Skip to main content
Erschienen in: Experiments in Fluids 7/2014

01.07.2014 | Review Article

Frictional drag reduction by bubble injection

verfasst von: Yuichi Murai

Erschienen in: Experiments in Fluids | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void–drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids 19:041301 Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids 19:041301
Zurück zum Zitat Aliseda A, Lasheras JC (2006) Effect of buoyancy on the dynamics of a turbulent boundary layer laden with microbubbles. J Fluid Mech 559:307–334MATH Aliseda A, Lasheras JC (2006) Effect of buoyancy on the dynamics of a turbulent boundary layer laden with microbubbles. J Fluid Mech 559:307–334MATH
Zurück zum Zitat Amromin E, Mizine I (2003) Partial cavitation as drag reduction technique and problem of active flow control. Mar Technol 40:181–188 Amromin E, Mizine I (2003) Partial cavitation as drag reduction technique and problem of active flow control. Mar Technol 40:181–188
Zurück zum Zitat Amromin E, Karafiath G, Metcalf B (2011) Ship drag reduction by air bottom ventilated cavitation in calm water and in waves. J Ship Res 55:196–207 Amromin E, Karafiath G, Metcalf B (2011) Ship drag reduction by air bottom ventilated cavitation in calm water and in waves. J Ship Res 55:196–207
Zurück zum Zitat Andereck CD, Liu SS, Swinny HL (1986) Flow regimes in a circular Couette system with independently rotating cylinders. J Fluid Mech 164:155–183 Andereck CD, Liu SS, Swinny HL (1986) Flow regimes in a circular Couette system with independently rotating cylinders. J Fluid Mech 164:155–183
Zurück zum Zitat Atkhen K, Fontaine J, Wesfreid JE (2002) Highly turbulent Couette–Taylor bubbly flow patterns. J Fluid Mech 422:55–68 Atkhen K, Fontaine J, Wesfreid JE (2002) Highly turbulent Couette–Taylor bubbly flow patterns. J Fluid Mech 422:55–68
Zurück zum Zitat Batchelor GK (1967) Effective viscosity of dilute dispersion: an introduction to fluid dynamics. Cambridge University Press, Cambridge, pp 246–255 Batchelor GK (1967) Effective viscosity of dilute dispersion: an introduction to fluid dynamics. Cambridge University Press, Cambridge, pp 246–255
Zurück zum Zitat Biesheuvel A, van Wijngaaden L (1984) Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J Fluid Mech 148:301–318MATH Biesheuvel A, van Wijngaaden L (1984) Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J Fluid Mech 148:301–318MATH
Zurück zum Zitat Boffetta G, Celani A, Vergassola M (2000) Inverse energy cascade in two-dimensional turbulence: deviations from Gaussian behavior. Phys Rev E 61:29–32 Boffetta G, Celani A, Vergassola M (2000) Inverse energy cascade in two-dimensional turbulence: deviations from Gaussian behavior. Phys Rev E 61:29–32
Zurück zum Zitat Brücker C (1999) Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys Fluids 11:1781–1796MATHMathSciNet Brücker C (1999) Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys Fluids 11:1781–1796MATHMathSciNet
Zurück zum Zitat Bunner B, Tryggvason G (2003) Effect of bubble deformation on the properties of bubbly flow. J Fluid Mech 495:77–118MATHMathSciNet Bunner B, Tryggvason G (2003) Effect of bubble deformation on the properties of bubbly flow. J Fluid Mech 495:77–118MATHMathSciNet
Zurück zum Zitat Callenaere M, Franc JP, Michel JM, Riondet M (2001) The cavitation instability induced by the development of a re-entrant jet. J Fluid Mech 444:223–256MATH Callenaere M, Franc JP, Michel JM, Riondet M (2001) The cavitation instability induced by the development of a re-entrant jet. J Fluid Mech 444:223–256MATH
Zurück zum Zitat Ceccio S (2010) Frictional drag reduction of external flows with bubble and gas injection. Annu Rev Fluid Mech 42:183–203 Ceccio S (2010) Frictional drag reduction of external flows with bubble and gas injection. Annu Rev Fluid Mech 42:183–203
Zurück zum Zitat Chouippe A, Climent E, Legendre D, Gabillet C (2014) Numerical simulation of bubble dispersion in turbulent Taylor–Couette flow. Phys Fluids 26:043304 Chouippe A, Climent E, Legendre D, Gabillet C (2014) Numerical simulation of bubble dispersion in turbulent Taylor–Couette flow. Phys Fluids 26:043304
Zurück zum Zitat Climent E, Simonnet M, Magnaudet J (2007) Preferential accumulation of bubbles in Couette–Taylor flow patterns. Phys Fluids 19:083301 Climent E, Simonnet M, Magnaudet J (2007) Preferential accumulation of bubbles in Couette–Taylor flow patterns. Phys Fluids 19:083301
Zurück zum Zitat Crowe CT, Troutt TR, Chung JN (1996) Numerical models for two-phase turbulent flows. Annu Rev Fluid Mech 28:11–43MathSciNet Crowe CT, Troutt TR, Chung JN (1996) Numerical models for two-phase turbulent flows. Annu Rev Fluid Mech 28:11–43MathSciNet
Zurück zum Zitat Cui Z, Fan JM, Park AH (2003) Drag coefficients for a settling sphere with microbubble drag reduction effects. Power Technol 138:132–134 Cui Z, Fan JM, Park AH (2003) Drag coefficients for a settling sphere with microbubble drag reduction effects. Power Technol 138:132–134
Zurück zum Zitat Djeridi H, Gabillet C, Billard Y (2004) Two-phase Couette–Taylor flow: arrangement of the dispersed phase and effect on the flow structure. Phys Fluids 16:128–139 Djeridi H, Gabillet C, Billard Y (2004) Two-phase Couette–Taylor flow: arrangement of the dispersed phase and effect on the flow structure. Phys Fluids 16:128–139
Zurück zum Zitat Doi M, Ohta T (1991) Dynamics and rheology of complex interfaces I. J Chem Phys 95(2):1242–1247 Doi M, Ohta T (1991) Dynamics and rheology of complex interfaces I. J Chem Phys 95(2):1242–1247
Zurück zum Zitat Dominguez-Lerma MA, Ahlers G, Channell DS (1985) Effects of Kalliroscope flow visualization particles on rotating Couette–Taylor flow. Phys Fluids 28:1204–1206 Dominguez-Lerma MA, Ahlers G, Channell DS (1985) Effects of Kalliroscope flow visualization particles on rotating Couette–Taylor flow. Phys Fluids 28:1204–1206
Zurück zum Zitat Einstein A (1906) Eine neue Bestimmung der Molekuldimensionen. Ann Phys 19:289–306MATH Einstein A (1906) Eine neue Bestimmung der Molekuldimensionen. Ann Phys 19:289–306MATH
Zurück zum Zitat Elbing BR, Winkel ES, Lay KA, Ceccio SL, Dowling DR, Perlin M (2008) Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J Fluid Mech 612:201–236MATH Elbing BR, Winkel ES, Lay KA, Ceccio SL, Dowling DR, Perlin M (2008) Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J Fluid Mech 612:201–236MATH
Zurück zum Zitat Elbing BR, Mäkiharju S, Wiggins A, Perlin M, Dowling DR, Ceccio SL (2013) On the scaling of air layer drag reduction. J Fluid Mech 717:484–513MATH Elbing BR, Mäkiharju S, Wiggins A, Perlin M, Dowling DR, Ceccio SL (2013) On the scaling of air layer drag reduction. J Fluid Mech 717:484–513MATH
Zurück zum Zitat Felton K, Loth E (2001) Spherical bubble motion in a turbulent boundary layer. Phys Fluids 13:2564–2577 Felton K, Loth E (2001) Spherical bubble motion in a turbulent boundary layer. Phys Fluids 13:2564–2577
Zurück zum Zitat Felton K, Loth E (2002) Diffusion of spherical bubbles in a turbulent boundary layer. Int J Multiph Flow 28:69–92MATH Felton K, Loth E (2002) Diffusion of spherical bubbles in a turbulent boundary layer. Int J Multiph Flow 28:69–92MATH
