Skip to main content
Erschienen in: Acta Mechanica 10/2019

09.08.2019 | Original Paper

Fractional single-phase lag heat conduction and transient thermal fracture in cracked viscoelastic materials

verfasst von: Wenzhi Yang, Zengtao Chen

Erschienen in: Acta Mechanica | Ausgabe 10/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present article, a thermo-viscoelastic model is developed to investigate fractional single-phase lag heat conduction and the associated transient thermal mechanical behavior of a cracked viscoelastic material under a thermal shock. To avoid the negative temperature distribution around cracks, which violates the second law of thermodynamics, the time-fractional single-phase lag heat conduction is introduced to analyze the transient temperature field around the cracks. The Fourier and Laplace transforms, coupled with the singular integral equations, are employed to solve the governing partial differential equations numerically. Both the results of temperature field and stress intensity factors (SIFs) show that the fractional single-phase lag heat conduction model is more accurate and reasonable compared to the conventional hyperbolic heat conduction. A significant difference in transient fracture behavior exists between viscoelastic and elastic materials. A sharp pulse of the SIFs at the early stage is observed and should be consider carefully to meet the requirement of increased application of viscoelastic composites under thermal loading.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Drury, J.L., Mooney, D.J.: Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24), 4337–4351 (2003) Drury, J.L., Mooney, D.J.: Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24), 4337–4351 (2003)
2.
Zurück zum Zitat Guo, M., Pitet, L.M., Wyss, H.M., Vos, M., Dankers, P.Y., Meijer, E.: Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136(19), 6969–6977 (2014) Guo, M., Pitet, L.M., Wyss, H.M., Vos, M., Dankers, P.Y., Meijer, E.: Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136(19), 6969–6977 (2014)
3.
Zurück zum Zitat Luo, F., Sun, T.L., Nakajima, T., Kurokawa, T., Zhao, Y., Sato, K., Ihsan, A.B., Li, X., Guo, H., Gong, J.P.: Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 27(17), 2722–2727 (2015) Luo, F., Sun, T.L., Nakajima, T., Kurokawa, T., Zhao, Y., Sato, K., Ihsan, A.B., Li, X., Guo, H., Gong, J.P.: Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 27(17), 2722–2727 (2015)
4.
Zurück zum Zitat Sun, J.-Y., Zhao, X., Illeperuma, W.R., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z.: Highly stretchable and tough hydrogels. Nature 489(7414), 133 (2012) Sun, J.-Y., Zhao, X., Illeperuma, W.R., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z.: Highly stretchable and tough hydrogels. Nature 489(7414), 133 (2012)
5.
Zurück zum Zitat Haag, S., Bernards, M.: Polyampholyte hydrogels in biomedical applications. Gels 3(4), 41 (2017) Haag, S., Bernards, M.: Polyampholyte hydrogels in biomedical applications. Gels 3(4), 41 (2017)
6.
Zurück zum Zitat Haraguchi, K.: Nanocomposite hydrogels. Curr. Opin. Solid State Mater. Sci. 11(3–4), 47–54 (2007) Haraguchi, K.: Nanocomposite hydrogels. Curr. Opin. Solid State Mater. Sci. 11(3–4), 47–54 (2007)
7.
Zurück zum Zitat Guedes, R.: Durability of polymer matrix composites: viscoelastic effect on static and fatigue loading. Compos. Sci. Technol. 67(11–12), 2574–2583 (2007) Guedes, R.: Durability of polymer matrix composites: viscoelastic effect on static and fatigue loading. Compos. Sci. Technol. 67(11–12), 2574–2583 (2007)
8.
Zurück zum Zitat Zhai, S., Zhang, P., Xian, Y., Zeng, J., Shi, B.: Effective thermal conductivity of polymer composites: theoretical models and simulation models. Int. J. Heat. Mass. Transf. 117, 358–374 (2018) Zhai, S., Zhang, P., Xian, Y., Zeng, J., Shi, B.: Effective thermal conductivity of polymer composites: theoretical models and simulation models. Int. J. Heat. Mass. Transf. 117, 358–374 (2018)
9.
