Skip to main content
Erschienen in: Innovative Infrastructure Solutions 10/2023

01.10.2023 | Practice-oriented Paper

Fresh, mechanical and impact properties of self-compacting lightweight concrete containing waste PET fibers

verfasst von: Abdulkader Ismail Al-Hadithi, Sara Ali Almawla, Mahmoud Khashaa Mohammed

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this study is to evaluate fresh, mechanical, and impact resistance of structural lightweight self-compacting concrete with good thermal insulation and incorporating waste PET fibers with different volume fractions and aspect ratios. Integration of the characteristics of self-compacting concrete, which are followability, good strength and sustainability with the characteristics of lightweight concrete, represented in reducing the loads of the structure and thermal insulation, in addition and with reducing the environmental damage represented by plastic by utilizing a fiber is the goal of this research. As a first stage of this study, lightweight Ponza aggregate was used as a coarse aggregate, as four reference mixtures were produced with volume replacement ratios of coarse aggregate volume ranging from 20 to 100%, and a reference mixture was produced for the purpose of comparison. In the second stage of this study, the performance of self-compacting lightweight concrete SCLC reinforced with waste PET fibers were analyzed in terms of fresh, physical, mechanical, and thermal properties as well as its flexural toughness and impact behavior. Nine different fiber reinforced self-compacting lightweight concrete were designed using waste plastic fibers WPF at three different volume fraction (0.5%, 0.75%, and 1%) and three different aspect ratio (15, 30, and 45). After design process, similar properties in the first stage in addition to toughness and impact test were performed. The results of second stage verified that the adding WPF to SCLC leads to reduction in dry density, ultrasonic pulse velocity, and thermal conductivity around 9%, 14%, 19%, respectively, with increase in PET fibers ratio from 0 to 1% at aspect ratio of 45. Further, the result of flexural toughness test showed that the use of WPF in SCLC leads to an interesting improvement in the post-cracking performance and enhanced ductility of concrete. Furthermore, there is substantial improvement in impact resistance of all WPF-reinforced SCLC mixes over control mix. Results clarified that WPF concrete mix of volume fraction 1% and aspect ratio 45 gave the best impact resistance, the improvement of its impact resistance at ultimate failure over control mix was 373.3%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kılıç A, Duran Atiş C, Yasar E, Özcan F (2003) High-strength lightweight concrete made with scoria aggregate containing mineral admixtures. Cem Concr Res 33:1595–1599CrossRef Kılıç A, Duran Atiş C, Yasar E, Özcan F (2003) High-strength lightweight concrete made with scoria aggregate containing mineral admixtures. Cem Concr Res 33:1595–1599CrossRef
2.
Zurück zum Zitat Persson B (2001) A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete. Cem Concr Res 31(2):193–198CrossRef Persson B (2001) A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete. Cem Concr Res 31(2):193–198CrossRef
3.
Zurück zum Zitat Okamura H, Ozawa K (1996) Self-compacting high performance concrete. Struct Eng Int J Int Assoc Bridg Struct Eng 6(4):269–270 Okamura H, Ozawa K (1996) Self-compacting high performance concrete. Struct Eng Int J Int Assoc Bridg Struct Eng 6(4):269–270
4.
Zurück zum Zitat Bansal G (2007) Concrete technology. Indian railways institute of civil engineering, Pune Bansal G (2007) Concrete technology. Indian railways institute of civil engineering, Pune
5.
Zurück zum Zitat Aggarwal P, Siddique R, Aggarwal Y, Gupta SM (2008) Self-compacting concrete-procedure for mix design. Leonardo Electron J Pract Technol 7(12):15–24 Aggarwal P, Siddique R, Aggarwal Y, Gupta SM (2008) Self-compacting concrete-procedure for mix design. Leonardo Electron J Pract Technol 7(12):15–24
6.
Zurück zum Zitat De Schutter G et al (2008) Final report of RILEM TC 205-DSC: durability of self-compacting concrete. Mater Struct Constr 41(2):225–233CrossRef De Schutter G et al (2008) Final report of RILEM TC 205-DSC: durability of self-compacting concrete. Mater Struct Constr 41(2):225–233CrossRef
7.