Zurück zum Zitat Ferrante A, Elghobashi S (2004) On the physical mechanism of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J Fluid Mech 503:345–355MATH Ferrante A, Elghobashi S (2004) On the physical mechanism of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J Fluid Mech 503:345–355MATH
Zurück zum Zitat Ferrante A, Elghobashi S (2005) Reynolds number effect of drag reduction in a microbubble-laden spatially developing turbulent boundary layer. J Fluid Mech 543:93–106 Ferrante A, Elghobashi S (2005) Reynolds number effect of drag reduction in a microbubble-laden spatially developing turbulent boundary layer. J Fluid Mech 543:93–106
Zurück zum Zitat Fischer F, Hampel U (2010) Ultra fast electron beam X-ray computed tomography for two-phase flow measurement. Nuclear Eng Des 240(9):2254–2259 Fischer F, Hampel U (2010) Ultra fast electron beam X-ray computed tomography for two-phase flow measurement. Nuclear Eng Des 240(9):2254–2259
Zurück zum Zitat Foeth EJ, Eggers R, Quadvlieg EHHA (2010) The efficiency of air-bubble lubrication for decreasing friction resistance. Prof. int. conf. ship drag reduction (SMOOTH-SHIPS), Instanbul, Turkey. Paper No. 12, pp 9 Foeth EJ, Eggers R, Quadvlieg EHHA (2010) The efficiency of air-bubble lubrication for decreasing friction resistance. Prof. int. conf. ship drag reduction (SMOOTH-SHIPS), Instanbul, Turkey. Paper No. 12, pp 9
Zurück zum Zitat Frankel NA, Acrivos A (1970) The constitutive equation for a dilute emulsion. J Fluid Mech 44:65–78MATH Frankel NA, Acrivos A (1970) The constitutive equation for a dilute emulsion. J Fluid Mech 44:65–78MATH
Zurück zum Zitat Fujikawa S, Yano Y, Watanabe M (2011) Vapor–liquid interfaces, bubbles and droplets: fundamentals and applications. Series of heat and mass transfer. Springer, Berlin Fujikawa S, Yano Y, Watanabe M (2011) Vapor–liquid interfaces, bubbles and droplets: fundamentals and applications. Series of heat and mass transfer. Springer, Berlin
Zurück zum Zitat Fujiwara A, Minato D, Hishida K (2004) Effect of bubble diameter on modification of turbulence in an upward pipe flow. Int J Heat Fluid Flow 25:481–488 Fujiwara A, Minato D, Hishida K (2004) Effect of bubble diameter on modification of turbulence in an upward pipe flow. Int J Heat Fluid Flow 25:481–488
Zurück zum Zitat Fukagata K, Iwamoto K, Kasagi N (2002) Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids 14:L73–L76 Fukagata K, Iwamoto K, Kasagi N (2002) Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids 14:L73–L76
Zurück zum Zitat Fukuda K, Tokunaga J, Nobunaga T, Nakatani T, Iwasaki T (2000) Frictional drag reduction with air lubricant over a super-water-repellent surface. J Mar Sci Technol 5:123–130 Fukuda K, Tokunaga J, Nobunaga T, Nakatani T, Iwasaki T (2000) Frictional drag reduction with air lubricant over a super-water-repellent surface. J Mar Sci Technol 5:123–130
Zurück zum Zitat Gabillet C, Colin C, Fabre J (2002) Experimental study of bubble injection in a turbulent boundary layer. Int J Multiph Flow 28:553–578MATH Gabillet C, Colin C, Fabre J (2002) Experimental study of bubble injection in a turbulent boundary layer. Int J Multiph Flow 28:553–578MATH
Zurück zum Zitat Gao T, Hu HH, Castaneda PP (2011) Rheology of a suspension of elastic particles in a viscous shear flow. J Fluid Mech 687:209–237MATHMathSciNet Gao T, Hu HH, Castaneda PP (2011) Rheology of a suspension of elastic particles in a viscous shear flow. J Fluid Mech 687:209–237MATHMathSciNet
Zurück zum Zitat Gore RA, Crowe CT (1989) Effect of particle size on modulating turbulent intensity. Int J Multiph Flow 15:279–285 Gore RA, Crowe CT (1989) Effect of particle size on modulating turbulent intensity. Int J Multiph Flow 15:279–285
Zurück zum Zitat Gore RA, Crowe CT (1991) Modulation of turbulence by a dispersed phase. J Fluids Eng 113:304–307 Gore RA, Crowe CT (1991) Modulation of turbulence by a dispersed phase. J Fluids Eng 113:304–307
Zurück zum Zitat Guin MM, Kato H, Yamaguchi H, Maeda M, Miyanaga M (1996) Reduction of skin friction by microbubbles and its relation with near wall bubble concentration in a channel. J Mar Sci Technol 1:241–254 Guin MM, Kato H, Yamaguchi H, Maeda M, Miyanaga M (1996) Reduction of skin friction by microbubbles and its relation with near wall bubble concentration in a channel. J Mar Sci Technol 1:241–254
Zurück zum Zitat Hara K, Suzuki T, Yamamoto F (2011) Image analysis applied to study on frictional drag reduction by electrolytic microbubbles in a turbulent channel flow. Exp Fluids 50:715–727 Hara K, Suzuki T, Yamamoto F (2011) Image analysis applied to study on frictional drag reduction by electrolytic microbubbles in a turbulent channel flow. Exp Fluids 50:715–727
Zurück zum Zitat Hardalupas A, Sahu S, Taylor AMKP, Zarogoulidis K (2010) Simultaneous planer measurement of droplet velocity and size with gas phase velocities in a spray by combined ILIDS and PIV techniques. Exp Fluids 49:417–434 Hardalupas A, Sahu S, Taylor AMKP, Zarogoulidis K (2010) Simultaneous planer measurement of droplet velocity and size with gas phase velocities in a spray by combined ILIDS and PIV techniques. Exp Fluids 49:417–434
Zurück zum Zitat Hassan YA, Ortiz-Villafuerte J (2003) Investigation of microbubble boundary layer using particle image velocimetry. In: Proceedings of ASME FEDSM’03 -45639 [CD-ROM], Fourth ASME-JSME Joint Fluids Engineering Conference, Honolulu, HI Hassan YA, Ortiz-Villafuerte J (2003) Investigation of microbubble boundary layer using particle image velocimetry. In: Proceedings of ASME FEDSM’03 -45639 [CD-ROM], Fourth ASME-JSME Joint Fluids Engineering Conference, Honolulu, HI
Zurück zum Zitat Hassan YA, Gutierrez Torres CC, Jimenez-Bernal JA (2005) Temporal correlation modification by microbubbles injection in a channel flow. Int Commun Heat Mass Transf 32:1009–1015 Hassan YA, Gutierrez Torres CC, Jimenez-Bernal JA (2005) Temporal correlation modification by microbubbles injection in a channel flow. Int Commun Heat Mass Transf 32:1009–1015
Zurück zum Zitat Hesketh RP, Etchells AW, Russell TWF (1991) Bubble breakage in pipeline flow. Chem Eng Sci 46:1–9 Hesketh RP, Etchells AW, Russell TWF (1991) Bubble breakage in pipeline flow. Chem Eng Sci 46:1–9
Zurück zum Zitat Higuchi M, Saito T (2010) Quantitative characterizations of long-period fluctuations in a large-diameter bubble column based on point-wise void fraction measurements. Chem Eng J 160:284–292 Higuchi M, Saito T (2010) Quantitative characterizations of long-period fluctuations in a large-diameter bubble column based on point-wise void fraction measurements. Chem Eng J 160:284–292
Zurück zum Zitat Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1:289–295 Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1:289–295
Zurück zum Zitat Hirata M, Nishiwaki N (1963) Skin friction and heat transfer for liquid flow over a porous wall with gas injection. Int J Heat Mass Transf 6:941–949 Hirata M, Nishiwaki N (1963) Skin friction and heat transfer for liquid flow over a porous wall with gas injection. Int J Heat Mass Transf 6:941–949
