Skip to main content
Erschienen in: Archive of Applied Mechanics 7/2018

20.03.2018 | Original

Free vibration analysis of multi-span Timoshenko beams using the assumed mode method

Erschienen in: Archive of Applied Mechanics | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although some investigations on the vibration properties of multi-span beams have been conducted, studies on multi-span Timoshenko beams by using the assumed mode method have been relatively few. In this paper, the multi-span Timoshenko beams are investigated, and the mode shapes of the beams are modified by the interpolation functions to model the vibration modes of the multi-span beams. Hamilton’s principle is applied to establish the equation of motion of the structure, and the natural circular frequencies and the free vibration responses of the multi-span beams are obtained. The numerical results demonstrate good agreement between the present results and those from the open literature and the ANSYS software. The influences of the length–thickness ratio, the disorder degree and the span number on the free vibration of the structure are also analyzed. It is observed that the displacement amplitude and the vibration period at the midpoint of the three-span Timoshenko beams are reduced when the disorder degree and the length–thickness ratio are reduced. The increase in the span number of the multi-span beams with equal spans leads to the decrease in the displacement amplitude and the period of the structures. Furthermore, some interesting phenomena are found, e.g., the same even-order frequencies of different three-span beams are equal under specific disorder degree.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li, F.M., Kishimoto, K., Huang, W.H.: The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh–Ritz method. Mech. Res. Commun. 36(5), 595–602 (2009)CrossRefMATH Li, F.M., Kishimoto, K., Huang, W.H.: The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh–Ritz method. Mech. Res. Commun. 36(5), 595–602 (2009)CrossRefMATH
2.
Zurück zum Zitat Lin, Y.H., Trethewey, M.W.: Finite element analysis of elastic beams subjected to moving dynamic loads. J. Sound Vib. 136(2), 323–342 (1990)CrossRef Lin, Y.H., Trethewey, M.W.: Finite element analysis of elastic beams subjected to moving dynamic loads. J. Sound Vib. 136(2), 323–342 (1990)CrossRef
3.
Zurück zum Zitat Lombaert, G., Degrande, G., Kogut, J.: The experimental validation of a numerical model for the prediction of railway induced vibrations. J. Sound Vib. 297(3–5), 512–535 (2006)CrossRef Lombaert, G., Degrande, G., Kogut, J.: The experimental validation of a numerical model for the prediction of railway induced vibrations. J. Sound Vib. 297(3–5), 512–535 (2006)CrossRef
4.
Zurück zum Zitat Cho, D.S., Kim, B.H., Kim, J.H., Vladimir, N., Choi, T.M.: Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method. Thin-Walled Struct. 90, 182–190 (2015)CrossRef Cho, D.S., Kim, B.H., Kim, J.H., Vladimir, N., Choi, T.M.: Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method. Thin-Walled Struct. 90, 182–190 (2015)CrossRef
5.
Zurück zum Zitat Zheng, D.Y., Cheung, Y.K., Au, F.T.K., Cheng, Y.S.: Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions. J. Sound Vib. 212(3), 455–467 (1998)CrossRefMATH Zheng, D.Y., Cheung, Y.K., Au, F.T.K., Cheng, Y.S.: Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions. J. Sound Vib. 212(3), 455–467 (1998)CrossRefMATH
6.
Zurück zum Zitat Zheng, D.Y., Cheung, Y.K., Au, F.T.K., Cheng, Y.S.: Vibration of multi-span non-uniform bridges under moving vehicles and trains by using modified beam vibration functions. J. Sound Vib. 228(3), 611–628 (1999)CrossRef Zheng, D.Y., Cheung, Y.K., Au, F.T.K., Cheng, Y.S.: Vibration of multi-span non-uniform bridges under moving vehicles and trains by using modified beam vibration functions. J. Sound Vib. 228(3), 611–628 (1999)CrossRef
7.
