 319). Germany: Springer. ISBN: 978-3-319-12882-5. Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing (Vol. 319). Germany: Springer. ISBN: 978-3-319-12882-5.
53.
Zurück zum Zitat Azar, A. T., & Zhu, Q. (2015). Advances and Applications in Sliding Mode Control systems. Studies in computational intelligence (Vol. 576). Germany: Springer. ISBN: 978-3-319-11172-8. Azar, A. T., & Zhu, Q. (2015). Advances and Applications in Sliding Mode Control systems. Studies in computational intelligence (Vol. 576). Germany: Springer. ISBN: 978-3-319-11172-8.
54.
Zurück zum Zitat West, B. J., Bologna, M., & Grigolini, P. (2002). Physics of fractal operators. Springer. West, B. J., Bologna, M., & Grigolini, P. (2002). Physics of fractal operators. Springer.
55.
Zurück zum Zitat Zaslavsky, G. M. (2005). Hamiltonian chaos and fractional dynamics. Oxford University Press. Zaslavsky, G. M. (2005). Hamiltonian chaos and fractional dynamics. Oxford University Press.
56.
Zurück zum Zitat Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (1998). Bifurcation and chaos in noninteger order cellular neural networks. International Journal of Bifurcation and Chaos, 8, 1527–1539. Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (1998). Bifurcation and chaos in noninteger order cellular neural networks. International Journal of Bifurcation and Chaos, 8, 1527–1539.
57.
Zurück zum Zitat Ahmad, W. M., & Sprott, J. C. (2003). Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons and Fractals, 16, 339–351.MATHCrossRef Ahmad, W. M., & Sprott, J. C. (2003). Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons and Fractals, 16, 339–351.MATHCrossRef
58.
Zurück zum Zitat Ahmad, W. M. (2005). Hyperchaos in fractional order nonlinear systems. Chaos Solitons and Fractals, 26, 1459–1465.MATHCrossRef Ahmad, W. M. (2005). Hyperchaos in fractional order nonlinear systems. Chaos Solitons and Fractals, 26, 1459–1465.MATHCrossRef
59.
Zurück zum Zitat Ahmed, E., El-Sayed, A. M. A., & El-Saka, H. A. A. (2007). Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. Journal of Mathematical Analysis and Applictions, 325, 542–553.MathSciNetMATHCrossRef Ahmed, E., El-Sayed, A. M. A., & El-Saka, H. A. A. (2007). Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. Journal of Mathematical Analysis and Applictions, 325, 542–553.MathSciNetMATHCrossRef
60.
Zurück zum Zitat Deng, H., Li, T., Wang, Q., & Li, H. (2009). A fractional-order hyperchaotic system and its synchronization. Chaos Solitons and Fractals, 41, 962–969.MATHCrossRef Deng, H., Li, T., Wang, Q., & Li, H. (2009). A fractional-order hyperchaotic system and its synchronization. Chaos Solitons and Fractals, 41, 962–969.MATHCrossRef
61.
Zurück zum Zitat Liu, C., Liu, L., & Liu, T. (2009). A novel three-dimensional autonomous chaos system. Chaos Solitons and Fractals, 39, 1950–1958.MATHCrossRef Liu, C., Liu, L., & Liu, T. (2009). A novel three-dimensional autonomous chaos system. Chaos Solitons and Fractals, 39, 1950–1958.MATHCrossRef
62.
Zurück zum Zitat Hartley, T., Lorenzo, C., & Qammer, H. (1995). Chaos in a fractional order Chua’s system. IEEE Transactions on Circuit and Systems I: Fundamental Theory and Applications, 42, 485–490. Hartley, T., Lorenzo, C., & Qammer, H. (1995). Chaos in a fractional order Chua’s system. IEEE Transactions on Circuit and Systems I: Fundamental Theory and Applications, 42, 485–490.
63.
Zurück zum Zitat Petráš, I. (2008). A note on the fractional-order Chua’s system. Chaos Solitons and Fractals, 38, 140–147.CrossRef Petráš, I. (2008). A note on the fractional-order Chua’s system. Chaos Solitons and Fractals, 38, 140–147.CrossRef
64.
Zurück zum Zitat Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91, 034101–39. Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91, 034101–39.
65.
Zurück zum Zitat Li, C., & Chen, G. (2004). Chaos and hyperchaos in fractional order Rössler equations. Physica A, 341, 55–61.MathSciNetCrossRef Li, C., & Chen, G. (2004). Chaos and hyperchaos in fractional order Rössler equations. Physica A, 341, 55–61.MathSciNetCrossRef
66.
Zurück zum Zitat Li, C., & Chen, G. (2004). Chaos in the fractional order Chen system and its control. Chaos Solitons and Fractals, 22, 549–554.MATHCrossRef Li, C., & Chen, G. (2004). Chaos in the fractional order Chen system and its control. Chaos Solitons and Fractals, 22, 549–554.MATHCrossRef
67.
Zurück zum Zitat Lu, J. G., & Chen, G. (2006). A note on the fractional-order Chen system. Chaos Solitons and Fractals, 27, 685–688.MATHCrossRef Lu, J. G., & Chen, G. (2006). A note on the fractional-order Chen system. Chaos Solitons and Fractals, 27, 685–688.MATHCrossRef
68.
Zurück zum Zitat Lu, J. G. (2005). Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons and Fractals, 26, 1125–1133.MATHCrossRef Lu, J. G. (2005). Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons and Fractals, 26, 1125–1133.MATHCrossRef
69.