Zurück zum Zitat Hosokawa S, Tomiyama A (2004) Turbulence modification in gas–liquid and solid–liquid dispersed two-phase pipe flows. Int J Heat Fluid Flow 25:489–498 Hosokawa S, Tomiyama A (2004) Turbulence modification in gas–liquid and solid–liquid dispersed two-phase pipe flows. Int J Heat Fluid Flow 25:489–498
Zurück zum Zitat Hosokawa S, Tomiyama A (2009) Multi-fluid simulation of turbulent bubbly pipe flows. Chem Eng Sci 64:5308–5318 Hosokawa S, Tomiyama A (2009) Multi-fluid simulation of turbulent bubbly pipe flows. Chem Eng Sci 64:5308–5318
Zurück zum Zitat Hosokawa S, Tomiyama A (2013) Bubble-induced pseudo turbulence in laminar pipe flows. Int J Heat Fluid Flow 40:97–105 Hosokawa S, Tomiyama A (2013) Bubble-induced pseudo turbulence in laminar pipe flows. Int J Heat Fluid Flow 40:97–105
Zurück zum Zitat Hosokawa S, Fukunaga T, Tomiyama (2009) Application of photobleaching molecular tagging velocimetry to turbulent bubbly flow in a square duct. Exp Fluids 47:745–754 Hosokawa S, Fukunaga T, Tomiyama (2009) Application of photobleaching molecular tagging velocimetry to turbulent bubbly flow in a square duct. Exp Fluids 47:745–754
Zurück zum Zitat Huang J, Murai Y, Yamamoto F (2008) Shallow DOF-based particle tracking velocimetry applied to horizontal bubbly wall turbulence. Flow Meas Instrum 19:93–105 Huang J, Murai Y, Yamamoto F (2008) Shallow DOF-based particle tracking velocimetry applied to horizontal bubbly wall turbulence. Flow Meas Instrum 19:93–105
Zurück zum Zitat Huang J, Murai Y, Yamamoto F (2009) Quadrant analysis of bubble induced velocity fluctuation in a transitional boundary layer. J Hydrodyn 21:93–99 Huang J, Murai Y, Yamamoto F (2009) Quadrant analysis of bubble induced velocity fluctuation in a transitional boundary layer. J Hydrodyn 21:93–99
Zurück zum Zitat Hubacz R, Wronski S (2004) Horizontal Couette–Taylor flow in a two-phase gas–liquid system: flow patters. Exp Therm Fluid Sci 28:457–472 Hubacz R, Wronski S (2004) Horizontal Couette–Taylor flow in a two-phase gas–liquid system: flow patters. Exp Therm Fluid Sci 28:457–472
Zurück zum Zitat Ishii M, Hibiki T (2011) Drift-flux model: thermo-fluid dynamics of two-phase flow. Springer, Berlin Ishii M, Hibiki T (2011) Drift-flux model: thermo-fluid dynamics of two-phase flow. Springer, Berlin
Zurück zum Zitat Iwasaki T, Nishimura K, Tanaka M, Hagiwara Y (2001) Direct numerical simulation of turbulent Couette flow with immiscible droplets. Int J Heat Fluid Flow 22:332–342 Iwasaki T, Nishimura K, Tanaka M, Hagiwara Y (2001) Direct numerical simulation of turbulent Couette flow with immiscible droplets. Int J Heat Fluid Flow 22:332–342
Zurück zum Zitat Jacob B, Olivieri A, Miozzi M, Campana EF, Piva R (2010) Drag reduction by microbubbles in a turbulent boundary layer. Phys Fluids 22:115104 Jacob B, Olivieri A, Miozzi M, Campana EF, Piva R (2010) Drag reduction by microbubbles in a turbulent boundary layer. Phys Fluids 22:115104
Zurück zum Zitat Jimenez J (2012) Cascades in wall-bounded turbulence. Annu Rev Fluid Mech 44:27–45 Jimenez J (2012) Cascades in wall-bounded turbulence. Annu Rev Fluid Mech 44:27–45
Zurück zum Zitat Kameda M, Matsumoto Y (1996) Shock waves in a liquid containing small gas bubbles. Phys Fluids 8:322–335MathSciNet Kameda M, Matsumoto Y (1996) Shock waves in a liquid containing small gas bubbles. Phys Fluids 8:322–335MathSciNet
Zurück zum Zitat Kato H, Iwashina T, Miyanaga M, Yamaguchi H (1999) Effect of microbubbles on the structure of turbulence in a turbulent boundary layer. J Mar Sci Technol 4:115–162 Kato H, Iwashina T, Miyanaga M, Yamaguchi H (1999) Effect of microbubbles on the structure of turbulence in a turbulent boundary layer. J Mar Sci Technol 4:115–162
Zurück zum Zitat Katsui T, Okamoto Y, Kasahara Y, Shimoyama N, Iwasaki Y, Soejima S (2003) A study of air lubrication method to reduce frictional resistance of ship: experimental investigation by tanker form model ship and estimation of full scale ship performance. J Kansai Soc Nav Archit Jpn 239:45–53 (in Japanese) Katsui T, Okamoto Y, Kasahara Y, Shimoyama N, Iwasaki Y, Soejima S (2003) A study of air lubrication method to reduce frictional resistance of ship: experimental investigation by tanker form model ship and estimation of full scale ship performance. J Kansai Soc Nav Archit Jpn 239:45–53 (in Japanese)
Zurück zum Zitat Kawaguchi T, Akasaka Y, Maeda M (2002) Size measurement of droplets and bubbles by advanced interferometric laser imaging technique. Meas Sci Technol 13:308 Kawaguchi T, Akasaka Y, Maeda M (2002) Size measurement of droplets and bubbles by advanced interferometric laser imaging technique. Meas Sci Technol 13:308
Zurück zum Zitat Kawamura T, Kodama Y (2002) Numerical simulation method to resolve interactions between bubbles and turbulence. Int J Heat Fluid Flow 23:627–638 Kawamura T, Kodama Y (2002) Numerical simulation method to resolve interactions between bubbles and turbulence. Int J Heat Fluid Flow 23:627–638
Zurück zum Zitat Kim J (2003) Control of turbulent boundary layers. Phys Fluids 15:1093–1106MathSciNet Kim J (2003) Control of turbulent boundary layers. Phys Fluids 15:1093–1106MathSciNet
Zurück zum Zitat Kim SY, Cleaver JW (1995) The persistence of drag reduction following the injection of microbubbles into a turbulent boundary layer. Int Commun Heat Mass Transf 22:353–357 Kim SY, Cleaver JW (1995) The persistence of drag reduction following the injection of microbubbles into a turbulent boundary layer. Int Commun Heat Mass Transf 22:353–357
Zurück zum Zitat Kitagawa A, Murai Y (2013) Natural convection heat transfer from a vertical heated plate in water with microbubble injection. Chem Eng Sci 99:215–224 Kitagawa A, Murai Y (2013) Natural convection heat transfer from a vertical heated plate in water with microbubble injection. Chem Eng Sci 99:215–224
Zurück zum Zitat Kitagawa A, Murai Y (2014) Pulsatory rise of microbubble swarm along a vertical wall. Chem Eng Sci 116:694–703 Kitagawa A, Murai Y (2014) Pulsatory rise of microbubble swarm along a vertical wall. Chem Eng Sci 116:694–703
Zurück zum Zitat Kitagawa A, Murai Y, Yamamoto F (2001) Two-way coupling of Eulerian–Lagrangian model for dispersed multiphase flows using filtering functions. Int J Multiph Flow 27:2129–2153MATH Kitagawa A, Murai Y, Yamamoto F (2001) Two-way coupling of Eulerian–Lagrangian model for dispersed multiphase flows using filtering functions. Int J Multiph Flow 27:2129–2153MATH
Zurück zum Zitat Kitagawa A, Sugiyama K, Murai Y (2004) Experimental detection of bubble–bubble interactions in a wall-sliding bubble swarm. Int J Multiph Flow 30:1213–1234MATH Kitagawa A, Sugiyama K, Murai Y (2004) Experimental detection of bubble–bubble interactions in a wall-sliding bubble swarm. Int J Multiph Flow 30:1213–1234MATH
Zurück zum Zitat Kitagawa A, Hishida K, Kodama Y (2005) Flow structure of microbubble-laden turbulent channel flow measured by PIV combined with the shadow image technique. Exp Fluids 38:466–475 Kitagawa A, Hishida K, Kodama Y (2005) Flow structure of microbubble-laden turbulent channel flow measured by PIV combined with the shadow image technique. Exp Fluids 38:466–475