Zurück zum Zitat ACI Committee 213 (2003) Guide for structural lightweight aggregate concrete. American concrete institute, Farmington hills, MI, United States ACI Committee 213 (2003) Guide for structural lightweight aggregate concrete. American concrete institute, Farmington hills, MI, United States
8.
Zurück zum Zitat ACI commitee 216 (2007) Code requirements for determining fire resistance of concrete and masonry construction assemblies. American concrete Institute ACI commitee 216 (2007) Code requirements for determining fire resistance of concrete and masonry construction assemblies. American concrete Institute
9.
Zurück zum Zitat EN 206-1 (2000) Concrete-part 1: specification, performance, production and conformity. Europen standards Institution, London EN 206-1 (2000) Concrete-part 1: specification, performance, production and conformity. Europen standards Institution, London
10.
Zurück zum Zitat “CIP 36-Structural Lightweight Concrete (2003) National ready mixed concrete association, NMRCA “CIP 36-Structural Lightweight Concrete (2003) National ready mixed concrete association, NMRCA
11.
Zurück zum Zitat Mohammed JH, Hamad AJ (2014) Materials, properties and application review of Lightweight concrete. Tech Rev Fac Eng Univ Zulia 37(2):10–15 Mohammed JH, Hamad AJ (2014) Materials, properties and application review of Lightweight concrete. Tech Rev Fac Eng Univ Zulia 37(2):10–15
12.
Zurück zum Zitat Karamloo M, Mazloom M, Payganeh G (2017) Effect of size on nominal strength of self-compacting lightweight concrete and self-compacting normal weight concrete: a stress-based approach. Mater Today Commun 13(July):36–45CrossRef Karamloo M, Mazloom M, Payganeh G (2017) Effect of size on nominal strength of self-compacting lightweight concrete and self-compacting normal weight concrete: a stress-based approach. Mater Today Commun 13(July):36–45CrossRef
13.
Zurück zum Zitat Mehta PK, Monteiro PJM (2006) Concrete: microstructure, properties, and materials. McGraw-Hill, Third edit Mehta PK, Monteiro PJM (2006) Concrete: microstructure, properties, and materials. McGraw-Hill, Third edit
14.
Zurück zum Zitat Madandoust R, Ranjbar MM, Yasin Mousavi S (2011) An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Constr Build Mater 25(9):3721–3731CrossRef Madandoust R, Ranjbar MM, Yasin Mousavi S (2011) An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Constr Build Mater 25(9):3721–3731CrossRef
15.
Zurück zum Zitat Dev BA, Jayasree S (2016) Effect of lightweight aggregate on the flexural behaviour of self compacting concrete. Int J Sci Eng Res 7(10):16–22 Dev BA, Jayasree S (2016) Effect of lightweight aggregate on the flexural behaviour of self compacting concrete. Int J Sci Eng Res 7(10):16–22
16.
Zurück zum Zitat ACI commitee 122 (2002) Guide to thermal properties of concrete and masonry systems. American Society for Testing Materials Michigan, PA ACI commitee 122 (2002) Guide to thermal properties of concrete and masonry systems. American Society for Testing Materials Michigan, PA
17.
Zurück zum Zitat Sukumar A, John E (2014) Fiber addition and its effect on concrete strength. Int J Innov Res Adv Eng 1(8):144–149 Sukumar A, John E (2014) Fiber addition and its effect on concrete strength. Int J Innov Res Adv Eng 1(8):144–149
18.
Zurück zum Zitat M. I. Kaffetzakis and C. G. Papanicolaou (2011) Fiber-reinforced pumice aggregate self-compacting concrete. Concr Eng Excell Effic Prague, Chech Repub M. I. Kaffetzakis and C. G. Papanicolaou (2011) Fiber-reinforced pumice aggregate self-compacting concrete. Concr Eng Excell Effic Prague, Chech Repub
19.
Zurück zum Zitat Hameed S. Hasan, Abdulkader Ismail Al-Hadithi, Yousif Kh (2022) Yousif, properties of self-compacting lightweight aggregate concrete containing polyolefin fibers. In: 8th International engineering conference on advances in computer and civil engineering towards engineering innovations and sustainability, (IEC-2022), Erbil-Iraq, pp 42–48. https://doi.org/10.1109/IEC54822.2022.9807565 Hameed S. Hasan, Abdulkader Ismail Al-Hadithi, Yousif Kh (2022) Yousif, properties of self-compacting lightweight aggregate concrete containing polyolefin fibers. In: 8th International engineering conference on advances in computer and civil engineering towards engineering innovations and sustainability, (IEC-2022), Erbil-Iraq, pp 42–48. https://​doi.​org/​10.​1109/​IEC54822.​2022.​9807565
20.