Zurück zum Zitat Deng, W. H., & Li, C. P. (2005). Chaos synchronization of the fractional Lü system. Physica A, 353, 61–72.CrossRef Deng, W. H., & Li, C. P. (2005). Chaos synchronization of the fractional Lü system. Physica A, 353, 61–72.CrossRef
70.
Zurück zum Zitat Lu, J. G. (2006). Chaotic dynamics of the fractional-order Lü system and its synchronization. Physics Letters A, 354, 305–311.CrossRef Lu, J. G. (2006). Chaotic dynamics of the fractional-order Lü system and its synchronization. Physics Letters A, 354, 305–311.CrossRef
71.
Zurück zum Zitat Gao, X., & Yu, J. (2005). Chaos in the fractional order periodically forced complex Duffing’s oscillators. Chaos Solitons and Fractals, 24, 1097–1104.MATHCrossRef Gao, X., & Yu, J. (2005). Chaos in the fractional order periodically forced complex Duffing’s oscillators. Chaos Solitons and Fractals, 24, 1097–1104.MATHCrossRef
72.
Zurück zum Zitat Ge, Z. M., & Ou, C. Y. (2007). Chaos in a fractional order modified Duffing system. Chaos Solitons and Fractals, 34, 262–291.MATHCrossRef Ge, Z. M., & Ou, C. Y. (2007). Chaos in a fractional order modified Duffing system. Chaos Solitons and Fractals, 34, 262–291.MATHCrossRef
73.
Zurück zum Zitat Ge, Z. M., & Hsu, M. Y. (2007). Chaos in a generalized van der Pol system and in its fractional order system. Chaos Solitons and Fractals, 33, 1711–1745.MATHCrossRef Ge, Z. M., & Hsu, M. Y. (2007). Chaos in a generalized van der Pol system and in its fractional order system. Chaos Solitons and Fractals, 33, 1711–1745.MATHCrossRef
74.
Zurück zum Zitat Barbosa, R. S., Machado, J. A. T., Vinagre, B. M., & Calderón, A. J. (2007). Analysis of the Van der Pol oscillator containing derivatives of fractional order. Journal of Vibration and Control, 13, 1291–1301.MATHCrossRef Barbosa, R. S., Machado, J. A. T., Vinagre, B. M., & Calderón, A. J. (2007). Analysis of the Van der Pol oscillator containing derivatives of fractional order. Journal of Vibration and Control, 13, 1291–1301.MATHCrossRef
75.
Zurück zum Zitat Petráš, I. (2009). Chaos in the fractional-order Volta’s system: Modeling and simulation. Nonlinear Dynamics, 57, 157–170.MATHCrossRef Petráš, I. (2009). Chaos in the fractional-order Volta’s system: Modeling and simulation. Nonlinear Dynamics, 57, 157–170.MATHCrossRef
76.
Zurück zum Zitat Petráš, I. (2010). A note on the fractional-order Volta’s system. Communications in Nonlinear Science and Numerical Simulation, 15, 384–393.MathSciNetMATHCrossRef Petráš, I. (2010). A note on the fractional-order Volta’s system. Communications in Nonlinear Science and Numerical Simulation, 15, 384–393.MathSciNetMATHCrossRef
77.
Zurück zum Zitat Gejji, V. D., & Bhalekar, S. (2010). Chaos in fractional ordered Liu system. Computers and Mathematics with Applications, 59, 1117–1127.MathSciNetMATHCrossRef Gejji, V. D., & Bhalekar, S. (2010). Chaos in fractional ordered Liu system. Computers and Mathematics with Applications, 59, 1117–1127.MathSciNetMATHCrossRef
78.
Zurück zum Zitat Vaidyanathan, S., Sampath, S., & Azar, A. T. (2015). Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. International Journal of Modelling, Identification and Control (IJMIC), 23(1), 92–100. Vaidyanathan, S., Sampath, S., & Azar, A. T. (2015). Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. International Journal of Modelling, Identification and Control (IJMIC), 23(1), 92–100.
79.
Zurück zum Zitat Vaidyanathan, S., Azar, A. T., Rajagopal, K., & Alexander, P. (2015). Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronization via active control. International Journal of Modelling, Identification and Control (IJMIC), 23(3), 267–277. Vaidyanathan, S., Azar, A. T., Rajagopal, K., & Alexander, P. (2015). Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronization via active control. International Journal of Modelling, Identification and Control (IJMIC), 23(3), 267–277.
80.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Takagi-sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system. International Journal of Intelligent Engineering Informatics, 4(2), 135–150.CrossRef Vaidyanathan, S., & Azar, A. T. (2016). Takagi-sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system. International Journal of Intelligent Engineering Informatics, 4(2), 135–150.CrossRef
81.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design, studies in computational intelligence (Vol. 581, pp. 19–38). GmbH Berlin/Heidelberg: Springer. doi:10.1007/978-3-319-13132-0_2. Vaidyanathan, S., & Azar, A. T. (2015). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design, studies in computational intelligence (Vol. 581, pp. 19–38). GmbH Berlin/Heidelberg: Springer. doi:10.​1007/​978-3-319-13132-0_​2.
82.
Zurück zum Zitat Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In A. T Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In A. T Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
83.
Zurück zum Zitat Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
84.
Zurück zum Zitat Vaidyanathan, S., Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Vaidyanathan, S., Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
85.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). qualitative study and adaptive control of a novel 4-d hyperchaotic system with three quadratic nonlinearities. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016). qualitative study and adaptive control of a novel 4-d hyperchaotic system with three quadratic nonlinearities. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
86.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-d four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-d four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
87.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of halvorsen circulant chaotic systems. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of halvorsen circulant chaotic systems. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
88.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-d jerk system with an exponential nonlinearity. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-d jerk system with an exponential nonlinearity. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
89.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
90.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence book series: Springer. Vaidyanathan, S., & Azar, A. T. (2015). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence book series: Springer.
