Skip to main content

2019 | OriginalPaper | Buchkapitel

Fuel Cells (SOFC): Alternative Approaches (Electrolytes, Electrodes, Fuels)

verfasst von : K. Sasaki, Y. Nojiri, Y. Shiratori, S. Taniguchi

Erschienen in: Fuel Cells and Hydrogen Production

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Anode
Electrode for electrochemical oxidation reactions. In solid oxide fuel cells, hydrogen-containing fuels are oxidized by oxygen ions transported through an electrolyte to form water vapor or CO2 as the reaction products at this electrode. SOFC anodes may also act as fuel reforming catalysts when hydrocarbon-based fuels are supplied to the anodes.
Cathode
Electrode for electrochemical reduction reactions. In solid oxide fuel cells, oxygen in ambient air is reduced to oxygen ions at this electrode.
Electrolyte
Ionic conductor with negligible electronic conductivity, used as a membrane between an oxidation atmosphere and a reduction atmosphere. The essential material to construct electrochemical devices including fuel cells.
Fuel flexibility
While low-temperature fuel cells (such as polymer electrolyte membrane fuel cells) typically use pure hydrogen gas (or hydrogen gas mixed with CO2) as the fuel, high-temperature fuel cells can directly use various kinds of fuels, such as carbon monoxide (CO), which is created by reforming hydrocarbons at the anode to produce hydrogen and carbon monoxide.
Impurity poisoning
Even though high-temperature fuel cells have good fuel flexibility with various kinds of fuels, some minor constituents (impurities) coming from, for example, low-purity fuels, raw materials, and system components can also react with electrode materials or can be adsorbed on the electrode reaction sites, hindering electrode reactions. Such poisoning phenomena can lead to fuel cell performance degradation with time.
Mixed ionic electronic conductor
Materials with both high ionic conductivity and high electronic conductivity. Such materials are often attractive for electrodes because of extension of electrochemical reaction sites beyond electrode/electrolyte interface.
Oxygen ionic conductor
Materials with high oxygen ionic conductivity. Oxides with both high oxygen vacancy (or other charge carrier such as interstitial oxygen atoms) concentration and high oxygen mobility exhibit high ionic conductivities.
Protonic conductor
Materials with high protonic conductivity. In the presence of oxygen vacancies, water vapor may be dissolved into oxides forming protons and exhibiting high protonic conductivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRef Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRef
2.
Zurück zum Zitat Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam
3.
Zurück zum Zitat Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and application. Elsevier, Oxford, UK Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and application. Elsevier, Oxford, UK
4.
Zurück zum Zitat Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, West SussexCrossRef Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, West SussexCrossRef
5.
Zurück zum Zitat Tagawa H (1998) Solid oxide fuel cells and global environment. Agune-Shofudo, Shinjuku. (in Japanese) Tagawa H (1998) Solid oxide fuel cells and global environment. Agune-Shofudo, Shinjuku. (in Japanese)
6.
Zurück zum Zitat Steinberger-Wilckens R (2009) European SOFC R&D – status and trends. ECS Trans 25(2):3–10CrossRef Steinberger-Wilckens R (2009) European SOFC R&D – status and trends. ECS Trans 25(2):3–10CrossRef
7.
Zurück zum Zitat Hosoi K, Nakabaru M (2009) Status of national project for SOFC development in Japan. ECS Trans 25(2):11–20CrossRef Hosoi K, Nakabaru M (2009) Status of national project for SOFC development in Japan. ECS Trans 25(2):11–20CrossRef
8.
Zurück zum Zitat Surdoval WA (2009) The status of SOFC programs in USA 2009. ECS Trans 25(2):21–27CrossRef Surdoval WA (2009) The status of SOFC programs in USA 2009. ECS Trans 25(2):21–27CrossRef
9.
Zurück zum Zitat Maier J (2004) Physical Chemistry of ionic materials: ions and electrons in solids. Wiley, West SussexCrossRef Maier J (2004) Physical Chemistry of ionic materials: ions and electrons in solids. Wiley, West SussexCrossRef
10.