Zurück zum Zitat Song, Z.G., Li, F.M.: Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs. Smart Mater. Struct. 20(5), 055013 (2011)CrossRef Song, Z.G., Li, F.M.: Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs. Smart Mater. Struct. 20(5), 055013 (2011)CrossRef
8.
Zurück zum Zitat Li, F.M., Song, Z.G.: Flutter and thermal buckling control for composite laminated panels in supersonic flow. J. Sound Vib. 332(22), 5678–5695 (2013)CrossRef Li, F.M., Song, Z.G.: Flutter and thermal buckling control for composite laminated panels in supersonic flow. J. Sound Vib. 332(22), 5678–5695 (2013)CrossRef
9.
Zurück zum Zitat Avramov, K.V., Chernobryvko, M.V., Kazachenko, O., Batutina, T.J.: Dynamic instability of parabolic shells in supersonic gas stream. Meccanica 51(4), 939–950 (2016)MathSciNetCrossRefMATH Avramov, K.V., Chernobryvko, M.V., Kazachenko, O., Batutina, T.J.: Dynamic instability of parabolic shells in supersonic gas stream. Meccanica 51(4), 939–950 (2016)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Lin, H.Y., Tsai, Y.C.: Free vibration analysis of a uniform multi-span beam carrying multiple spring-mass systems. J. Sound Vib. 302(3), 442–456 (2007)CrossRef Lin, H.Y., Tsai, Y.C.: Free vibration analysis of a uniform multi-span beam carrying multiple spring-mass systems. J. Sound Vib. 302(3), 442–456 (2007)CrossRef
11.
Zurück zum Zitat Lin, H.Y., Wang, C.Y.: Free vibration analysis of a hybrid beam composed of multiple elastic beam segments and elastic-supported rigid bodies. J. Mar. Sci. Technol. 20(5), 525–533 (2012) Lin, H.Y., Wang, C.Y.: Free vibration analysis of a hybrid beam composed of multiple elastic beam segments and elastic-supported rigid bodies. J. Mar. Sci. Technol. 20(5), 525–533 (2012)
12.
Zurück zum Zitat Johansson, C., Pacoste, C., Karoumi, R.: Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads. Comput. Struct. 119, 85–94 (2013)CrossRef Johansson, C., Pacoste, C., Karoumi, R.: Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads. Comput. Struct. 119, 85–94 (2013)CrossRef
13.
Zurück zum Zitat Martínez-Castro, A.E., Museros, P., Castillo-Linares, A.: Semi-analytic solution in the time domain for non-uniform multi-span Bernoulli–Euler beams traversed by moving loads. J. Sound Vib. 294(1–2), 278–297 (2006)CrossRef Martínez-Castro, A.E., Museros, P., Castillo-Linares, A.: Semi-analytic solution in the time domain for non-uniform multi-span Bernoulli–Euler beams traversed by moving loads. J. Sound Vib. 294(1–2), 278–297 (2006)CrossRef
14.
Zurück zum Zitat Biondi, B., Muscolino, G.: Component-mode synthesis method for coupled continuous and FE discretized substructures. Eng. Struct. 25(4), 419–433 (2003)CrossRef Biondi, B., Muscolino, G.: Component-mode synthesis method for coupled continuous and FE discretized substructures. Eng. Struct. 25(4), 419–433 (2003)CrossRef
15.
Zurück zum Zitat Biondi, B., Muscolino, G., Sofi, A.: A substructure approach for the dynamic analysis of train-track-bridge system. Comput. Struct. 83(28–30), 2271–2281 (2005)CrossRef Biondi, B., Muscolino, G., Sofi, A.: A substructure approach for the dynamic analysis of train-track-bridge system. Comput. Struct. 83(28–30), 2271–2281 (2005)CrossRef
16.
Zurück zum Zitat De Salvo, V., Muscolino, G., Palmeri, A.: A substructure approach tailored to the dynamic analysis of multi-span continuous beams under moving loads. J. Sound Vib. 329(15), 3101–3120 (2010)CrossRef De Salvo, V., Muscolino, G., Palmeri, A.: A substructure approach tailored to the dynamic analysis of multi-span continuous beams under moving loads. J. Sound Vib. 329(15), 3101–3120 (2010)CrossRef
17.