91.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan-Madhavan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence book series: Springer. Vaidyanathan, S., & Azar, A. T. (2015). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan-Madhavan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence book series: Springer.
92.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence book series: Springer. Vaidyanathan, S., & Azar, A. T. (2015). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence book series: Springer.
93.
Zurück zum Zitat Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015). Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence book series: Springer. Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015). Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence book series: Springer.
94.
Zurück zum Zitat Ouannas, A. (2014). Chaos synchronization approach based on new criterion of stability. Nonlinear Dynamics and System Theory, 14, 396–402.MathSciNetMATH Ouannas, A. (2014). Chaos synchronization approach based on new criterion of stability. Nonlinear Dynamics and System Theory, 14, 396–402.MathSciNetMATH
95.
Zurück zum Zitat Ouannas, A. (2014). On full state hybrid projective synchronization of general discrete chaotic systems. Journal of Nonlinear Dynamics, 1–6. Ouannas, A. (2014). On full state hybrid projective synchronization of general discrete chaotic systems. Journal of Nonlinear Dynamics, 1–6.
96.
Zurück zum Zitat Ouannas, A. (2014). Some synchronization criteria for N-dimensional chaotic systems in discrete-time. Journal of Advanced Research in Applied Mathematics, 6, 1–10.MathSciNetCrossRef Ouannas, A. (2014). Some synchronization criteria for N-dimensional chaotic systems in discrete-time. Journal of Advanced Research in Applied Mathematics, 6, 1–10.MathSciNetCrossRef
97.
Zurück zum Zitat Ouannas, A. On inverse full state hybrid projective synchronization of chaotic dynamical systems in discrete-time. International Journal of Dynamics Control, 1–7. Ouannas, A. On inverse full state hybrid projective synchronization of chaotic dynamical systems in discrete-time. International Journal of Dynamics Control, 1–7.
98.
Zurück zum Zitat Ouannas, A. (2015). Synchronization criterion for a class of N-dimensional discrete chaotic systems. Journal of Advanced Research in Dynamics and Control Systems, 7, 82–89.MathSciNet Ouannas, A. (2015). Synchronization criterion for a class of N-dimensional discrete chaotic systems. Journal of Advanced Research in Dynamics and Control Systems, 7, 82–89.MathSciNet
99.
Zurück zum Zitat Ouannas, A. (2015). A new synchronization scheme for general 3D quadratic chaotic systems in discrete-time. Nonlinear Dynamics and Systems Theory, 15, 163–170.MathSciNetMATH Ouannas, A. (2015). A new synchronization scheme for general 3D quadratic chaotic systems in discrete-time. Nonlinear Dynamics and Systems Theory, 15, 163–170.MathSciNetMATH
100.
Zurück zum Zitat Ouannas, A., Odibat, Z., Shawagfeh, N. (2016). A new Q–S synchronization results for discrete chaotic systems. Differential Equations and Dynamical Systems, 1–10. Ouannas, A., Odibat, Z., Shawagfeh, N. (2016). A new Q–S synchronization results for discrete chaotic systems. Differential Equations and Dynamical Systems, 1–10.
101.
Zurück zum Zitat Ouannas, A. (2016). Co-existence of various synchronization-types in hyperchaotic maps. Nonlinear Dynamics and Systems Theory, 16, 312–321.MathSciNet Ouannas, A. (2016). Co-existence of various synchronization-types in hyperchaotic maps. Nonlinear Dynamics and Systems Theory, 16, 312–321.MathSciNet
102.
Zurück zum Zitat Ouannas, A., Azar, A. T., & Abu-Saris, R. (2016). A new type of hybrid synchronization between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cybernetics, 1–8. Ouannas, A., Azar, A. T., & Abu-Saris, R. (2016). A new type of hybrid synchronization between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cybernetics, 1–8.
103.
104.
Zurück zum Zitat Zhou, S., Li, H., Zhu, Z., & Li, C. (2008). Chaos control and synchronization in a fractional neuron network system. Chaos Solitons and Fractals, 36, 973–984.MathSciNetMATHCrossRef Zhou, S., Li, H., Zhu, Z., & Li, C. (2008). Chaos control and synchronization in a fractional neuron network system. Chaos Solitons and Fractals, 36, 973–984.MathSciNetMATHCrossRef
106.
Zurück zum Zitat Sheu, L. J., Chen, H. K., Chen, J. H., & Tam, L. M. (2007). Chaos in a new system with fractional order. Chaos Solitons and Fractals, 31, 1203–1212.CrossRef Sheu, L. J., Chen, H. K., Chen, J. H., & Tam, L. M. (2007). Chaos in a new system with fractional order. Chaos Solitons and Fractals, 31, 1203–1212.CrossRef
107.
Zurück zum Zitat Yan, J., & Li, C. (2007). On chaos synchronization of fractional differential equations. Chaos Solitons and Fractals, 32, 725–735.MathSciNetMATHCrossRef Yan, J., & Li, C. (2007). On chaos synchronization of fractional differential equations. Chaos Solitons and Fractals, 32, 725–735.MathSciNetMATHCrossRef
108.
Zurück zum Zitat Li, C., & Yan, J. (2007). The synchronization of three fractional differential systems. Chaos Solitons and Fractals, 32, 751–757.CrossRef Li, C., & Yan, J. (2007). The synchronization of three fractional differential systems. Chaos Solitons and Fractals, 32, 751–757.CrossRef
109.