Zurück zum Zitat Kitagawa A, Kosuge K, Uchida K, Hagiwara Y (2008) Heat transfer enhancement for laminar natural convection along a vertical plate due to sub-millimeter-bubble injection. Exp Fluids 45:473–484 Kitagawa A, Kosuge K, Uchida K, Hagiwara Y (2008) Heat transfer enhancement for laminar natural convection along a vertical plate due to sub-millimeter-bubble injection. Exp Fluids 45:473–484
Zurück zum Zitat Kodama Y, Kakugawa A, Takahashi T, Kawashima H (2000) Experimental study on microbubbles and their applicability to ships for skin friction reduction. Int J Heat Fluid Flow 21:582–588 Kodama Y, Kakugawa A, Takahashi T, Kawashima H (2000) Experimental study on microbubbles and their applicability to ships for skin friction reduction. Int J Heat Fluid Flow 21:582–588
Zurück zum Zitat Kramer MO (1960) Boundary layer stabilization by distributed damping. J Am Soc Nav Eng 72:25–34 Kramer MO (1960) Boundary layer stabilization by distributed damping. J Am Soc Nav Eng 72:25–34
Zurück zum Zitat Kulick JD, Fessler JR, Eaton JK (1994) Particle response and turbulence modification in fully developed channel flow. J Fluid Mech 277:109–134 Kulick JD, Fessler JR, Eaton JK (1994) Particle response and turbulence modification in fully developed channel flow. J Fluid Mech 277:109–134
Zurück zum Zitat Kumagai, I, Nakamura N, Murai Y, Tasaka Y, Takeda Y, Takahashi Y (2010) A new power-saving device for air bubble generation: hydrofoil air pump for ship drag reduction. In: Proceedings of international conference on ship drag reduction, Istanbul (Smooth), pp 95–102 Kumagai, I, Nakamura N, Murai Y, Tasaka Y, Takeda Y, Takahashi Y (2010) A new power-saving device for air bubble generation: hydrofoil air pump for ship drag reduction. In: Proceedings of international conference on ship drag reduction, Istanbul (Smooth), pp 95–102  
Zurück zum Zitat Kwon BH, Kim HH, Jeon HJ, Kim MC, Lee I, Chun S, Go JS (2014) Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles. Exp Fluids 55:1772 Kwon BH, Kim HH, Jeon HJ, Kim MC, Lee I, Chun S, Go JS (2014) Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles. Exp Fluids 55:1772
Zurück zum Zitat L’vov VS, Pomyalov A, Procaccia I, Tiberkevich V (2005) Drag reduction by microbubbles in turbulent flows: the limit of minute bubbles. Phys Rev Let 94:174502 L’vov VS, Pomyalov A, Procaccia I, Tiberkevich V (2005) Drag reduction by microbubbles in turbulent flows: the limit of minute bubbles. Phys Rev Let 94:174502
Zurück zum Zitat La Porta A, Voth GA, Crawford AM, Alexander J, Bodenschatz E (2001) Fluid particle accelerations in fully developed turbulence. Nature 409:1017–1019 La Porta A, Voth GA, Crawford AM, Alexander J, Bodenschatz E (2001) Fluid particle accelerations in fully developed turbulence. Nature 409:1017–1019
Zurück zum Zitat Lance M, Bataille J (1991) Turbulence in the liquid phase of a uniform bubbly air–water flow. J Fliud Mech 222:95–118 Lance M, Bataille J (1991) Turbulence in the liquid phase of a uniform bubbly air–water flow. J Fliud Mech 222:95–118
Zurück zum Zitat Latorre R (1997) Ship hull drag reduction using bottom air injection. Ocean Eng 24:161–175 Latorre R (1997) Ship hull drag reduction using bottom air injection. Ocean Eng 24:161–175
Zurück zum Zitat Latorre R, Miller A, Philips R (2003) Micro-bubble resistance reduction on a model SES catamaran. Ocean Eng 30:2297–2309 Latorre R, Miller A, Philips R (2003) Micro-bubble resistance reduction on a model SES catamaran. Ocean Eng 30:2297–2309
Zurück zum Zitat Lay KA, Yakushiji R, Makiharju S, Perlin M, Ceccio SL (2010) Partial cavity drag reduction at high Reynolds number. J Ship Res 54:109–119 Lay KA, Yakushiji R, Makiharju S, Perlin M, Ceccio SL (2010) Partial cavity drag reduction at high Reynolds number. J Ship Res 54:109–119
Zurück zum Zitat Lee CY, Kim CJ (2011) Underwater restoration and retention of gases on superhyrdophibic surfaces for drag reduction. Phys Rev Lett 106:014502 Lee CY, Kim CJ (2011) Underwater restoration and retention of gases on superhyrdophibic surfaces for drag reduction. Phys Rev Lett 106:014502
Zurück zum Zitat Legner HH (1984) Simple model for gas bubble drag reduction. Phys Fluids 27:2788–2790 Legner HH (1984) Simple model for gas bubble drag reduction. Phys Fluids 27:2788–2790
Zurück zum Zitat Lelouvetel J, Tanaka T, Sato Y, Hishida K (2014) Transport mechanisms of the turbulent energy cascade in upward/downward bubbly flows. J Fluid Mech 741:514–542MathSciNet Lelouvetel J, Tanaka T, Sato Y, Hishida K (2014) Transport mechanisms of the turbulent energy cascade in upward/downward bubbly flows. J Fluid Mech 741:514–542MathSciNet
Zurück zum Zitat Li FC, Kawaguchi Y, Yu B, Wei JJ, Hishida K (2008) Experimental study of drag-reduction mechanism for a dilute surfactant solution flow. Int J Heat Mass Transf 51:835–843 Li FC, Kawaguchi Y, Yu B, Wei JJ, Hishida K (2008) Experimental study of drag-reduction mechanism for a dilute surfactant solution flow. Int J Heat Mass Transf 51:835–843
Zurück zum Zitat Liu TJ (1997) Investigation of the wall shear stress in vertical bubbly flow under different bubble size conditions. Int J Multiph Flow 23:1085–1109MATH Liu TJ (1997) Investigation of the wall shear stress in vertical bubbly flow under different bubble size conditions. Int J Multiph Flow 23:1085–1109MATH
Zurück zum Zitat Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143:205–217 Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143:205–217
Zurück zum Zitat Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase two-component flow in pipes. Chem Eng Process 45:39–48 Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase two-component flow in pipes. Chem Eng Process 45:39–48
Zurück zum Zitat Lu J, Tryggvason G (2007) Effect of bubble size in turbulent bubbly downflow in a vertical channel. Chem Eng Sci 62:3008–3018 Lu J, Tryggvason G (2007) Effect of bubble size in turbulent bubbly downflow in a vertical channel. Chem Eng Sci 62:3008–3018
Zurück zum Zitat Lu J, Fernandez A, Tryggvason G (2005a) The effect of bubbles on the wall drag in a turbulent channel flow. Phys Fluids 17(095102):1–12 Lu J, Fernandez A, Tryggvason G (2005a) The effect of bubbles on the wall drag in a turbulent channel flow. Phys Fluids 17(095102):1–12
Zurück zum Zitat Lu X, Hamada M, Kato H (2005b) Effect of the turbulent frictional drag reduction of microbubbles: experiments by bubbles of air and hydrogen. In: Proc. fluid eng. conf. of Japan soc. mech. eng. (JSME), Paper No. 509:69–70 Lu X, Hamada M, Kato H (2005b) Effect of the turbulent frictional drag reduction of microbubbles: experiments by bubbles of air and hydrogen. In: Proc. fluid eng. conf. of Japan soc. mech. eng. (JSME), Paper No. 509:69–70
Zurück zum Zitat Lundin MD, McCready MJ (2009) Modeling of bubble coalescence in bubbly co-current flows restricted by confined geometry. Chem Eng Sci 64:4060–6067 Lundin MD, McCready MJ (2009) Modeling of bubble coalescence in bubbly co-current flows restricted by confined geometry. Chem Eng Sci 64:4060–6067
Zurück zum Zitat Luo R, Song Q, Yang XY, Wang Z (2002) A three-dimensional photographic method for measurement of phase distribution in dilute bubble flow. Exp Fluids 32:116–120 Luo R, Song Q, Yang XY, Wang Z (2002) A three-dimensional photographic method for measurement of phase distribution in dilute bubble flow. Exp Fluids 32:116–120