Zurück zum Zitat Mazaheripour H, Ghanbarpour S, Mirmoradi SH, Hosseinpour I (2011) The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete, The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Constr Build Mater 25:351–358CrossRef Mazaheripour H, Ghanbarpour S, Mirmoradi SH, Hosseinpour I (2011) The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete, The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Constr Build Mater 25:351–358CrossRef
21.
Zurück zum Zitat Jankauskaite V, Macijauskas G, Lygaitis R (2008) Polyethylene terephthalate waste recycling and application possibilities: a review. Mater Sci 14(2):119–127 Jankauskaite V, Macijauskas G, Lygaitis R (2008) Polyethylene terephthalate waste recycling and application possibilities: a review. Mater Sci 14(2):119–127
22.
Zurück zum Zitat Mishra B (2016) A study on use of recycled polyethylene terephthalate (PET) as construction material. Int J Sci Res 5(1):724–730 Mishra B (2016) A study on use of recycled polyethylene terephthalate (PET) as construction material. Int J Sci Res 5(1):724–730
23.
Zurück zum Zitat Al-Hadithi AI, Abbas MA (2021) Innovative technique of using carbon fibre reinforced polymer strips for shear reinforcement of reinforced concrete beams with waste plastic fibres. Eur J Environ Civ Eng 25(3):516–537CrossRef Al-Hadithi AI, Abbas MA (2021) Innovative technique of using carbon fibre reinforced polymer strips for shear reinforcement of reinforced concrete beams with waste plastic fibres. Eur J Environ Civ Eng 25(3):516–537CrossRef
24.
Zurück zum Zitat Al-Hadithi AI, Abdulrahman MB, Al-Rawi MI (2020) Flexural behaviour of reinforced concrete beams containing waste plastic fibers. In: IOP conference series: materials science and engineering, 4th international conference on buildings, construction and environmental engineering, BCEE4, 737(15) Al-Hadithi AI, Abdulrahman MB, Al-Rawi MI (2020) Flexural behaviour of reinforced concrete beams containing waste plastic fibers. In: IOP conference series: materials science and engineering, 4th international conference on buildings, construction and environmental engineering, BCEE4, 737(15)
25.
Zurück zum Zitat Alfahdawi IH, Hamid R, Osman SA, Al-Hadithi AI (2018) Modulus of elasticity and ultrasonic pulse velocity of concrete containing polyethylene terephthalate (Pet) waste heated to high temperature. J Eng Sci Technol 13(11):3577–3592 Alfahdawi IH, Hamid R, Osman SA, Al-Hadithi AI (2018) Modulus of elasticity and ultrasonic pulse velocity of concrete containing polyethylene terephthalate (Pet) waste heated to high temperature. J Eng Sci Technol 13(11):3577–3592
26.
Zurück zum Zitat Al-Hadithi AI, Al–Ejbari AT, Jameel GS (2013) Behaviour of waste plastic fiber concrete slabs under low velocity impact. Iraqi J Civ Eng 9(1):135–148CrossRef Al-Hadithi AI, Al–Ejbari AT, Jameel GS (2013) Behaviour of waste plastic fiber concrete slabs under low velocity impact. Iraqi J Civ Eng 9(1):135–148CrossRef
27.
Zurück zum Zitat Al-Hadithi AI, Noaman AT, Mosleh WK (2019) Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC). Compos Struct 224:111021CrossRef Al-Hadithi AI, Noaman AT, Mosleh WK (2019) Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC). Compos Struct 224:111021CrossRef
28.
Zurück zum Zitat De Silva S, Prasanthan T (2019) Application of recycled PET fibers for concrete floors. Engineer 52(01):21–27CrossRef De Silva S, Prasanthan T (2019) Application of recycled PET fibers for concrete floors. Engineer 52(01):21–27CrossRef
29.