Zurück zum Zitat Chen, H., Ginzburg, V.V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L., Chen, B.: Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016) Chen, H., Ginzburg, V.V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L., Chen, B.: Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016)
10.
Zurück zum Zitat Ji, H., Sellan, D.P., Pettes, M.T., Kong, X., Ji, J., Shi, L., Ruoff, R.S.: Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2014) Ji, H., Sellan, D.P., Pettes, M.T., Kong, X., Ji, J., Shi, L., Ruoff, R.S.: Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2014)
11.
Zurück zum Zitat Li, X., Li, C., Xue, Z., Tian, X.: Analytical study of transient thermo-mechanical responses of dual-layer skin tissue with variable thermal material properties. Int. J. Therm. Sci. 124, 459–466 (2018) Li, X., Li, C., Xue, Z., Tian, X.: Analytical study of transient thermo-mechanical responses of dual-layer skin tissue with variable thermal material properties. Int. J. Therm. Sci. 124, 459–466 (2018)
12.
Zurück zum Zitat Van Hees, J., Gybels, J.: C nociceptor activity in human nerve during painful and non painful skin stimulation. J. Neurol. Neurosurg. Psychiatry 44(7), 600–607 (1981) Van Hees, J., Gybels, J.: C nociceptor activity in human nerve during painful and non painful skin stimulation. J. Neurol. Neurosurg. Psychiatry 44(7), 600–607 (1981)
13.
Zurück zum Zitat Liu, Y.J., Xu, N.: Modeling of interface cracks in fiber-reinforced composites with the presence of interphases using the boundary element method. Mech. Mater. 32(12), 769–783 (2000) Liu, Y.J., Xu, N.: Modeling of interface cracks in fiber-reinforced composites with the presence of interphases using the boundary element method. Mech. Mater. 32(12), 769–783 (2000)
14.
Zurück zum Zitat Zhi-He, J., Naotake, N.: Transient thermal stress intensity factors for a crack in a semi-infinite plate of a functionally gradient material. Int. J. Solids Struct. 31(2), 203–218 (1994)MATH Zhi-He, J., Naotake, N.: Transient thermal stress intensity factors for a crack in a semi-infinite plate of a functionally gradient material. Int. J. Solids Struct. 31(2), 203–218 (1994)MATH
15.
Zurück zum Zitat Erdogan, F., Wu, B.: The surface crack problem for a plate with functionally graded properties. J. Appl. Mech. 64(3), 449–456 (1997)MATH Erdogan, F., Wu, B.: The surface crack problem for a plate with functionally graded properties. J. Appl. Mech. 64(3), 449–456 (1997)MATH
16.
Zurück zum Zitat Bao, G., Wang, L.: Multiple cracking in functionally graded ceramic/metal coatings. Int. J. Solids Struct. 32(19), 2853–2871 (1995)MATH Bao, G., Wang, L.: Multiple cracking in functionally graded ceramic/metal coatings. Int. J. Solids Struct. 32(19), 2853–2871 (1995)MATH
17.
Zurück zum Zitat Wang, B., Mai, Y.: A cracked piezoelectric material strip under transient thermal loading. J. Appl. Mech. 69(4), 539–546 (2002)MATH Wang, B., Mai, Y.: A cracked piezoelectric material strip under transient thermal loading. J. Appl. Mech. 69(4), 539–546 (2002)MATH
18.
Zurück zum Zitat Ueda, S.: Thermally induced fracture of a piezoelectric laminate with a crack normal to interfaces. J. Therm. Stress. 26(4), 311–331 (2003) Ueda, S.: Thermally induced fracture of a piezoelectric laminate with a crack normal to interfaces. J. Therm. Stress. 26(4), 311–331 (2003)
19.
Zurück zum Zitat Ueda, S.: Thermal stress intensity factors for a normal crack in a piezoelectric material strip. J. Therm. Stress. 29(12), 1107–1125 (2006) Ueda, S.: Thermal stress intensity factors for a normal crack in a piezoelectric material strip. J. Therm. Stress. 29(12), 1107–1125 (2006)
20.