Zurück zum Zitat Luther S, Rensen J, Guet S (2004) Bubble aspect ratio and velocity measurement using a four-point fiber-optical probe. Exp Fluids 36:326–333 Luther S, Rensen J, Guet S (2004) Bubble aspect ratio and velocity measurement using a four-point fiber-optical probe. Exp Fluids 36:326–333
Zurück zum Zitat Madavan NK, Deutsch S, Merkle CL (1985) Measurements of local skin friction in microbubble-modified turbulent boundary layer. J Fluid Mech 156:237–256 Madavan NK, Deutsch S, Merkle CL (1985) Measurements of local skin friction in microbubble-modified turbulent boundary layer. J Fluid Mech 156:237–256
Zurück zum Zitat Magnaudet J, Eames I (2000) The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu Rev Fluid Mech 32:659–708MathSciNet Magnaudet J, Eames I (2000) The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu Rev Fluid Mech 32:659–708MathSciNet
Zurück zum Zitat Mäkiharju SA, Perlin M, Ceccio SL (2012) On the energy economics of air lubrication drag reduction. Int J Nav Archit Ocean Eng 4(4):412–422 Mäkiharju SA, Perlin M, Ceccio SL (2012) On the energy economics of air lubrication drag reduction. Int J Nav Archit Ocean Eng 4(4):412–422
Zurück zum Zitat Mäkiharju SA, Elbing BR, Wiggins A, Schinasi S, Vanden-Broeck JM, Perlin M, Ceccio SL (2013a) On the scaling of air entrainment from a ventilated partial cavity. J Fluid Mech 732:47–76 Mäkiharju SA, Elbing BR, Wiggins A, Schinasi S, Vanden-Broeck JM, Perlin M, Ceccio SL (2013a) On the scaling of air entrainment from a ventilated partial cavity. J Fluid Mech 732:47–76
Zurück zum Zitat Mäkiharju SA, Gabillet C, Paik BG, Chang NA, Perlin M, Ceccio SL (2013b) Time-resolved two-dimensional X-ray densitometry of a two-phase flow downstream of a ventilated cavity. Exp Fluids 54(7):1561 Mäkiharju SA, Gabillet C, Paik BG, Chang NA, Perlin M, Ceccio SL (2013b) Time-resolved two-dimensional X-ray densitometry of a two-phase flow downstream of a ventilated cavity. Exp Fluids 54(7):1561
Zurück zum Zitat Marie JL (1987) A simple analytical formulation for microbubble drag reduction. J PhysicoChem Hydrodyn 13:213–220 Marie JL (1987) A simple analytical formulation for microbubble drag reduction. J PhysicoChem Hydrodyn 13:213–220
Zurück zum Zitat Masliyah J, Jauhari R, Gray M (1994) Drag coefficient for air bubbles rising along an inclined surface. Chem Eng Sci 49:1905–1911 Masliyah J, Jauhari R, Gray M (1994) Drag coefficient for air bubbles rising along an inclined surface. Chem Eng Sci 49:1905–1911
Zurück zum Zitat Matveev KI (2007) Three dimensional wave patterns in long air cavities on a horizontal plane. Ocean Eng 34:1882–1891 Matveev KI (2007) Three dimensional wave patterns in long air cavities on a horizontal plane. Ocean Eng 34:1882–1891
Zurück zum Zitat Maxey MR, Chang EJ, Wang LP (1996) Interaction of particles and microbubbles with turbulence. Exp Therm Fluid Sci 12:417–425 Maxey MR, Chang EJ, Wang LP (1996) Interaction of particles and microbubbles with turbulence. Exp Therm Fluid Sci 12:417–425
Zurück zum Zitat McCormick M, Bhattacharyya R (1973) Drag reduction of a submersible hull by electrolysis. Nav Eng J 85:11–16 McCormick M, Bhattacharyya R (1973) Drag reduction of a submersible hull by electrolysis. Nav Eng J 85:11–16
Zurück zum Zitat Mehel A, Gabillet C, Djeridi H (2007) Analysis of the flow pattern modifications in a bubbly Couette–Taylor flow. Phys Fluids 19:118101 Mehel A, Gabillet C, Djeridi H (2007) Analysis of the flow pattern modifications in a bubbly Couette–Taylor flow. Phys Fluids 19:118101
Zurück zum Zitat Merkle CL, Deutsch S (1990) Drag reduction in liquid boundary layers by gas injection. Prog Astronaut Aeronaut 123:351–411 Merkle CL, Deutsch S (1990) Drag reduction in liquid boundary layers by gas injection. Prog Astronaut Aeronaut 123:351–411
Zurück zum Zitat Merkle CL, Deutsch S (1992) Microbubble drag reduction in liquid turbulent boundary layers. ASME Appl Mech Rev 45:103–127 Merkle CL, Deutsch S (1992) Microbubble drag reduction in liquid turbulent boundary layers. ASME Appl Mech Rev 45:103–127
Zurück zum Zitat Michaelides EE (1997) The transient equation of motion for particles, bubbles, and droplets. J Fluids Eng 119:233–247 Michaelides EE (1997) The transient equation of motion for particles, bubbles, and droplets. J Fluids Eng 119:233–247
Zurück zum Zitat Michel JM (1984) Some features of water flows with ventilated cavities. J Fluid Eng 106(3):319–326 Michel JM (1984) Some features of water flows with ventilated cavities. J Fluid Eng 106(3):319–326
Zurück zum Zitat Mizokami S, Kawakita C, Kodan Y, Takano S, Higasa S, Shigenaga R (2010) Experimental study of air lubrication method and verification of effects on actual hull by means of sea trial. Mitsubishi Heavy Ind Techn Rev 47(3):41–47 Mizokami S, Kawakita C, Kodan Y, Takano S, Higasa S, Shigenaga R (2010) Experimental study of air lubrication method and verification of effects on actual hull by means of sea trial. Mitsubishi Heavy Ind Techn Rev 47(3):41–47
Zurück zum Zitat Moctezuma MF, Lima-Ochoterena R, Zenit R (2005) Velocity fluctuations resulting from the interaction of a bubble with a vertical wall. Phys Fluids 17:098106 Moctezuma MF, Lima-Ochoterena R, Zenit R (2005) Velocity fluctuations resulting from the interaction of a bubble with a vertical wall. Phys Fluids 17:098106
Zurück zum Zitat Moriguchi Y, Kato H (2002) Influence of microbubble diameter and distribution on frictional resistance reduction. J Mar Sci Technol 7:79–85 Moriguchi Y, Kato H (2002) Influence of microbubble diameter and distribution on frictional resistance reduction. J Mar Sci Technol 7:79–85
Zurück zum Zitat Murai Y, Oiwa H (2008) Increase of effective viscosity in bubbly liquids from transient bubble deformation. Fluid Dyn Res 40:565–575MATH Murai Y, Oiwa H (2008) Increase of effective viscosity in bubbly liquids from transient bubble deformation. Fluid Dyn Res 40:565–575MATH
Zurück zum Zitat Murai Y, Matsumoto Y, Yamamoto F (2001) Three-dimensional measurement of void fraction in a bubble plume using statistic stereoscopic image processing. Exp Fluids 30:11–21 Murai Y, Matsumoto Y, Yamamoto F (2001) Three-dimensional measurement of void fraction in a bubble plume using statistic stereoscopic image processing. Exp Fluids 30:11–21
Zurück zum Zitat Murai Y, Oishi Y, Sasaki T, Kodama Y, Yamamoto F (2005a) Turbulent shear stress profiles in a horizontal bubbly channel flow. In: Proceedings of 6th international symposium on smart control of turbulence 2005, Tokyo, 289–295 Murai Y, Oishi Y, Sasaki T, Kodama Y, Yamamoto F (2005a) Turbulent shear stress profiles in a horizontal bubbly channel flow. In: Proceedings of 6th international symposium on smart control of turbulence 2005, Tokyo, 289–295
Zurück zum Zitat Murai Y, Sasaki T, Ishikawa M, Yamamoto F (2005b) Bubble-driven convection around cylinders confined in a channel. J Fluids Eng 127:117–123 Murai Y, Sasaki T, Ishikawa M, Yamamoto F (2005b) Bubble-driven convection around cylinders confined in a channel. J Fluids Eng 127:117–123