Zurück zum Zitat Wang, J., Xiong, X., & Zhang, Y. (2006). Extending synchronization scheme to chaotic fractional-order Chen systems. Physica A, 370, 279–285.CrossRef Wang, J., Xiong, X., & Zhang, Y. (2006). Extending synchronization scheme to chaotic fractional-order Chen systems. Physica A, 370, 279–285.CrossRef
110.
Zurück zum Zitat Li, C. P., Deng, W. H., & Xu, D. (2006). Chaos synchronization of the Chua system with a fractional order. Physica A, 360, 171–185.MathSciNetCrossRef Li, C. P., Deng, W. H., & Xu, D. (2006). Chaos synchronization of the Chua system with a fractional order. Physica A, 360, 171–185.MathSciNetCrossRef
111.
Zurück zum Zitat Zhu, H., Zhou, S., & Zhang, J. (2009). Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons and Fractals, 39, 1595–1603.MATHCrossRef Zhu, H., Zhou, S., & Zhang, J. (2009). Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons and Fractals, 39, 1595–1603.MATHCrossRef
112.
Zurück zum Zitat Lu, J. G. (2005). Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons and Fractals, 26, 1125–1133.MATHCrossRef Lu, J. G. (2005). Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons and Fractals, 26, 1125–1133.MATHCrossRef
113.
Zurück zum Zitat Ansari, M. A., Arora, D., & Ansari, S. P. (2016). Chaos control and synchronization of fractional order delay-varying computer virus propagation model. Mathematical Methods in Applied Sciences, 39, 1197–1205.MathSciNetMATHCrossRef Ansari, M. A., Arora, D., & Ansari, S. P. (2016). Chaos control and synchronization of fractional order delay-varying computer virus propagation model. Mathematical Methods in Applied Sciences, 39, 1197–1205.MathSciNetMATHCrossRef
114.
Zurück zum Zitat Kiani, B. A., Fallahi, K., Pariz, N., & Leung, H. (2009). A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Communications in Nonlinear Science and Numerical Simulation, 14, 863–879.MathSciNetMATHCrossRef Kiani, B. A., Fallahi, K., Pariz, N., & Leung, H. (2009). A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Communications in Nonlinear Science and Numerical Simulation, 14, 863–879.MathSciNetMATHCrossRef
115.
Zurück zum Zitat Liang, H., Wang, Z., Yue, Z., & Lu, R. (2012). Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika, 48, 190–205.MathSciNetMATH Liang, H., Wang, Z., Yue, Z., & Lu, R. (2012). Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika, 48, 190–205.MathSciNetMATH
116.
Zurück zum Zitat Wu, X., Wang, H., & Lu, H. (2012). Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Analysis: Real World Applications, 13, 1441–1450.MathSciNetMATHCrossRef Wu, X., Wang, H., & Lu, H. (2012). Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Analysis: Real World Applications, 13, 1441–1450.MathSciNetMATHCrossRef
117.
Zurück zum Zitat Muthukumar, P., & Balasubramaniam, P. (2013). Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dynamics, 74, 1169–1181.MathSciNetMATHCrossRef Muthukumar, P., & Balasubramaniam, P. (2013). Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dynamics, 74, 1169–1181.MathSciNetMATHCrossRef
118.
Zurück zum Zitat Muthukumar, P., Balasubramaniam, P., & Ratnavelu, K. (2014). Synchronization of a novel fractional order stretch-twistfold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dynamics, 77, 1547–1559.MathSciNetMATHCrossRef Muthukumar, P., Balasubramaniam, P., & Ratnavelu, K. (2014). Synchronization of a novel fractional order stretch-twistfold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dynamics, 77, 1547–1559.MathSciNetMATHCrossRef
119.
Zurück zum Zitat Chen, L., Wu, R., He, Y., & Chai, Y. (2015). Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dynamics, 80, 51–58.MathSciNetMATHCrossRef Chen, L., Wu, R., He, Y., & Chai, Y. (2015). Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dynamics, 80, 51–58.MathSciNetMATHCrossRef
120.
Zurück zum Zitat Liu, L., Ding, W., Liu, C., Ji, H., & Cao, C. (2014). Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dynamics, 76, 2059–2071.MathSciNetMATHCrossRef Liu, L., Ding, W., Liu, C., Ji, H., & Cao, C. (2014). Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dynamics, 76, 2059–2071.MathSciNetMATHCrossRef
121.
Zurück zum Zitat Zhang, L., & Yan, Y. (2014). Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dynamics, 76, 1761–1767. Zhang, L., & Yan, Y. (2014). Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dynamics, 76, 1761–1767.
122.
Zurück zum Zitat Odibat, Z., Corson, N., Alaoui, M. A. A., & Bertelle, C. (2010). Synchronization of chaotic fractional-order systems via linear control. International Journal of Bifurcation and Chaos, 20, 81–97.MathSciNetMATHCrossRef Odibat, Z., Corson, N., Alaoui, M. A. A., & Bertelle, C. (2010). Synchronization of chaotic fractional-order systems via linear control. International Journal of Bifurcation and Chaos, 20, 81–97.MathSciNetMATHCrossRef
123.
Zurück zum Zitat Chen, X. R., & Liu, C. X. (2012). Chaos synchronization of fractional order unified chaotic system via nonlinear control. International Journal of Modern Physics B, 25, 407–415.MATHCrossRef Chen, X. R., & Liu, C. X. (2012). Chaos synchronization of fractional order unified chaotic system via nonlinear control. International Journal of Modern Physics B, 25, 407–415.MATHCrossRef
124.