Zurück zum Zitat Cattaneo, C.: A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. C. R. 247, 431 (1958)MATH Cattaneo, C.: A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. C. R. 247, 431 (1958)MATH
21.
Zurück zum Zitat Vernotte, P.: Some possible complications in the phenomena of thermal conduction. C. R. 252, 2190–2191 (1961) Vernotte, P.: Some possible complications in the phenomena of thermal conduction. C. R. 252, 2190–2191 (1961)
22.
Zurück zum Zitat Shaw, S., Mukhopadhyay, B.: A discontinuity analysis of generalized thermoelasticity theory with memory-dependent derivatives. Acta Mech. 228(7), 2675–2689 (2017)MathSciNetMATH Shaw, S., Mukhopadhyay, B.: A discontinuity analysis of generalized thermoelasticity theory with memory-dependent derivatives. Acta Mech. 228(7), 2675–2689 (2017)MathSciNetMATH
23.
Zurück zum Zitat Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230, 179–199 (2019)MathSciNetMATH Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230, 179–199 (2019)MathSciNetMATH
24.
Zurück zum Zitat Youssef, H.M.: Two-dimensional thermal shock problem of fractional order generalized thermoelasticity. Acta Mech. 223(6), 1219–1231 (2012)MathSciNetMATH Youssef, H.M.: Two-dimensional thermal shock problem of fractional order generalized thermoelasticity. Acta Mech. 223(6), 1219–1231 (2012)MathSciNetMATH
25.
Zurück zum Zitat Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 127, 605–612 (2015) Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 127, 605–612 (2015)
26.
Zurück zum Zitat Sur, A., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate. Thin Wall Struct. 126, 85–93 (2018) Sur, A., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate. Thin Wall Struct. 126, 85–93 (2018)
27.
Zurück zum Zitat Mondal, S., Sur, A., Kanoria, M.: Transient response in a piezoelastic medium due to the influence of magnetic field with memory-dependent derivative. Acta Mech. 230, 2325–2338 (2019)MathSciNet Mondal, S., Sur, A., Kanoria, M.: Transient response in a piezoelastic medium due to the influence of magnetic field with memory-dependent derivative. Acta Mech. 230, 2325–2338 (2019)MathSciNet
28.
Zurück zum Zitat Sur, A., Pal, P., Mondal, S., Kanoria, M.: Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer. Acta Mech. 230, 1607–1624 (2019) Sur, A., Pal, P., Mondal, S., Kanoria, M.: Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer. Acta Mech. 230, 1607–1624 (2019)
30.
Zurück zum Zitat Li, W., Song, F., Li, J., Abdelmoula, R., Jiang, C.: Non-Fourier effect and inertia effect analysis of a strip with an induced crack under thermal shock loading. Eng. Fract. Mech. 162, 309–323 (2016) Li, W., Song, F., Li, J., Abdelmoula, R., Jiang, C.: Non-Fourier effect and inertia effect analysis of a strip with an induced crack under thermal shock loading. Eng. Fract. Mech. 162, 309–323 (2016)
31.
Zurück zum Zitat Hu, K., Chen, Z.: Thermoelastic analysis of a partially insulated crack in a strip under thermal impact loading using the hyperbolic heat conduction theory. Int. J. Eng. Sci. 51, 144–160 (2012)MathSciNetMATH Hu, K., Chen, Z.: Thermoelastic analysis of a partially insulated crack in a strip under thermal impact loading using the hyperbolic heat conduction theory. Int. J. Eng. Sci. 51, 144–160 (2012)MathSciNetMATH
32.
Zurück zum Zitat Chang, D., Wang, B.: Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction. Eng. Fract. Mech. 94, 29–36 (2012) Chang, D., Wang, B.: Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction. Eng. Fract. Mech. 94, 29–36 (2012)
33.