Zurück zum Zitat Murai Y, Fujii H, Tasaka Y, Takeda Y (2006a) Turbulent bubbly channel flow investigated by ultrasound velocity profiler. J Fluid Sci Technol 1:12–23 Murai Y, Fujii H, Tasaka Y, Takeda Y (2006a) Turbulent bubbly channel flow investigated by ultrasound velocity profiler. J Fluid Sci Technol 1:12–23
Zurück zum Zitat Murai Y, Oishi Y, Takeda Y, Yamamoto F (2006b) Turbulent shear stress profiles in a bubbly channel flow assessed by particle tracking velocimetry. Exp Fluids 41:343–352 Murai Y, Oishi Y, Takeda Y, Yamamoto F (2006b) Turbulent shear stress profiles in a bubbly channel flow assessed by particle tracking velocimetry. Exp Fluids 41:343–352
Zurück zum Zitat Murai Y, Qu JW, Yamamoto F (2006c) Three dimensional interaction of bubbles at intermediate Reynolds numbers. Multiph Sci Technol 18:175–197 Murai Y, Qu JW, Yamamoto F (2006c) Three dimensional interaction of bubbles at intermediate Reynolds numbers. Multiph Sci Technol 18:175–197
Zurück zum Zitat Murai Y, Fukuda H, Oishi Y, Kodama Y, Yamamoto F (2007) Skin friction reduction by large air bubbles in a horizontal channel flow. Int J Multiph Flow 33:147–163 Murai Y, Fukuda H, Oishi Y, Kodama Y, Yamamoto F (2007) Skin friction reduction by large air bubbles in a horizontal channel flow. Int J Multiph Flow 33:147–163
Zurück zum Zitat Murai Y, Oiwa H, Takeda Y (2008) Frictional drag reduction in bubbly Couette-Taylor flow. Phys Fluids 20:034101 Murai Y, Oiwa H, Takeda Y (2008) Frictional drag reduction in bubbly Couette-Taylor flow. Phys Fluids 20:034101
Zurück zum Zitat Murai Y, Ohta S, Shigetomi A, Tasaka Y, Takeda Y (2009) Development of an ultrasonic void fraction profiler. Meas Sci Technol 20:114003 Murai Y, Ohta S, Shigetomi A, Tasaka Y, Takeda Y (2009) Development of an ultrasonic void fraction profiler. Meas Sci Technol 20:114003
Zurück zum Zitat Murai Y, Tasaka Y, Nambu Y, Takeda Y, Gonzalez SR (2010) Ultrasonic detection of moving interfaces in gas–liquid two-phase flow. Flow Meas Instrum 21:356–366 Murai Y, Tasaka Y, Nambu Y, Takeda Y, Gonzalez SR (2010) Ultrasonic detection of moving interfaces in gas–liquid two-phase flow. Flow Meas Instrum 21:356–366
Zurück zum Zitat Narayanan C, Lakehal D (2003) Mechanism of particle deposition in a fully developed turbulent open channel flow. Phys Fluids 15:763–775 Narayanan C, Lakehal D (2003) Mechanism of particle deposition in a fully developed turbulent open channel flow. Phys Fluids 15:763–775
Zurück zum Zitat Oishi Y, Murai Y (2014) Horizontal turbulent channel flow interacted by a single large bubble. Exp Therm Fluid Sci 55:128–139 Oishi Y, Murai Y (2014) Horizontal turbulent channel flow interacted by a single large bubble. Exp Therm Fluid Sci 55:128–139
Zurück zum Zitat Oishi Y, Murai Y, Tasaka Y, Takeda Y (2009) Frictional drag reduction by wavy advection of deformable bubbles. J Phys Conf Ser 147:012020 Oishi Y, Murai Y, Tasaka Y, Takeda Y (2009) Frictional drag reduction by wavy advection of deformable bubbles. J Phys Conf Ser 147:012020
Zurück zum Zitat Ortiz-Villafuerte J, Hassan YA (2006) Investigation of microbubble boundary layer using particle tracking velocimetry. J Fluids Eng 128:507–519 Ortiz-Villafuerte J, Hassan YA (2006) Investigation of microbubble boundary layer using particle tracking velocimetry. J Fluids Eng 128:507–519
Zurück zum Zitat Ouellette NT (2012) Turbulence in two dimensions. Phys Today 68–69 Ouellette NT (2012) Turbulence in two dimensions. Phys Today 68–69
Zurück zum Zitat Pang MJ, Wei JJ, Yu B (2013) Numerical study on modulation of microbubbles on turbulence frictional drag in a horizontal channel. Ocean Eng 81:58–68 Pang MJ, Wei JJ, Yu B (2013) Numerical study on modulation of microbubbles on turbulence frictional drag in a horizontal channel. Ocean Eng 81:58–68
Zurück zum Zitat Park HJ, Oishi Y, Tasaka Y, Murai Y, Takeda Y (2009) Turbulent shear control with oscillatory bubble injection. J Phys Conf Ser 147:012037 Park HJ, Oishi Y, Tasaka Y, Murai Y, Takeda Y (2009) Turbulent shear control with oscillatory bubble injection. J Phys Conf Ser 147:012037
Zurück zum Zitat Park HJ, Tasaka Y, Murai Y, Oishi Y (2014) Vortical structures swept by a bubble swarm in turbulent boundary layers. Chem Eng Sci 116:486–496 Park HJ, Tasaka Y, Murai Y, Oishi Y (2014) Vortical structures swept by a bubble swarm in turbulent boundary layers. Chem Eng Sci 116:486–496
Zurück zum Zitat Piomelli U, Yuan J (2013) Numerical simulation of spatially developing, accelerating boundary layer. Phys Fluids 25:101304 Piomelli U, Yuan J (2013) Numerical simulation of spatially developing, accelerating boundary layer. Phys Fluids 25:101304
Zurück zum Zitat Poreh M, Cermak JE (1964) Study of diffusion from a line source in a turbulent boundary layer. Int J Heat Mass Transf 7:1083–1095 Poreh M, Cermak JE (1964) Study of diffusion from a line source in a turbulent boundary layer. Int J Heat Mass Transf 7:1083–1095
Zurück zum Zitat Prasser HM, Scholz D, Zippe C (2001) Bubble size measurement using wire-mesh sensors. Flow Meas Instrum 12:299–312 Prasser HM, Scholz D, Zippe C (2001) Bubble size measurement using wire-mesh sensors. Flow Meas Instrum 12:299–312
Zurück zum Zitat Prosperetti A (2012) Linear oscillations of constrained drops, bubbles, and plane liquid surfaces. Phys Fluids 24:032109MathSciNet Prosperetti A (2012) Linear oscillations of constrained drops, bubbles, and plane liquid surfaces. Phys Fluids 24:032109MathSciNet
Zurück zum Zitat Rensen J, Luther S, de Vries J, Lohse D (2005a) Hot-film anemometry in bubbly flow I: bubble–probe interaction. Int J Multiph Flow 31:285–301MATH Rensen J, Luther S, de Vries J, Lohse D (2005a) Hot-film anemometry in bubbly flow I: bubble–probe interaction. Int J Multiph Flow 31:285–301MATH
Zurück zum Zitat Rensen J, Luther S, Lohse D (2005b) The effect of bubbles on developed turbulence. J Fluid Mech 538:153–187MATH Rensen J, Luther S, Lohse D (2005b) The effect of bubbles on developed turbulence. J Fluid Mech 538:153–187MATH
Zurück zum Zitat Richter S, Aritomi M, Prasser HM, Humpel R (2002) Approach towards spatial phase reconstruction in transient bubbly flow using a wire-mesh sensor. Int J Heat Mass Transf 45:1063–1075 Richter S, Aritomi M, Prasser HM, Humpel R (2002) Approach towards spatial phase reconstruction in transient bubbly flow using a wire-mesh sensor. Int J Heat Mass Transf 45:1063–1075
Zurück zum Zitat Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23:601–639 Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23:601–639
Zurück zum Zitat Ronen D (1982) The effect of oil price on the optimal speed of ships. J Oper Res 33:1035–1040 Ronen D (1982) The effect of oil price on the optimal speed of ships. J Oper Res 33:1035–1040
Zurück zum Zitat Rust AC, Manga M (2002a) Effects of bubble deformation in the viscosity of dilute suspensions. J Non-Newton Fluid Mech 104:53–63MATH Rust AC, Manga M (2002a) Effects of bubble deformation in the viscosity of dilute suspensions. J Non-Newton Fluid Mech 104:53–63MATH
Zurück zum Zitat Rust AC, Manga M (2002b) Bubble shapes and orientations in low Re simple shear flow. J Colloid Interface Sci 249:476–480 Rust AC, Manga M (2002b) Bubble shapes and orientations in low Re simple shear flow. J Colloid Interface Sci 249:476–480