Zurück zum Zitat Srivastava, M., Ansari, S. P., Agrawal, S. K., Das, S., & Leung, A. Y. T. (2014). Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dynamics, 76, 905–914.MathSciNetCrossRef Srivastava, M., Ansari, S. P., Agrawal, S. K., Das, S., & Leung, A. Y. T. (2014). Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dynamics, 76, 905–914.MathSciNetCrossRef
125.
Zurück zum Zitat Agrawal, S. K., & Das, S. (2013). A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dynamics, 73, 907–919. Agrawal, S. K., & Das, S. (2013). A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dynamics, 73, 907–919.
126.
Zurück zum Zitat Yuan, W. X., & Mei, S. J. (2009). Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Communications in Nonlinear Science and Numerical Simulation, 14, 3351–3357.MATHCrossRef Yuan, W. X., & Mei, S. J. (2009). Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Communications in Nonlinear Science and Numerical Simulation, 14, 3351–3357.MATHCrossRef
127.
Zurück zum Zitat Odibat, Z. (2010). Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dynamics, 60, 479–487.MathSciNetMATHCrossRef Odibat, Z. (2010). Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dynamics, 60, 479–487.MathSciNetMATHCrossRef
128.
Zurück zum Zitat Zhou, P., & Bai, R. (2015). The adaptive synchronization of fractional-order chaotic system with fractional-order \(1<q<2\) via linear parameter update law. Nonlinear Dynamics, 80, 753–765. Zhou, P., & Bai, R. (2015). The adaptive synchronization of fractional-order chaotic system with fractional-order \(1<q<2\) via linear parameter update law. Nonlinear Dynamics, 80, 753–765.
129.
Zurück zum Zitat Peng, G., & Jiang, Y. (2008). Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Physics Letters A, 372, 3963–3970.MathSciNetMATHCrossRef Peng, G., & Jiang, Y. (2008). Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Physics Letters A, 372, 3963–3970.MathSciNetMATHCrossRef
130.
Zurück zum Zitat Cafagna, D., & Grassi, G. (2012). Observer-based projective synchronization of fractional systems via a scalar signal: Application to hyperchaotic Rössler systems. Nonlinear Dynamics, 68, 117–128.MathSciNetMATHCrossRef Cafagna, D., & Grassi, G. (2012). Observer-based projective synchronization of fractional systems via a scalar signal: Application to hyperchaotic Rössler systems. Nonlinear Dynamics, 68, 117–128.MathSciNetMATHCrossRef
131.
Zurück zum Zitat Li, T., Wang, Y., & Yang, Y. (2014). Designing synchronization schemes for fractional-order chaotic system via a single state fractional-order controller. Optik, 125, 6700–6705.CrossRef Li, T., Wang, Y., & Yang, Y. (2014). Designing synchronization schemes for fractional-order chaotic system via a single state fractional-order controller. Optik, 125, 6700–6705.CrossRef
132.
Zurück zum Zitat Lai, L. C., Mei, Z., Feng, Z., & Bing, Y. X. (2016). Projective synchronization for a fractional-order chaotic system via single sinusoidal coupling. Optik, 127, 2830–2836.CrossRef Lai, L. C., Mei, Z., Feng, Z., & Bing, Y. X. (2016). Projective synchronization for a fractional-order chaotic system via single sinusoidal coupling. Optik, 127, 2830–2836.CrossRef
133.
Zurück zum Zitat Odibat, Z. (2012). A note on phase synchronization in coupled chaotic fractional order systems. Nonlinear Analsis: Real World Application, 13, 779–789.MathSciNetMATHCrossRef Odibat, Z. (2012). A note on phase synchronization in coupled chaotic fractional order systems. Nonlinear Analsis: Real World Application, 13, 779–789.MathSciNetMATHCrossRef
134.
Zurück zum Zitat Chen, F., Xia, L., & Li, C. G. (2012). Wavelet phase synchronization of fractional-order chaotic systems. Chin Phys Lett, 29, 070501–6. Chen, F., Xia, L., & Li, C. G. (2012). Wavelet phase synchronization of fractional-order chaotic systems. Chin Phys Lett, 29, 070501–6.
135.
Zurück zum Zitat Razminia, A., & Baleanu, D. (2013). Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics, 23, 873–879.CrossRef Razminia, A., & Baleanu, D. (2013). Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics, 23, 873–879.CrossRef
136.
Zurück zum Zitat Al-sawalha, M. M., Alomari, A. K., Goh, S. M., & Nooran, M. S. M. (2011). Active anti-synchronization of two Identical and different fractional-order chaotic systems. International Journal of Nonlinear Science, 11, 267–274.MathSciNetMATH Al-sawalha, M. M., Alomari, A. K., Goh, S. M., & Nooran, M. S. M. (2011). Active anti-synchronization of two Identical and different fractional-order chaotic systems. International Journal of Nonlinear Science, 11, 267–274.MathSciNetMATH
137.
Zurück zum Zitat Li, C. G. (2006). Projective synchronization in fractional order chaotic systems and its control. Progress of Theoretical Physics, 115, 661–666.CrossRef Li, C. G. (2006). Projective synchronization in fractional order chaotic systems and its control. Progress of Theoretical Physics, 115, 661–666.CrossRef
138.
Zurück zum Zitat Shao, S. Q., Gao, X., & Liu, X. W. (2007). Projective synchronization in coupled fractional order chaotic Rossler system and its control. Chinese Physics, 16, 2612–2615.CrossRef Shao, S. Q., Gao, X., & Liu, X. W. (2007). Projective synchronization in coupled fractional order chaotic Rossler system and its control. Chinese Physics, 16, 2612–2615.CrossRef
139.