Zurück zum Zitat Zhang, X., Chen, Z., Li, X.: Thermal shock fracture of an elastic half-space with a subsurface penny-shaped crack via fractional thermoelasticity. Acta Mech. 229(12), 4875–4893 (2018)MathSciNet Zhang, X., Chen, Z., Li, X.: Thermal shock fracture of an elastic half-space with a subsurface penny-shaped crack via fractional thermoelasticity. Acta Mech. 229(12), 4875–4893 (2018)MathSciNet
34.
Zurück zum Zitat Zhang, X., Li, X.: Transient thermal stress intensity factors for a circumferential crack in a hollow cylinder based on generalized fractional heat conduction. Int. J. Therm. Sci. 121, 336–347 (2017) Zhang, X., Li, X.: Transient thermal stress intensity factors for a circumferential crack in a hollow cylinder based on generalized fractional heat conduction. Int. J. Therm. Sci. 121, 336–347 (2017)
35.
Zurück zum Zitat Wang, B.: Transient thermal cracking associated with non-classical heat conduction in cylindrical coordinate system. Acta. Mech. Sin. 29(2), 211–218 (2013)MathSciNetMATH Wang, B.: Transient thermal cracking associated with non-classical heat conduction in cylindrical coordinate system. Acta. Mech. Sin. 29(2), 211–218 (2013)MathSciNetMATH
36.
Zurück zum Zitat Zhang, X., Xie, Y., Li, X.: Transient thermoelastic response in a cracked strip of functionally graded materials via generalized fractional heat conduction. Appl. Math. Model. 70, 328–349 (2019)MathSciNet Zhang, X., Xie, Y., Li, X.: Transient thermoelastic response in a cracked strip of functionally graded materials via generalized fractional heat conduction. Appl. Math. Model. 70, 328–349 (2019)MathSciNet
37.
Zurück zum Zitat Xue, Z., Chen, Z., Tian, X.: Thermoelastic analysis of a cracked strip under thermal impact based on memory-dependent heat conduction model. Eng. Fract. Mech. 200, 479–498 (2018) Xue, Z., Chen, Z., Tian, X.: Thermoelastic analysis of a cracked strip under thermal impact based on memory-dependent heat conduction model. Eng. Fract. Mech. 200, 479–498 (2018)
38.
Zurück zum Zitat Xue, Z., Chen, Z., Tian, X.: Transient thermal stress analysis for a circumferentially cracked hollow cylinder based on memory-dependent heat conduction model. Theor. Appl. Fract. Mech. 96, 123–133 (2018) Xue, Z., Chen, Z., Tian, X.: Transient thermal stress analysis for a circumferentially cracked hollow cylinder based on memory-dependent heat conduction model. Theor. Appl. Fract. Mech. 96, 123–133 (2018)
39.
Zurück zum Zitat Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112(3), 555–560 (1990) Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112(3), 555–560 (1990)
40.
Zurück zum Zitat Mitra, K., Kumar, S., Vedevarz, A., Moallemi, M.: Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117(3), 568–573 (1995) Mitra, K., Kumar, S., Vedevarz, A., Moallemi, M.: Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117(3), 568–573 (1995)
41.
Zurück zum Zitat Braznikov, A., Karpychev, V., Luikova, A.: One engineering method of calculating heat conduction process. Inzhenerno Fizicheskij Zhurnal 28(4), 677–680 (1975) Braznikov, A., Karpychev, V., Luikova, A.: One engineering method of calculating heat conduction process. Inzhenerno Fizicheskij Zhurnal 28(4), 677–680 (1975)
42.
Zurück zum Zitat Bai, C., Lavine, A.: On hyperbolic heat conduction and the second law of thermodynamics. J. Heat Transf. 117(2), 256–263 (1995) Bai, C., Lavine, A.: On hyperbolic heat conduction and the second law of thermodynamics. J. Heat Transf. 117(2), 256–263 (1995)
43.