Zurück zum Zitat Ryskin G, Leal LG (1984) Numerical solution of free-boundary problems in fluid mechanics: part 1 the finite-difference technique. J Fluid Mech 148:1–17MATH Ryskin G, Leal LG (1984) Numerical solution of free-boundary problems in fluid mechanics: part 1 the finite-difference technique. J Fluid Mech 148:1–17MATH
Zurück zum Zitat Sakurai K, Tasaka Y, Murai Y (2013) Modification of effective viscosity on bubbly flows due to transient bubble deformation. Trans. Japan Soc. Mech. Eng., Ser. B, 79: 1–11 (in Japanese). English version of similar contents: Murai Y, Tasaka Y, Sakurai K, Oyama K, Takeda Y (2010) Ultrasound Doppler rheometry from spin response of viscoelastic and bubbly Liquids. In: Proceedings 7th international symposium on ultrasonic Doppler methods, Gothenburg, Sweden, 9–12 Sakurai K, Tasaka Y, Murai Y (2013) Modification of effective viscosity on bubbly flows due to transient bubble deformation. Trans. Japan Soc. Mech. Eng., Ser. B, 79: 1–11 (in Japanese). English version of similar contents: Murai Y, Tasaka Y, Sakurai K, Oyama K, Takeda Y (2010) Ultrasound Doppler rheometry from spin response of viscoelastic and bubbly Liquids. In: Proceedings 7th international symposium on ultrasonic Doppler methods, Gothenburg, Sweden, 9–12
Zurück zum Zitat Sanders WC, Winkel ES, Dowling DR, Perlin M, Ceccio SL (2006) Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J Fluid Mech 552:353–380MATH Sanders WC, Winkel ES, Dowling DR, Perlin M, Ceccio SL (2006) Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J Fluid Mech 552:353–380MATH
Zurück zum Zitat Sangani AS, Didwania AK (1993) Dynamic simulations of flows of bubbly liquids at large Reynolds numbers. J Fluid Mech 250:307–337MATH Sangani AS, Didwania AK (1993) Dynamic simulations of flows of bubbly liquids at large Reynolds numbers. J Fluid Mech 250:307–337MATH
Zurück zum Zitat Sangani AS, Kang SY, Tsao HK, Koch DL (1997) Rheology of dense bubble suspensions. Phys Fluids 9(6):1540–1561 Sangani AS, Kang SY, Tsao HK, Koch DL (1997) Rheology of dense bubble suspensions. Phys Fluids 9(6):1540–1561
Zurück zum Zitat Schowalter WR, Chaffey CE, Brenner H (1968) Rheological behavior of a dilute emulsion. J Colloid Interface Sci 26:152–160 Schowalter WR, Chaffey CE, Brenner H (1968) Rheological behavior of a dilute emulsion. J Colloid Interface Sci 26:152–160
Zurück zum Zitat Seo JH, Lele SK, Tryggvason G (2010) Investigation and modeling of bubble–bubble interaction effect in homogeneous bubbly flows. Phys Fluids 22:063302 Seo JH, Lele SK, Tryggvason G (2010) Investigation and modeling of bubble–bubble interaction effect in homogeneous bubbly flows. Phys Fluids 22:063302
Zurück zum Zitat Serizawa A, Kataoka I (1990) Turbulence suppression in bubbly two-phase flow. Nuclear Eng Des 122:1–16 Serizawa A, Kataoka I (1990) Turbulence suppression in bubbly two-phase flow. Nuclear Eng Des 122:1–16
Zurück zum Zitat Serizawa A, Inui T, Eguchi T (2005) Flow characteristics and pseudo-laminarization of vertically upward air–water milky bubbly flow with micro bubbles in a pipe. Jpn J Multiph Flow 19:335–340 (in Japanese) Serizawa A, Inui T, Eguchi T (2005) Flow characteristics and pseudo-laminarization of vertically upward air–water milky bubbly flow with micro bubbles in a pipe. Jpn J Multiph Flow 19:335–340 (in Japanese)
Zurück zum Zitat Shen X, Ceccio S, Perlin M (2006) Influence of bubble size on micro-bubble drag reduction. Exp Fluids 41:415–424 Shen X, Ceccio S, Perlin M (2006) Influence of bubble size on micro-bubble drag reduction. Exp Fluids 41:415–424
Zurück zum Zitat Shiomi Y, Kutsuna H, Akagawa K, Ozawa M (1993) Two-phase flow in an annulus with a rotating inner cylinder (flow pattern in bubbly flow region). Nuclear Eng Des 141:27–34 Shiomi Y, Kutsuna H, Akagawa K, Ozawa M (1993) Two-phase flow in an annulus with a rotating inner cylinder (flow pattern in bubbly flow region). Nuclear Eng Des 141:27–34
Zurück zum Zitat So S, Morikita H, Takagi S, Matsumoto Y (2002) Laser Doppler velocimetry measurement of turbulent bubbly channel flow. Exp Fluids 33:135–142 So S, Morikita H, Takagi S, Matsumoto Y (2002) Laser Doppler velocimetry measurement of turbulent bubbly channel flow. Exp Fluids 33:135–142
Zurück zum Zitat Stickel J, Powell RL (2005) Fluid mechanics and rheology of dense suspensions. Annu Rev Fluid Mech 37:129–149MathSciNet Stickel J, Powell RL (2005) Fluid mechanics and rheology of dense suspensions. Annu Rev Fluid Mech 37:129–149MathSciNet
Zurück zum Zitat Stutz B, Legoupil S (2003) X-ray measurements within unsteady cavitation. Exp Fluids 35(2):130–138 Stutz B, Legoupil S (2003) X-ray measurements within unsteady cavitation. Exp Fluids 35(2):130–138
Zurück zum Zitat Sugiyama K, Calzavarini E, Lohse D (2008) Microbubbly drag reduction in Taylor–Couette flow in wavy vortex regime. J Fluid Mech 608:21–41MATH Sugiyama K, Calzavarini E, Lohse D (2008) Microbubbly drag reduction in Taylor–Couette flow in wavy vortex regime. J Fluid Mech 608:21–41MATH
Zurück zum Zitat Takagi S, Matsumoto Y (2011) Surfactant effects on bubble motion and bubbly flow. Annu Rev Fluid Mech 43:615–636 Takagi S, Matsumoto Y (2011) Surfactant effects on bubble motion and bubbly flow. Annu Rev Fluid Mech 43:615–636
Zurück zum Zitat Takagi S, Ogasawara T, Fukuta M, Matsumoto Y (2009) Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel. Fluid Dyn Res 41:065003 Takagi S, Ogasawara T, Fukuta M, Matsumoto Y (2009) Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel. Fluid Dyn Res 41:065003
Zurück zum Zitat Takahashi T, Kakugawa A, Makino M, Kodama Y (2003) Experimental study on scale effect of drag reduction by microbubbles using very large flat plate ships. J Kansai Soc Nav Archit Jpn 239:11–20 (in Japanese) Takahashi T, Kakugawa A, Makino M, Kodama Y (2003) Experimental study on scale effect of drag reduction by microbubbles using very large flat plate ships. J Kansai Soc Nav Archit Jpn 239:11–20 (in Japanese)
Zurück zum Zitat Takeda Y (2012) Ultrasonic Doppler velocity profiler for fluid flow. Fluid mechanics and its applications, Ser. 101, Springer, Berlin Takeda Y (2012) Ultrasonic Doppler velocity profiler for fluid flow. Fluid mechanics and its applications, Ser. 101, Springer, Berlin
Zurück zum Zitat Takeda Y, Fischer WE, Sakakibara J (1994) Decomposition of the modulated waves in a rotating Couette system. Science 263:502–505 Takeda Y, Fischer WE, Sakakibara J (1994) Decomposition of the modulated waves in a rotating Couette system. Science 263:502–505
Zurück zum Zitat Tanaka M (2013) Inverse transverse migration of small bubbles in turbulence. J Phys Soc Jpn 82:044401 Tanaka M (2013) Inverse transverse migration of small bubbles in turbulence. J Phys Soc Jpn 82:044401
Zurück zum Zitat Taniere A, Oesterle B, Monnier JC (1997) On the behavior of solid particles in a horizontal boundary layer with turbulence and saltation effects. Exp Fluids 23:463–471 Taniere A, Oesterle B, Monnier JC (1997) On the behavior of solid particles in a horizontal boundary layer with turbulence and saltation effects. Exp Fluids 23:463–471