Zurück zum Zitat Wang, X. Y., & He, Y. J. (2008). Projective synchronization of fractional order chaotic system based on linear separation. Physics Letters A, 372, 435–441.MATHCrossRef Wang, X. Y., & He, Y. J. (2008). Projective synchronization of fractional order chaotic system based on linear separation. Physics Letters A, 372, 435–441.MATHCrossRef
140.
Zurück zum Zitat Si, G., Sun, Z., Zhang, Y., & Chen, W. (2012). Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Analysis: Real World Applications, 13, 1761–1771.MathSciNetMATHCrossRef Si, G., Sun, Z., Zhang, Y., & Chen, W. (2012). Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Analysis: Real World Applications, 13, 1761–1771.MathSciNetMATHCrossRef
141.
Zurück zum Zitat Agrawal, S. K., & Das, S. (2014). Projective synchronization between different fractional-order hyperchaotic systems with uncertain parameters using proposed modified adaptive projective synchronization technique. Mathematical Methods in the Applied Sciences, 37, 2164–2176. Agrawal, S. K., & Das, S. (2014). Projective synchronization between different fractional-order hyperchaotic systems with uncertain parameters using proposed modified adaptive projective synchronization technique. Mathematical Methods in the Applied Sciences, 37, 2164–2176.
142.
Zurück zum Zitat Chang, C. M., & Chen, H. K. (2010). Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems. Nonlinear Dynamics, 62, 851–858.MathSciNetMATHCrossRef Chang, C. M., & Chen, H. K. (2010). Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems. Nonlinear Dynamics, 62, 851–858.MathSciNetMATHCrossRef
143.
Zurück zum Zitat Wang, S., Yu, Y. G., & Diao, M. (2010). Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Physica A, 389, 4981–4988.CrossRef Wang, S., Yu, Y. G., & Diao, M. (2010). Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Physica A, 389, 4981–4988.CrossRef
144.
Zurück zum Zitat Zhou, P., & Zhu, W. (2011). Function projective synchronization for fractional-order chaotic systems. Nonlinear Analysis: Real World Applications, 12, 811–816.MathSciNetMATHCrossRef Zhou, P., & Zhu, W. (2011). Function projective synchronization for fractional-order chaotic systems. Nonlinear Analysis: Real World Applications, 12, 811–816.MathSciNetMATHCrossRef
145.
Zurück zum Zitat Zhou, P., & Cao, Y. X. (2010). Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems. Chinese Physics B, 19, 100507.CrossRef Zhou, P., & Cao, Y. X. (2010). Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems. Chinese Physics B, 19, 100507.CrossRef
146.
Zurück zum Zitat Xi, H., Li, Y., & Huang, X. (2015). Adaptive function projective combination synchronization of three different fractional-order chaotic systems. Optik, 126, 5346–5349.CrossRef Xi, H., Li, Y., & Huang, X. (2015). Adaptive function projective combination synchronization of three different fractional-order chaotic systems. Optik, 126, 5346–5349.CrossRef
147.
Zurück zum Zitat Chen, H., & Sun, M. (2006). Generalized projective synchronization of the energy resource system. International Journal of Nonlinear Science, 2, 166–170.MathSciNet Chen, H., & Sun, M. (2006). Generalized projective synchronization of the energy resource system. International Journal of Nonlinear Science, 2, 166–170.MathSciNet
148.
Zurück zum Zitat Peng, G. J., Jiang, Y. L., & Chen, F. (2008). Generalized projective synchronization of fractional order chaotic systems. Physica A, 387, 3738–3746.CrossRef Peng, G. J., Jiang, Y. L., & Chen, F. (2008). Generalized projective synchronization of fractional order chaotic systems. Physica A, 387, 3738–3746.CrossRef
149.
Zurück zum Zitat Shao, S. Q. (2009). Controlling general projective synchronization of fractional order Rössler systems. Chaos Solitons and Fractals, 39, 1572–1577.MATHCrossRef Shao, S. Q. (2009). Controlling general projective synchronization of fractional order Rössler systems. Chaos Solitons and Fractals, 39, 1572–1577.MATHCrossRef
150.
Zurück zum Zitat Wu, X. J., & Lu, Y. (2009). Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dynamics, 57, 25–35.MATHCrossRef Wu, X. J., & Lu, Y. (2009). Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dynamics, 57, 25–35.MATHCrossRef
151.
Zurück zum Zitat Zhou, P., Kuang, F., & Cheng, Y. M. (2010). Generalized projective synchronization for fractional order chaotic systems. Chinese Journal of Physics, 48, 49–56.MathSciNet Zhou, P., Kuang, F., & Cheng, Y. M. (2010). Generalized projective synchronization for fractional order chaotic systems. Chinese Journal of Physics, 48, 49–56.MathSciNet
152.
Zurück zum Zitat Razminia, A. (2013). Full state hybrid projective synchronization of a novel incommensurate fractional order hyperchaotic system using adaptive mechanism. Indian Journal of Physics, 87(2), 161–167.CrossRef Razminia, A. (2013). Full state hybrid projective synchronization of a novel incommensurate fractional order hyperchaotic system using adaptive mechanism. Indian Journal of Physics, 87(2), 161–167.CrossRef
153.
Zurück zum Zitat Yi, C., Liping, C., Ranchao, W., & Juan, D. (2013). Q-S synchronization of the fractional-order unified system. Pramana, 80, 449–461.CrossRef Yi, C., Liping, C., Ranchao, W., & Juan, D. (2013). Q-S synchronization of the fractional-order unified system. Pramana, 80, 449–461.CrossRef
154.