Zurück zum Zitat Körner, C., Bergmann, H.: The physical defects of the hyperbolic heat conduction equation. Appl. Phys. A 67(4), 397–401 (1998) Körner, C., Bergmann, H.: The physical defects of the hyperbolic heat conduction equation. Appl. Phys. A 67(4), 397–401 (1998)
44.
Zurück zum Zitat Rubin, M.: Hyperbolic heat conduction and the second law. Int. J. Eng. Sci. 30(11), 1665–1676 (1992)MathSciNetMATH Rubin, M.: Hyperbolic heat conduction and the second law. Int. J. Eng. Sci. 30(11), 1665–1676 (1992)MathSciNetMATH
45.
Zurück zum Zitat Zhang, W., Cai, X., Holm, S.: Time-fractional heat equations and negative absolute temperatures. Comput. Math. Appl. 67(1), 164–171 (2014)MathSciNetMATH Zhang, W., Cai, X., Holm, S.: Time-fractional heat equations and negative absolute temperatures. Comput. Math. Appl. 67(1), 164–171 (2014)MathSciNetMATH
46.
Zurück zum Zitat Ezzat, M.A., El-Karamany, A.S.: Fractional thermoelectric viscoelastic materials. J. Appl. Polym. Sci. 124(3), 2187–2199 (2012) Ezzat, M.A., El-Karamany, A.S.: Fractional thermoelectric viscoelastic materials. J. Appl. Polym. Sci. 124(3), 2187–2199 (2012)
48.
Zurück zum Zitat Cajić, M., Lazarević, M., Karličić, D., Sun, H., Liu, X.: Fractional-order model for the vibration of a nanobeam influenced by an axial magnetic field and attached nanoparticles. Acta Mech. 229, 4791–4815 (2018)MathSciNet Cajić, M., Lazarević, M., Karličić, D., Sun, H., Liu, X.: Fractional-order model for the vibration of a nanobeam influenced by an axial magnetic field and attached nanoparticles. Acta Mech. 229, 4791–4815 (2018)MathSciNet
49.
Zurück zum Zitat Atanackovic, T.M., Pilipovic, S.: On a constitutive equation of heat conduction with fractional derivatives of complex order. Acta Mech. 229, 1111–1121 (2018)MathSciNetMATH Atanackovic, T.M., Pilipovic, S.: On a constitutive equation of heat conduction with fractional derivatives of complex order. Acta Mech. 229, 1111–1121 (2018)MathSciNetMATH
50.
Zurück zum Zitat Ezzat, M., El-Karamany, A., El-Bary, A.: Generalized thermo-viscoelasticity with memory-dependent derivatives. Int. J. Mech. Sci. 89, 470–475 (2014) Ezzat, M., El-Karamany, A., El-Bary, A.: Generalized thermo-viscoelasticity with memory-dependent derivatives. Int. J. Mech. Sci. 89, 470–475 (2014)
51.
Zurück zum Zitat Ezzat, M., El-Karamany, A., El-Bary, A.: Thermo-viscoelastic materials with fractional relaxation operators. Appl. Math. Model. 39(23–24), 7499–7512 (2015)MathSciNet Ezzat, M., El-Karamany, A., El-Bary, A.: Thermo-viscoelastic materials with fractional relaxation operators. Appl. Math. Model. 39(23–24), 7499–7512 (2015)MathSciNet
52.
Zurück zum Zitat Ezzat, M.A., El-Bary, A.A.: On thermo-viscoelastic infinitely long hollow cylinder with variable thermal conductivity. Microsyst. Technol. 23, 3263–3270 (2017) Ezzat, M.A., El-Bary, A.A.: On thermo-viscoelastic infinitely long hollow cylinder with variable thermal conductivity. Microsyst. Technol. 23, 3263–3270 (2017)
53.
Zurück zum Zitat Sladek, J., Sladek, V., Zhang, C., Schanz, M.: Meshless local Petrov–Galerkin method for continuously nonhomogeneous linear viscoelastic solids. Comput. Mech. 37(3), 279–289 (2006)MATH Sladek, J., Sladek, V., Zhang, C., Schanz, M.: Meshless local Petrov–Galerkin method for continuously nonhomogeneous linear viscoelastic solids. Comput. Mech. 37(3), 279–289 (2006)MATH
54.