Zurück zum Zitat Tahwia AM, Heniegal AM, Abdellatief M, Tayeh BA, Abd Elrahman M (2022) Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass. Case Stud Constr Mater 17:e01393 Tahwia AM, Heniegal AM, Abdellatief M, Tayeh BA, Abd Elrahman M (2022) Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass. Case Stud Constr Mater 17:e01393
30.
Zurück zum Zitat Tahwia AM, Abdellatief M, Bassioni G, Heniegal AM, Abd Elrahman M (2023) Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic. J Mater Res Technol 23(01):5681–5697CrossRef Tahwia AM, Abdellatief M, Bassioni G, Heniegal AM, Abd Elrahman M (2023) Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic. J Mater Res Technol 23(01):5681–5697CrossRef
31.
Zurück zum Zitat Iraqi Standard Specification (IQS No.5:1984) (1984) Cement standard for Portland cement Iraqi Standard Specification (IQS No.5:1984) (1984) Cement standard for Portland cement
32.
Zurück zum Zitat ASTM C618 (2012) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American society for testing and material ASTM C618 (2012) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American society for testing and material
33.
Zurück zum Zitat Rizwan SA, Bier TA (2012) Blends of limestone powder and fly-ash enhance the response of self-compacting mortars. Constr Build Mater 27(1):398–403CrossRef Rizwan SA, Bier TA (2012) Blends of limestone powder and fly-ash enhance the response of self-compacting mortars. Constr Build Mater 27(1):398–403CrossRef
34.
Zurück zum Zitat ASTM C33 (2013) Standard specification for concrete aggregates. American society for testing and material ASTM C33 (2013) Standard specification for concrete aggregates. American society for testing and material
35.
Zurück zum Zitat ASTM C330 (2017) Standard specification for lightweight aggregates for structural concrete. American society for testing and material ASTM C330 (2017) Standard specification for lightweight aggregates for structural concrete. American society for testing and material
36.
Zurück zum Zitat ASTM C494 (2013) Standard specification for chemical admixtures for concrete. American society for testing and material ASTM C494 (2013) Standard specification for chemical admixtures for concrete. American society for testing and material
37.
Zurück zum Zitat Mhedi NM (2019) Evaluation of adding waste plastic fibers on ductility of modifiedfoamed concrete. M.Sc thesis, University of Anbar/college of engineering Mhedi NM (2019) Evaluation of adding waste plastic fibers on ductility of modifiedfoamed concrete. M.Sc thesis, University of Anbar/college of engineering
38.
Zurück zum Zitat EFNARC (2005) The European guidelines for self-compacting concrete: specification, production and use EFNARC (2005) The European guidelines for self-compacting concrete: specification, production and use
39.
Zurück zum Zitat Zeyad AA, Saba AM (2017) Influence of fly ash on the properties of self-compacting fiber reinforced concrete. Glob J Res Eng 3(01):1–8 Zeyad AA, Saba AM (2017) Influence of fly ash on the properties of self-compacting fiber reinforced concrete. Glob J Res Eng 3(01):1–8
40.
Zurück zum Zitat Pannem R, Kumar PP (2019) Comparative study of self-compacting concrete containing lightweight and normal aggregates. Slovak J Civ Eng 27(2):1–8CrossRef Pannem R, Kumar PP (2019) Comparative study of self-compacting concrete containing lightweight and normal aggregates. Slovak J Civ Eng 27(2):1–8CrossRef
41.
Zurück zum Zitat ASTM C567 (2014) Standard test method for determining density of structural lightweight concrete. American society for testing and materia ASTM C567 (2014) Standard test method for determining density of structural lightweight concrete. American society for testing and materia
42.
Zurück zum Zitat BS EN 12390-3 (2009) Testing hardened concrete. Compressive strength of test specimens. British standards institution London, UK BS EN 12390-3 (2009) Testing hardened concrete. Compressive strength of test specimens. British standards institution London, UK
43.
Zurück zum Zitat ASTM C597 (2009) Standard test method for pulse velocity through concrete. American society for testing and material ASTM C597 (2009) Standard test method for pulse velocity through concrete. American society for testing and material
44.
Zurück zum Zitat Penelope A-R, Williams J (2008) Farr’s physics for medical imaging, Second edi. Saunders Elsevier Penelope A-R, Williams J (2008) Farr’s physics for medical imaging, Second edi. Saunders Elsevier
45.