Zurück zum Zitat Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Philos Trans R Soc Lond Ser A 223:289–343MATH Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Philos Trans R Soc Lond Ser A 223:289–343MATH
Zurück zum Zitat Timkin LS, Gorelik RS (2010) Specificity of laminar-turbulent transition un upward monodispersed microbubbly flow. Tech Phys Lett 36:493–495 Timkin LS, Gorelik RS (2010) Specificity of laminar-turbulent transition un upward monodispersed microbubbly flow. Tech Phys Lett 36:493–495
Zurück zum Zitat Toschi F, Bodenschartz E (2009) Lagrangian properties of particles in turbulence. Annu Rev Fluid Mech 41:375–404 Toschi F, Bodenschartz E (2009) Lagrangian properties of particles in turbulence. Annu Rev Fluid Mech 41:375–404
Zurück zum Zitat Tran-Cong S, Marie JL, Perkins RJ (2008) Bubble migration in a turbulent boundary layer. Int J Multiph Flow 34:786–807 Tran-Cong S, Marie JL, Perkins RJ (2008) Bubble migration in a turbulent boundary layer. Int J Multiph Flow 34:786–807
Zurück zum Zitat Tsai JF, Chen CC (2011) Boundary layer mixture model for a microbubble drag reduction technique. Int Sch Res Netw 2011:405701 Tsai JF, Chen CC (2011) Boundary layer mixture model for a microbubble drag reduction technique. Int Sch Res Netw 2011:405701
Zurück zum Zitat van den Berg TH, Luther S, Lathrop DP, Lohse D (2005) Drag reduction in bubbly Taylor–Couette turbulence. Phys Rev Lett 94:044501 van den Berg TH, Luther S, Lathrop DP, Lohse D (2005) Drag reduction in bubbly Taylor–Couette turbulence. Phys Rev Lett 94:044501
Zurück zum Zitat van den Berg TH, Luther S, Lathrop D, Lohse D (2007) Bubbly turbulent drag reduction is a boundary effect. Phys Rev Lett 98:084501 van den Berg TH, Luther S, Lathrop D, Lohse D (2007) Bubbly turbulent drag reduction is a boundary effect. Phys Rev Lett 98:084501
Zurück zum Zitat van Gils DPM, Guzman DN, Sun C, Lohse D (2013) The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J Fluid Mech 722:317–347MATH van Gils DPM, Guzman DN, Sun C, Lohse D (2013) The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J Fluid Mech 722:317–347MATH
Zurück zum Zitat Warsito W, Fan LS (2001) Measurement of real-time flow structures in gas–liquid and gas–liquid–solid flow systems using electrical capacitance tomography (ECT). Chem Eng Sci 56:6455–6462 Warsito W, Fan LS (2001) Measurement of real-time flow structures in gas–liquid and gas–liquid–solid flow systems using electrical capacitance tomography (ECT). Chem Eng Sci 56:6455–6462
Zurück zum Zitat Watamura T, Tasaka Y, Murai Y (2013) Intensified and attenuated waves in a microbubble Taylor-Couette flow. Phys Fluids 25:054107 Watamura T, Tasaka Y, Murai Y (2013) Intensified and attenuated waves in a microbubble Taylor-Couette flow. Phys Fluids 25:054107
Zurück zum Zitat Watanabe O, Masuko A, Shirose Y (1998) Measurements of drag reduction by microbubbles using very long ship models. J Soc Nav Archit Jpn 183:53–63 Watanabe O, Masuko A, Shirose Y (1998) Measurements of drag reduction by microbubbles using very long ship models. J Soc Nav Archit Jpn 183:53–63
Zurück zum Zitat Winkel ES, Ceccio SL, Dowling DR, Perlin M (2004) Bubble-size distributions produced by wall injection of air into flowing fresh water, saltwater and surfactant solutions. Exp Fluids 37:802–810 Winkel ES, Ceccio SL, Dowling DR, Perlin M (2004) Bubble-size distributions produced by wall injection of air into flowing fresh water, saltwater and surfactant solutions. Exp Fluids 37:802–810
Zurück zum Zitat Wronski S, Hubacz R, Ryszczuk T (2005) Interfacial area in a reactor with helicoidal flow for the two-phase gas–liquid system. Chem Eng J 105:71–79 Wronski S, Hubacz R, Ryszczuk T (2005) Interfacial area in a reactor with helicoidal flow for the two-phase gas–liquid system. Chem Eng J 105:71–79
Zurück zum Zitat Wu SJ, Hsu CH, Lin TT (2007) Model test of the surface and submerged vehicles with the micro-bubble drag reduction. Ocean Eng 34:83–93 Wu SJ, Hsu CH, Lin TT (2007) Model test of the surface and submerged vehicles with the micro-bubble drag reduction. Ocean Eng 34:83–93
Zurück zum Zitat Wu SJ, Ouyang K, Shiah SW (2008) Robust design of microbubble drag reduction in a channel flow using the Taguchi method. Ocean Eng 35:856–863 Wu SJ, Ouyang K, Shiah SW (2008) Robust design of microbubble drag reduction in a channel flow using the Taguchi method. Ocean Eng 35:856–863
Zurück zum Zitat Xu J, Maxey ML, Karniadakis GE (2002) Numerical simulation of turbulent drag reduction using micro-bubbles. J Fluid Mech 468:271–281MATH Xu J, Maxey ML, Karniadakis GE (2002) Numerical simulation of turbulent drag reduction using micro-bubbles. J Fluid Mech 468:271–281MATH
Zurück zum Zitat Yoshida K, Tasaka Y, Murai Y, Takeda Y (2009) Mode transition in bubbly Taylor–Couette flow measured by PTV. J Phys Conf Ser 147:012013 Yoshida K, Tasaka Y, Murai Y, Takeda Y (2009) Mode transition in bubbly Taylor–Couette flow measured by PTV. J Phys Conf Ser 147:012013
Zurück zum Zitat Zenit R, Koch D, Sangani AS (2001) Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J Fluid Mech 429:307–342MATH Zenit R, Koch D, Sangani AS (2001) Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J Fluid Mech 429:307–342MATH
Zurück zum Zitat Zhang DZ, Prosperetti A (1994) Averaged equations for inviscid disperse two-phase flow. J Fluid Mech 267:185–219MATHMathSciNet Zhang DZ, Prosperetti A (1994) Averaged equations for inviscid disperse two-phase flow. J Fluid Mech 267:185–219MATHMathSciNet
Zurück zum Zitat Zhao LH, Andersson HI, Gillissen JJJ (2010) Turbulence modulation and drag reduction by spherical particles. Phys Fluids 22:081702 Zhao LH, Andersson HI, Gillissen JJJ (2010) Turbulence modulation and drag reduction by spherical particles. Phys Fluids 22:081702
Zurück zum Zitat Zhao LH, Marchioli C, Andersson HI (2012) Stokes number effects on particle slip velocity in wall-bounded turbulence and implications for dispersion models. Phys Fluids 24:021705 Zhao LH, Marchioli C, Andersson HI (2012) Stokes number effects on particle slip velocity in wall-bounded turbulence and implications for dispersion models. Phys Fluids 24:021705
Zurück zum Zitat Zhen L, Hassan YA (2006) Wavelet autocorrelation identification of the turbulent flow multi-scales for drag reduction process in microbubbly flows. Chem Eng Sci 61:7107–7114 Zhen L, Hassan YA (2006) Wavelet autocorrelation identification of the turbulent flow multi-scales for drag reduction process in microbubbly flows. Chem Eng Sci 61:7107–7114
Zurück zum Zitat Zhen N, Handler RA, Zhang Q, Oeth C (2013) Evolution of a hairpin vortex in a shear-thinning fluid governed by a power-law model. Phys Fluids 25:110703 Zhen N, Handler RA, Zhang Q, Oeth C (2013) Evolution of a hairpin vortex in a shear-thinning fluid governed by a power-law model. Phys Fluids 25:110703
Metadaten
Titel
Frictional drag reduction by bubble injection
verfasst von
Yuichi Murai
Publikationsdatum
01.07.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 7/2014
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-014-1773-x

Weitere Artikel der Ausgabe 7/2014

Experiments in Fluids 7/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.