Zurück zum Zitat Stancioiu, D., Ouyang, H.J., Mottershead, J.E., James, S.: Experimental investigations of a multi-span flexible structure subjected to moving masses. J. Sound Vib. 330(9), 2004–2016 (2011)CrossRef Stancioiu, D., Ouyang, H.J., Mottershead, J.E., James, S.: Experimental investigations of a multi-span flexible structure subjected to moving masses. J. Sound Vib. 330(9), 2004–2016 (2011)CrossRef
18.
Zurück zum Zitat Sharma, D.S., Mungla, M.J., Barad, K.H.: Vibration-based non-destructive technique to detect crack in multi-span beam. Nondestruct. Test. Eval. 30(4), 291–311 (2015)CrossRef Sharma, D.S., Mungla, M.J., Barad, K.H.: Vibration-based non-destructive technique to detect crack in multi-span beam. Nondestruct. Test. Eval. 30(4), 291–311 (2015)CrossRef
19.
Zurück zum Zitat Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibration of prismatic bars. Philos. Mag. 41, 744–746 (1921)CrossRef Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibration of prismatic bars. Philos. Mag. 41, 744–746 (1921)CrossRef
20.
Zurück zum Zitat Yokoyama, T.: Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations. Comput. Struct. 61(6), 995–1007 (1996)CrossRefMATH Yokoyama, T.: Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations. Comput. Struct. 61(6), 995–1007 (1996)CrossRefMATH
21.
Zurück zum Zitat Lee, H.P.: The dynamic response of a Timoshenko beam subjected to a moving mass. J. Sound Vib. 198(2), 249–256 (1996)CrossRef Lee, H.P.: The dynamic response of a Timoshenko beam subjected to a moving mass. J. Sound Vib. 198(2), 249–256 (1996)CrossRef
22.
Zurück zum Zitat Banerjee, J.R.: Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam. J. Sound Vib. 270(1–2), 379–401 (2004)CrossRefMATH Banerjee, J.R.: Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam. J. Sound Vib. 270(1–2), 379–401 (2004)CrossRefMATH
23.
Zurück zum Zitat Avramidis, I.E., Morfidis, K.: Bending of beams on three-parameter elastic foundation. Int. J. Solids Struct. 43(2), 357–375 (2006)CrossRefMATH Avramidis, I.E., Morfidis, K.: Bending of beams on three-parameter elastic foundation. Int. J. Solids Struct. 43(2), 357–375 (2006)CrossRefMATH
24.
Zurück zum Zitat Zhu, X.Q., Law, S.S.: Moving forces identification on a multi-span continuous bridge. J. Sound Vib. 228(2), 377–396 (1999)CrossRef Zhu, X.Q., Law, S.S.: Moving forces identification on a multi-span continuous bridge. J. Sound Vib. 228(2), 377–396 (1999)CrossRef
25.
Zurück zum Zitat Lin, H.P., Chang, S.C.: Free vibration analysis of multi-span beams with intermediate flexible constraints. J. Sound Vib. 281(1–2), 155–169 (2005)CrossRef Lin, H.P., Chang, S.C.: Free vibration analysis of multi-span beams with intermediate flexible constraints. J. Sound Vib. 281(1–2), 155–169 (2005)CrossRef
26.
Zurück zum Zitat Wang, R.T.: Vibration of multi-span Timoshenko beams to a moving force. J. Sound Vib. 207(5), 731–742 (1997)CrossRefMATH Wang, R.T.: Vibration of multi-span Timoshenko beams to a moving force. J. Sound Vib. 207(5), 731–742 (1997)CrossRefMATH
27.
Zurück zum Zitat Lin, H.Y.: On the natural frequencies and mode shapes of a multi-span Timoshenko beam carrying a number of various concentrated elements. J. Sound Vib. 319(1–2), 593–605 (2009)CrossRef Lin, H.Y.: On the natural frequencies and mode shapes of a multi-span Timoshenko beam carrying a number of various concentrated elements. J. Sound Vib. 319(1–2), 593–605 (2009)CrossRef
28.