Zurück zum Zitat Cheng, Z., Meguid, S., Zhong, Z.: Thermo-mechanical behavior of a viscoelastic FGMs coating containing an interface crack. Int. J. Fract. 164(1), 15–29 (2010)MATH Cheng, Z., Meguid, S., Zhong, Z.: Thermo-mechanical behavior of a viscoelastic FGMs coating containing an interface crack. Int. J. Fract. 164(1), 15–29 (2010)MATH
55.
Zurück zum Zitat Choi, H.J., Thangjitham, S.: Thermally-induced interlaminar crack-tip singularities in laminated anisotropic composites. Int. J. Fract. 60(4), 327–347 (1993) Choi, H.J., Thangjitham, S.: Thermally-induced interlaminar crack-tip singularities in laminated anisotropic composites. Int. J. Fract. 60(4), 327–347 (1993)
56.
Zurück zum Zitat Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)MATH Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)MATH
57.
Zurück zum Zitat Erdogan, F.: Interface cracking of FGM coatings under steady-state heat flow. Eng. Fract. Mech. 59, 361–380 (1998) Erdogan, F.: Interface cracking of FGM coatings under steady-state heat flow. Eng. Fract. Mech. 59, 361–380 (1998)
58.
Zurück zum Zitat Zhou, Y., Li, X., Yu, D.: A partially insulated interface crack between a graded orthotropic coating and a homogeneous orthotropic substrate under heat flux supply. Int. J. Solids Struct. 47, 768–778 (2010)MATH Zhou, Y., Li, X., Yu, D.: A partially insulated interface crack between a graded orthotropic coating and a homogeneous orthotropic substrate under heat flux supply. Int. J. Solids Struct. 47, 768–778 (2010)MATH
59.
Zurück zum Zitat Christensen, R.M., Freund, L.: Theory of viscoelasticity. J. Appl. Mech. 38, 720 (1971) Christensen, R.M., Freund, L.: Theory of viscoelasticity. J. Appl. Mech. 38, 720 (1971)
60.
Zurück zum Zitat Eringen, A.C.: Continuum Physics. Academic Press Inc, New York (1975). 632 p Eringen, A.C.: Continuum Physics. Academic Press Inc, New York (1975). 632 p
61.
Zurück zum Zitat Delale, F., Erdogan, F.: Effect of transverse shear and material orthotropy in a cracked spherical cap. Int. J. Solids Struct. 15(12), 907–926 (1979)MATH Delale, F., Erdogan, F.: Effect of transverse shear and material orthotropy in a cracked spherical cap. Int. J. Solids Struct. 15(12), 907–926 (1979)MATH
62.
Zurück zum Zitat Miller, M.K., Guy, J.: WT: numerical inversion of the Laplace transform by use of Jacobi polynomials. SIAM J. Numer. Anal. 3(4), 624–635 (1966)MathSciNetMATH Miller, M.K., Guy, J.: WT: numerical inversion of the Laplace transform by use of Jacobi polynomials. SIAM J. Numer. Anal. 3(4), 624–635 (1966)MathSciNetMATH
63.
Zurück zum Zitat Paulino, G., Jin, Z.-H.: Viscoelastic functionally graded materials subjected to antiplane shear fracture. J. Appl. Mech. 68(2), 284–293 (2001)MATH Paulino, G., Jin, Z.-H.: Viscoelastic functionally graded materials subjected to antiplane shear fracture. J. Appl. Mech. 68(2), 284–293 (2001)MATH
Metadaten
Titel
Fractional single-phase lag heat conduction and transient thermal fracture in cracked viscoelastic materials
verfasst von
Wenzhi Yang
Zengtao Chen
Publikationsdatum
09.08.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 10/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02474-z

Weitere Artikel der Ausgabe 10/2019

Acta Mechanica 10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.