Zurück zum Zitat ASTM C1113 (1990) Test method for thermal conductivity of refractories by hot wire (Platinum resistance thermometer technique). American society for testing and material ASTM C1113 (1990) Test method for thermal conductivity of refractories by hot wire (Platinum resistance thermometer technique). American society for testing and material
46.
Zurück zum Zitat ASTM C1609 (2012) Standard test method for flexural performance of fiber-reinforced concrete (Using beam with third-point loading). American Society for Testing and Material ASTM C1609 (2012) Standard test method for flexural performance of fiber-reinforced concrete (Using beam with third-point loading). American Society for Testing and Material
47.
Zurück zum Zitat ACI commitee 544 (2002) State of the art report on fiber reinforced concrete reported (ACI 544.1 R-96 Reapproved 2002) ACI commitee 544 (2002) State of the art report on fiber reinforced concrete reported (ACI 544.1 R-96 Reapproved 2002)
48.
Zurück zum Zitat Bozkurt N (2014) The high temperature effect on fibre reinforced self compacting lightweight concrete designed with single and hybrid fibres. Acta Phys Pol A 125(2):579–583CrossRef Bozkurt N (2014) The high temperature effect on fibre reinforced self compacting lightweight concrete designed with single and hybrid fibres. Acta Phys Pol A 125(2):579–583CrossRef
49.
Zurück zum Zitat Whitehurst EA (1951) Soniscope tests concrete structures. J Proc 47(2):433–444 Whitehurst EA (1951) Soniscope tests concrete structures. J Proc 47(2):433–444
50.
Zurück zum Zitat Penelope A-R, Williams J (2008) Farr’s physics for medical imaging, Second ed. Saunders Elsevier Penelope A-R, Williams J (2008) Farr’s physics for medical imaging, Second ed. Saunders Elsevier
51.
Zurück zum Zitat Topçu İB, Uygunoğlu T (2010) Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC). Constr Build Mater 24(7):1286–1295CrossRef Topçu İB, Uygunoğlu T (2010) Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC). Constr Build Mater 24(7):1286–1295CrossRef
52.
Zurück zum Zitat Kurt M, Gül MS, Gül R, Aydin AC, Kotan T (2016) The effect of pumice powder on the self-compactability of pumice aggregate lightweight concrete. Constr Build Mater 103:36–46CrossRef Kurt M, Gül MS, Gül R, Aydin AC, Kotan T (2016) The effect of pumice powder on the self-compactability of pumice aggregate lightweight concrete. Constr Build Mater 103:36–46CrossRef
53.
Zurück zum Zitat Yesilata B, Isıker Y, Turgut P (2009) Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Constr Build Mater 23(5):1878–1882CrossRef Yesilata B, Isıker Y, Turgut P (2009) Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Constr Build Mater 23(5):1878–1882CrossRef
54.
Zurück zum Zitat Fraternali F, Ciancia V, Chechile R, Rizzano G, Feo L, Incarnato L (2011) Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Compos Struct 93(9):2368–2374CrossRef Fraternali F, Ciancia V, Chechile R, Rizzano G, Feo L, Incarnato L (2011) Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Compos Struct 93(9):2368–2374CrossRef
55.
Zurück zum Zitat Faisal SK, Irwan JM, Othman N, Ibrahim MHW (2016) Flexural toughness of ring-shaped waste bottle fiber concrete. In: MATEC Web of Conferences, vol 47, p 1002 Faisal SK, Irwan JM, Othman N, Ibrahim MHW (2016) Flexural toughness of ring-shaped waste bottle fiber concrete. In: MATEC Web of Conferences, vol 47, p 1002
56.
Zurück zum Zitat Borg RP, Baldacchino O, Ferrara L (2016) Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Constr Build Mater 108:29–47CrossRef Borg RP, Baldacchino O, Ferrara L (2016) Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Constr Build Mater 108:29–47CrossRef
Metadaten
Titel
Fresh, mechanical and impact properties of self-compacting lightweight concrete containing waste PET fibers
verfasst von
Abdulkader Ismail Al-Hadithi
Sara Ali Almawla
Mahmoud Khashaa Mohammed
Publikationsdatum
01.10.2023
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 10/2023
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-023-01223-5

Weitere Artikel der Ausgabe 10/2023

Innovative Infrastructure Solutions 10/2023 Zur Ausgabe