Zurück zum Zitat Ariaei, A., Ziaei-Rad, S., Ghayour, M.: Transverse vibration of a multiple-Timoshenko beam system with intermediate elastic connections due to a moving load. Arch. Appl. Mech. 81(3), 263–281 (2011)CrossRefMATH Ariaei, A., Ziaei-Rad, S., Ghayour, M.: Transverse vibration of a multiple-Timoshenko beam system with intermediate elastic connections due to a moving load. Arch. Appl. Mech. 81(3), 263–281 (2011)CrossRefMATH
29.
Zurück zum Zitat Zhang, Z.G., Chen, F., Zhang, Z.Y., Hua, H.X.: Vibration analysis of non-uniform Timoshenko beams coupled with flexible attachments and multiple discontinuities. Int. J. Mech. Sci. 80, 131–143 (2014)CrossRef Zhang, Z.G., Chen, F., Zhang, Z.Y., Hua, H.X.: Vibration analysis of non-uniform Timoshenko beams coupled with flexible attachments and multiple discontinuities. Int. J. Mech. Sci. 80, 131–143 (2014)CrossRef
30.
Zurück zum Zitat Ferreira, A.J.M.: Free vibration analysis of Timoshenko beams and Mindlin plates by radial basis functions. Int. J. Comput. Methods 2(1), 15–31 (2005)CrossRefMATH Ferreira, A.J.M.: Free vibration analysis of Timoshenko beams and Mindlin plates by radial basis functions. Int. J. Comput. Methods 2(1), 15–31 (2005)CrossRefMATH
31.
Zurück zum Zitat Ferreira, A.J.M., Castro, L.M.S., Bertoluzza, S.: A high order collocation method for the static and vibration analysis of composite plates using a first-order theory. Compos. Struct. 89(3), 424–432 (2009)CrossRef Ferreira, A.J.M., Castro, L.M.S., Bertoluzza, S.: A high order collocation method for the static and vibration analysis of composite plates using a first-order theory. Compos. Struct. 89(3), 424–432 (2009)CrossRef
32.
Zurück zum Zitat Yildirim, V., Kiral, E.: Investigation of the rotary inertia and shear deformation effects on the out-of-plane bending and torsional natural frequencies of laminated beams. Compos. Struct. 49(3), 313–320 (2000)CrossRef Yildirim, V., Kiral, E.: Investigation of the rotary inertia and shear deformation effects on the out-of-plane bending and torsional natural frequencies of laminated beams. Compos. Struct. 49(3), 313–320 (2000)CrossRef
33.
Zurück zum Zitat Pradhan, K.K., Chakraverty, S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos. B 51, 175–184 (2013)CrossRef Pradhan, K.K., Chakraverty, S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos. B 51, 175–184 (2013)CrossRef
34.
Zurück zum Zitat Zhou, D., Cheung, Y.K., Lo, S.H., Au, F.T.K.: Three-dimensional vibration analysis of prisms with isosceles triangular cross-section. Arch. Appl. Mech. 80(6), 699–710 (2010)CrossRefMATH Zhou, D., Cheung, Y.K., Lo, S.H., Au, F.T.K.: Three-dimensional vibration analysis of prisms with isosceles triangular cross-section. Arch. Appl. Mech. 80(6), 699–710 (2010)CrossRefMATH
35.
Zurück zum Zitat Giunta, G., Koutsawa, Y., Belouettar, S., Hu, H.: Static, free vibration and stability analysis of three-dimensional nano-beams by atomistic refined models accounting for surface free energy effect. Int. J. Solids Struct. 50(9), 1460–1472 (2013)CrossRefMATH Giunta, G., Koutsawa, Y., Belouettar, S., Hu, H.: Static, free vibration and stability analysis of three-dimensional nano-beams by atomistic refined models accounting for surface free energy effect. Int. J. Solids Struct. 50(9), 1460–1472 (2013)CrossRefMATH
36.