Zurück zum Zitat Mathiyalagan, K., Park, J. H., & Sakthivel, R. (2015). Exponential synchronization for fractional-order chaotic systems with mixed uncertainties. Complexity, 21, 114–125.MathSciNetCrossRef Mathiyalagan, K., Park, J. H., & Sakthivel, R. (2015). Exponential synchronization for fractional-order chaotic systems with mixed uncertainties. Complexity, 21, 114–125.MathSciNetCrossRef
155.
Zurück zum Zitat Aghababa, M. P. (2012). Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 69, 247–261.MathSciNetMATHCrossRef Aghababa, M. P. (2012). Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 69, 247–261.MathSciNetMATHCrossRef
156.
Zurück zum Zitat Li, D., Zhang, X. P., Hu, Y. T., & Yang, Y. Y. (2015). Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters. Neurocomputing, 167, 165–171.CrossRef Li, D., Zhang, X. P., Hu, Y. T., & Yang, Y. Y. (2015). Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters. Neurocomputing, 167, 165–171.CrossRef
157.
Zurück zum Zitat Xi, H., Yu, S., Zhang, R., & Xu, L. (2014). Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems. Optik, 125, 2036–2040.CrossRef Xi, H., Yu, S., Zhang, R., & Xu, L. (2014). Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems. Optik, 125, 2036–2040.CrossRef
158.
Zurück zum Zitat Ouannas, A., & Abu-Saris, R. (2016). On matrix projective synchronization and inverse matrix projective synchronization for different and identical dimensional discrete-time chaotic systems. Journal of Chaos, 1–7. Ouannas, A., & Abu-Saris, R. (2016). On matrix projective synchronization and inverse matrix projective synchronization for different and identical dimensional discrete-time chaotic systems. Journal of Chaos, 1–7.
159.
Zurück zum Zitat Ouannas, A., & Mahmoud, E. (2014). Inverse matrix projective synchronization for discrete chaotic systems with different dimensions. Intell Electronic System, 3, 188–192. Ouannas, A., & Mahmoud, E. (2014). Inverse matrix projective synchronization for discrete chaotic systems with different dimensions. Intell Electronic System, 3, 188–192.
160.
Zurück zum Zitat Ouannas, A., & Abu-Saris, R. (2015). A robust control method for Q-S synchronization between different dimensional integer-order and fractional-order chaotic systems. Journal of Control Science and Engineering, 1–7. Ouannas, A., & Abu-Saris, R. (2015). A robust control method for Q-S synchronization between different dimensional integer-order and fractional-order chaotic systems. Journal of Control Science and Engineering, 1–7.
161.
Zurück zum Zitat Ouannas, A. (2015). A new generalized-type of synchronization for discrete-time chaotic dynamical systems. Journal of Computational and Nonlinear Dynamics, 10, 061019–5. Ouannas, A. (2015). A new generalized-type of synchronization for discrete-time chaotic dynamical systems. Journal of Computational and Nonlinear Dynamics, 10, 061019–5.
162.
Zurück zum Zitat Ouannas, A., Al-sawalha, M. M. (2016). On \(\Lambda -\phi \) generalized synchronization of chaotic dynamical systems in continuous-time. The European Physical Journal Special Topics, 225, 187–196. Ouannas, A., Al-sawalha, M. M. (2016). On \(\Lambda -\phi \) generalized synchronization of chaotic dynamical systems in continuous-time. The European Physical Journal Special Topics, 225, 187–196.
163.
Zurück zum Zitat Ouannas, A., & Al-sawalha, M. M. (2015). A new approach to synchronize different dimensional chaotic maps using two scaling matrices. Nonlinear Dynamics and Systems Theory, 15, 400–408.MathSciNetMATH Ouannas, A., & Al-sawalha, M. M. (2015). A new approach to synchronize different dimensional chaotic maps using two scaling matrices. Nonlinear Dynamics and Systems Theory, 15, 400–408.MathSciNetMATH
164.
Zurück zum Zitat Ouannas, A., & Al-sawalha, M. M. (2016). Synchronization between different dimensional chaotic systems using two scaling matrices. Optik, 127, 959–963.CrossRef Ouannas, A., & Al-sawalha, M. M. (2016). Synchronization between different dimensional chaotic systems using two scaling matrices. Optik, 127, 959–963.CrossRef
165.
Zurück zum Zitat Ouannas, A., Al-sawalha, M. M., & Ziar, T. (2016). Fractional chaos synchronization schemes for different dimensional systems with non-identical fractional-orders via two scaling matrices. Optik, 127, 8410–8418.CrossRef Ouannas, A., Al-sawalha, M. M., & Ziar, T. (2016). Fractional chaos synchronization schemes for different dimensional systems with non-identical fractional-orders via two scaling matrices. Optik, 127, 8410–8418.CrossRef
166.
Zurück zum Zitat Ouannas, A., Grassi, G. (2016). A new approach to study co-existence of some synchronization types between chaotic maps with different dimensions. Nonlinear Dynamics, 1–10. Ouannas, A., Grassi, G. (2016). A new approach to study co-existence of some synchronization types between chaotic maps with different dimensions. Nonlinear Dynamics, 1–10.
167.
Zurück zum Zitat Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences, 1–9. Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences, 1–9.
168.
Zurück zum Zitat Deng, W. H. (2007). Generalized synchronization in fractional order systems. Physical Review E, 75, 056201.CrossRef Deng, W. H. (2007). Generalized synchronization in fractional order systems. Physical Review E, 75, 056201.CrossRef
169.
Zurück zum Zitat Zhou, P., Cheng, X. F., & Zhang, N. Y. (2008). Generalized synchronization between different fractional-order chaotic systems. Communication in Theoretical Physics, 50, 931–934.CrossRef Zhou, P., Cheng, X. F., & Zhang, N. Y. (2008). Generalized synchronization between different fractional-order chaotic systems. Communication in Theoretical Physics, 50, 931–934.CrossRef
170.
