Skip to main content

2019 | OriginalPaper | Buchkapitel

From Bluetooth Low-Energy to Bluetooth No-Energy: System and Circuit Aspects of Energy Harvesting for IoT Applications

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

IoT devices are powered by batteries that need recharging or replacement on a regular basis. With an increasing number of IoT devices per person, this will become impractical. This chapter presents an example of an energy harvesting system that allows these IoT devices to be powered by alternative energy sources like light, heat, or RF energy. Some circuits and algorithms that are specifically important for energy harvesting are discussed in more detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Lin Y-S, Sylvester D, Blaauw D.An ultra low power 1V, 220nW temperature sensor for passive wireless applications. 2008 IEEE Custom Integrated Circuits Conference, San Jose, CA, 2008, pp. 507–10. Lin Y-S, Sylvester D, Blaauw D.An ultra low power 1V, 220nW temperature sensor for passive wireless applications. 2008 IEEE Custom Integrated Circuits Conference, San Jose, CA, 2008, pp. 507–10.
4.
Zurück zum Zitat Souri K, Chae Y, Thus F, Makinwa K. 12.7 A 0.85V 600nW all-CMOS temperature sensor with an inaccuracy of ±0.4°C (3σ) from −40 to 125°C. In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 222–3. Souri K, Chae Y, Thus F, Makinwa K. 12.7 A 0.85V 600nW all-CMOS temperature sensor with an inaccuracy of ±0.4°C (3σ) from −40 to 125°C. In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 222–3.
5.
Zurück zum Zitat Konijnenburg M, et al. A multi(BIO)sensor acquisition system with integrated processor, power management, 8 times 8 LED drivers, and simultaneously synchronized ECG, BIO-Z, GSR, and two PPG readouts. IEEE J Solid-State Circuits. 2016;51(11):2584–95.CrossRef Konijnenburg M, et al. A multi(BIO)sensor acquisition system with integrated processor, power management, 8 times 8 LED drivers, and simultaneously synchronized ECG, BIO-Z, GSR, and two PPG readouts. IEEE J Solid-State Circuits. 2016;51(11):2584–95.CrossRef
6.
Zurück zum Zitat Rajesh PV, et al.. 22.4 A 172μW compressive sampling photoplethysmographic readout with embedded direct heart-rate and variability extraction from compressively sampled data. In 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 386–7. Rajesh PV, et al.. 22.4 A 172μW compressive sampling photoplethysmographic readout with embedded direct heart-rate and variability extraction from compressively sampled data. In 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 386–7.
7.
Zurück zum Zitat Hsiao KJ. 17.7 A 1.89nW/0.15V self-charged XO for real-time clock generation. In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 298–9. Hsiao KJ. 17.7 A 1.89nW/0.15V self-charged XO for real-time clock generation. In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 298–9.
8.
Zurück zum Zitat Griffith D, Røine PT, Murdock J, Smith R. 17.8 A 190nW 33kHz RC oscillator with ±0.21% temperature stability and 4ppm long-term stability. In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 300–1. Griffith D, Røine PT, Murdock J, Smith R. 17.8 A 190nW 33kHz RC oscillator with ±0.21% temperature stability and 4ppm long-term stability. In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 300–1.
9.
Zurück zum Zitat Prummel J, et al. A 10 mW Bluetooth low-energy transceiver with on-chip matching. IEEE J Solid-State Circuits. 2015;50(12):3077–88.CrossRef Prummel J, et al. A 10 mW Bluetooth low-energy transceiver with on-chip matching. IEEE J Solid-State Circuits. 2015;50(12):3077–88.CrossRef
10.
Zurück zum Zitat Intaschi L, Bruschi P, Iannaccone G, Dalena F. A 220-mV input, 8.6 step-up voltage conversion ratio, 10.45-μW output power, fully integrated switched-capacitor converter for energy harvesting. In 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, 2017, pp. 1–4. Intaschi L, Bruschi P, Iannaccone G, Dalena F. A 220-mV input, 8.6 step-up voltage conversion ratio, 10.45-μW output power, fully integrated switched-capacitor converter for energy harvesting. In 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, 2017, pp. 1–4.
11.
Zurück zum Zitat Nakagome Y, Tanaka H, et al. An experimental 1.5V 64Mb DRAM. IEEE J Solid-State Circuits. 1991;26(4):465–72.CrossRef Nakagome Y, Tanaka H, et al. An experimental 1.5V 64Mb DRAM. IEEE J Solid-State Circuits. 1991;26(4):465–72.CrossRef
12.
Zurück zum Zitat Wu HH, Chen LY, Wei CL. Wide-input-voltage-range and high-efficiency energy harvester with a 155-mV startup voltage for solar power. In ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, Leuven, 2017, pp. 295–8. Wu HH, Chen LY, Wei CL. Wide-input-voltage-range and high-efficiency energy harvester with a 155-mV startup voltage for solar power. In ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, Leuven, 2017, pp. 295–8.
13.
Zurück zum Zitat Lu Y, Yao S, Shao B, Brokaw P. 21.3 A 200nA single-inductor dual-input-triple-output (DITO) converter with two-stage charging and process-limit cold-start voltage for photovoltaic and thermoelectric energy harvesting. In 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 368–9. Lu Y, Yao S, Shao B, Brokaw P. 21.3 A 200nA single-inductor dual-input-triple-output (DITO) converter with two-stage charging and process-limit cold-start voltage for photovoltaic and thermoelectric energy harvesting. In 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 368–9.
14.
Zurück zum Zitat Simjee FI, Chou PH. Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes. IEEE Trans Power Electron. 2008;23(3):1526–36.CrossRef Simjee FI, Chou PH. Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes. IEEE Trans Power Electron. 2008;23(3):1526–36.CrossRef
15.
Zurück zum Zitat Bandyopadhyay S, Chandrakasan AP. Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor. IEEE J Solid-State Circuits. 2012;47(9):2199–215.CrossRef Bandyopadhyay S, Chandrakasan AP. Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor. IEEE J Solid-State Circuits. 2012;47(9):2199–215.CrossRef
16.
Zurück zum Zitat Yu G, Chew KWR, Sun ZC, Tang H, Siek L. A 400 nW single-inductor dual-input–tri-output DC–DC buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting. IEEE J Solid-State Circuits. 2015;50(11):2758–72.CrossRef Yu G, Chew KWR, Sun ZC, Tang H, Siek L. A 400 nW single-inductor dual-input–tri-output DC–DC buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting. IEEE J Solid-State Circuits. 2015;50(11):2758–72.CrossRef
Metadaten
Titel
From Bluetooth Low-Energy to Bluetooth No-Energy: System and Circuit Aspects of Energy Harvesting for IoT Applications
verfasst von
Wim Kruiskamp
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-97870-3_2

Neuer Inhalt