Zurück zum Zitat Hodges, C.H., Woodhouse, J.: Confinement of vibration by one-dimensional disorder, I: theory of ensemble averaging. J. Sound Vib. 130(2), 237–251 (1989)CrossRef Hodges, C.H., Woodhouse, J.: Confinement of vibration by one-dimensional disorder, I: theory of ensemble averaging. J. Sound Vib. 130(2), 237–251 (1989)CrossRef
37.
Zurück zum Zitat Pierre, C., Tang, D.M., Dowell, E.H.: Localized vibrations of disordered multi-span beams: theory and experiment. AIAA J. 25(9), 1249–1257 (1987)CrossRef Pierre, C., Tang, D.M., Dowell, E.H.: Localized vibrations of disordered multi-span beams: theory and experiment. AIAA J. 25(9), 1249–1257 (1987)CrossRef
38.
Zurück zum Zitat Yan, Z.Z., Zhang, C.Z., Wang, Y.S.: Attenuation and localization of bending waves in a periodic/disordered fourfold composite beam. J. Sound Vib. 327(1), 109–120 (2009)CrossRef Yan, Z.Z., Zhang, C.Z., Wang, Y.S.: Attenuation and localization of bending waves in a periodic/disordered fourfold composite beam. J. Sound Vib. 327(1), 109–120 (2009)CrossRef
39.
Zurück zum Zitat Li, F.M., Song, Z.G.: Vibration analysis and active control of nearly periodic two-span beams with piezoelectric actuator/sensor pairs. Appl. Math. Mech. (Engl. Ed.) 36(3), 279–292 (2015)MathSciNetCrossRefMATH Li, F.M., Song, Z.G.: Vibration analysis and active control of nearly periodic two-span beams with piezoelectric actuator/sensor pairs. Appl. Math. Mech. (Engl. Ed.) 36(3), 279–292 (2015)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Song, Z.G., Li, F.M.: Vibration and aeroelastic properties of ordered and disordered two-span panels in supersonic airflow. Int. J. Mech. Sci. 81, 65–72 (2014)CrossRef Song, Z.G., Li, F.M.: Vibration and aeroelastic properties of ordered and disordered two-span panels in supersonic airflow. Int. J. Mech. Sci. 81, 65–72 (2014)CrossRef
41.
Zurück zum Zitat Li, F.M., Wang, Y.S., Hu, C., Huang, W.H.: Localization of elastic waves in periodic rib- stiffened rectangular plates under axial compressive load. J. Sound Vib. 281, 261–273 (2005)CrossRef Li, F.M., Wang, Y.S., Hu, C., Huang, W.H.: Localization of elastic waves in periodic rib- stiffened rectangular plates under axial compressive load. J. Sound Vib. 281, 261–273 (2005)CrossRef
42.
Zurück zum Zitat Cowper, G.R.: The shear coefficients in Timoshenko’s beam theory. J. Appl. Mech. ASME 33(2), 335–340 (1966)CrossRefMATH Cowper, G.R.: The shear coefficients in Timoshenko’s beam theory. J. Appl. Mech. ASME 33(2), 335–340 (1966)CrossRefMATH
43.
Zurück zum Zitat Yesilce, Y., Demirdag, O.: Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring-mass systems. Int. J. Mech. Sci. 50(6), 995–1003 (2008)CrossRefMATH Yesilce, Y., Demirdag, O.: Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring-mass systems. Int. J. Mech. Sci. 50(6), 995–1003 (2008)CrossRefMATH
Metadaten
Titel
Free vibration analysis of multi-span Timoshenko beams using the assumed mode method
Publikationsdatum
20.03.2018
Erschienen in
Archive of Applied Mechanics / Ausgabe 7/2018
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1368-8

Weitere Artikel der Ausgabe 7/2018

Archive of Applied Mechanics 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.