Zurück zum Zitat Zhang, X. D., Zhao, P. D., & Li, A. H. (2010). Construction of a new fractional chaotic system and generalized synchronization. Communication in Theoretical Physics, 53, 1105–1110.MATHCrossRef Zhang, X. D., Zhao, P. D., & Li, A. H. (2010). Construction of a new fractional chaotic system and generalized synchronization. Communication in Theoretical Physics, 53, 1105–1110.MATHCrossRef
171.
Zurück zum Zitat Jun, W. M., & Yuan, W. X. (2011). Generalized synchronization of fractional order chaotic systems. International Journal of Modern Physics C, 25, 1283–1292.MATHCrossRef Jun, W. M., & Yuan, W. X. (2011). Generalized synchronization of fractional order chaotic systems. International Journal of Modern Physics C, 25, 1283–1292.MATHCrossRef
172.
Zurück zum Zitat Wu, X. J., Lai, D. R., & Lu, H. T. (2012). Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes. Nonlinear Dynamics, 69, 667–683.MathSciNetMATHCrossRef Wu, X. J., Lai, D. R., & Lu, H. T. (2012). Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes. Nonlinear Dynamics, 69, 667–683.MathSciNetMATHCrossRef
173.
Zurück zum Zitat Xiao, W., Fu, J., Liu, Z., & Wan, W. (2012). Generalized synchronization of typical fractional order chaos system. Journal of Computer, 7, 1519–1526. Xiao, W., Fu, J., Liu, Z., & Wan, W. (2012). Generalized synchronization of typical fractional order chaos system. Journal of Computer, 7, 1519–1526.
174.
Zurück zum Zitat Martínez-Guerra, R., & Mata-Machuca, J. L. (2014). Fractional generalized synchronization in a class of nonlinear fractional order systems. Nonlinear Dynamics, 77, 1237–1244.MathSciNetMATHCrossRef Martínez-Guerra, R., & Mata-Machuca, J. L. (2014). Fractional generalized synchronization in a class of nonlinear fractional order systems. Nonlinear Dynamics, 77, 1237–1244.MathSciNetMATHCrossRef
175.
Zurück zum Zitat Ouannas, A., & Odibat, Z. (2015). Generalized synchronization of different dimensional chaotic dynamical systems in discrete-time. Nonlinear Dynamics, 81, 7657–71. Ouannas, A., & Odibat, Z. (2015). Generalized synchronization of different dimensional chaotic dynamical systems in discrete-time. Nonlinear Dynamics, 81, 7657–71.
176.
Zurück zum Zitat Ouannas, A. (2016). On inverse generalized synchronization of continuous chaotic dynamical systems. International Journal of Applied and Computational Mathematics, 2, 1–11.MathSciNetCrossRef Ouannas, A. (2016). On inverse generalized synchronization of continuous chaotic dynamical systems. International Journal of Applied and Computational Mathematics, 2, 1–11.MathSciNetCrossRef
177.
Zurück zum Zitat Podlubny, I. (1999). Fractional differential equations. Academic Press. Podlubny, I. (1999). Fractional differential equations. Academic Press.
178.
Zurück zum Zitat Caputo, M. (1967). Linear models of dissipation whose \(Q\) is almost frequency independent-II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539.CrossRef Caputo, M. (1967). Linear models of dissipation whose \(Q\) is almost frequency independent-II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539.CrossRef
179.
Zurück zum Zitat Samko, S. G., Klibas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives: Theory and applications. Gordan and Breach. Samko, S. G., Klibas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives: Theory and applications. Gordan and Breach.
180.
Zurück zum Zitat Gorenflo, R., & Mainardi, F. (1997). Fractional calculus: Integral and differential equations of fractional order. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics. Springer. Gorenflo, R., & Mainardi, F. (1997). Fractional calculus: Integral and differential equations of fractional order. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics. Springer.
181.
Zurück zum Zitat Xue, W., Li, Y., Cang, S., Jia, H., & Wang, Z. (2015). Chaotic behavior and circuit implementation of a fractional-order permanent magnet synchronous motor model. Journal of the Franklin Institute, 352, 2887–2898.MathSciNetCrossRef Xue, W., Li, Y., Cang, S., Jia, H., & Wang, Z. (2015). Chaotic behavior and circuit implementation of a fractional-order permanent magnet synchronous motor model. Journal of the Franklin Institute, 352, 2887–2898.MathSciNetCrossRef
182.
Zurück zum Zitat Han, Q., Liu, C. X., Sun, L., & Zhu, D. R. (2013). A fractional order hyperchaotic system derived from a Liu system and its circuit realization. Chinese Physics B, 22, 020502–6. Han, Q., Liu, C. X., Sun, L., & Zhu, D. R. (2013). A fractional order hyperchaotic system derived from a Liu system and its circuit realization. Chinese Physics B, 22, 020502–6.
183.
Zurück zum Zitat Li, T. Z., Wang, Y., & Luo, M. K. (2014). Control of fractional chaotic and hyperchaotic systems based on a fractional order controller. Chinese Physics B, 23, 080501–11. Li, T. Z., Wang, Y., & Luo, M. K. (2014). Control of fractional chaotic and hyperchaotic systems based on a fractional order controller. Chinese Physics B, 23, 080501–11.
Metadaten
Titel
Fractional Inverse Generalized Chaos Synchronization Between Different Dimensional Systems
verfasst von
Adel Ouannas
Ahmad Taher Azar
Toufik Ziar
Sundarapandian Vaidyanathan
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50249-6_18