Zurück zum Zitat Sata N, Eberman K, Eberl K, Maier J (2000) Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408:946–949CrossRef Sata N, Eberman K, Eberl K, Maier J (2000) Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408:946–949CrossRef
11.
Zurück zum Zitat Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook SJ, Santamaria J (2008) Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321(5889):676–680CrossRef Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook SJ, Santamaria J (2008) Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321(5889):676–680CrossRef
12.
Zurück zum Zitat Tuller HL (2000) Ionic conduction in nanocrystalline materials. Solid State Ionics 131(1–2):143–157CrossRef Tuller HL (2000) Ionic conduction in nanocrystalline materials. Solid State Ionics 131(1–2):143–157CrossRef
13.
Zurück zum Zitat Maier J (2004) Nano-ionics: more than just a fashionable slogan. J Electroceram 13(1–3):593–598CrossRef Maier J (2004) Nano-ionics: more than just a fashionable slogan. J Electroceram 13(1–3):593–598CrossRef
14.
Zurück zum Zitat Araki W, Arai Y (2010) Oxygen diffusion in yttria-stabilized zirconia subjected to uniaxial stress. Solid State Ionics 181(8–10):441–446CrossRef Araki W, Arai Y (2010) Oxygen diffusion in yttria-stabilized zirconia subjected to uniaxial stress. Solid State Ionics 181(8–10):441–446CrossRef
15.
Zurück zum Zitat Litzelman SJ, Hertz JL, Jung W, Tuller HL (2008) Opportunities and challenges in materials development for thin film solid oxide fuel cells. Fuel Cells 8(5):294–302CrossRef Litzelman SJ, Hertz JL, Jung W, Tuller HL (2008) Opportunities and challenges in materials development for thin film solid oxide fuel cells. Fuel Cells 8(5):294–302CrossRef
16.
Zurück zum Zitat Evans A, Bieberle-Hütter A, Rupp JLM, Gauckler LJ (2009) Review on microfabricated micro-solid oxide fuel cell membranes. J Power Sources 194(1):119–129CrossRef Evans A, Bieberle-Hütter A, Rupp JLM, Gauckler LJ (2009) Review on microfabricated micro-solid oxide fuel cell membranes. J Power Sources 194(1):119–129CrossRef
17.
Zurück zum Zitat Ihara M, Hasegawa S (2006) Quickly rechargeable direct carbon solid oxide fuel cell with propane for recharging. J Electrochem Soc 153(8):A1544–A1546CrossRef Ihara M, Hasegawa S (2006) Quickly rechargeable direct carbon solid oxide fuel cell with propane for recharging. J Electrochem Soc 153(8):A1544–A1546CrossRef
18.
Zurück zum Zitat Hauch A, Jensen SH, Ramousse S, Mogensen M (2006) Performance and durability of solid oxide electrolysis cells. J Electrochem Soc 153(9):A1741–A1747CrossRef Hauch A, Jensen SH, Ramousse S, Mogensen M (2006) Performance and durability of solid oxide electrolysis cells. J Electrochem Soc 153(9):A1741–A1747CrossRef
19.
Zurück zum Zitat Ishihara T, Kanno T (2010) Steam electrolysis using LaGaO3 based perovskite electrolyte for recovery of unused heat energy. ISIJ Int 50:1291–1295CrossRef Ishihara T, Kanno T (2010) Steam electrolysis using LaGaO3 based perovskite electrolyte for recovery of unused heat energy. ISIJ Int 50:1291–1295CrossRef
20.
Zurück zum Zitat Minh NQ (2010) Operating characteristics of solid oxide fuel cell stacks and systems. ECS Trans 25(2):241–246 Minh NQ (2010) Operating characteristics of solid oxide fuel cell stacks and systems. ECS Trans 25(2):241–246
21.
Zurück zum Zitat Steele BCH (1989) Oxygen ion conductors. In: Takahashi T (ed) High conductivity solid ionic conductors. World Scientific, Singapore, pp 402–446CrossRef Steele BCH (1989) Oxygen ion conductors. In: Takahashi T (ed) High conductivity solid ionic conductors. World Scientific, Singapore, pp 402–446CrossRef
22.
Zurück zum Zitat Steele BCH (1992) Oxygen ion conductors and their technological applications. In: Balkanski M, Takahashi T, Tuller HL (eds) Solid state ionics. Elsevier, Amsterdam, pp 17–28 Steele BCH (1992) Oxygen ion conductors and their technological applications. In: Balkanski M, Takahashi T, Tuller HL (eds) Solid state ionics. Elsevier, Amsterdam, pp 17–28
23.
Zurück zum Zitat Nowick AS (1984) Atom transport in oxides of the fluorite structure. In: Diffusion in crystalline solids. Academic, Orlando, pp 143–188CrossRef Nowick AS (1984) Atom transport in oxides of the fluorite structure. In: Diffusion in crystalline solids. Academic, Orlando, pp 143–188CrossRef
24.
Zurück zum Zitat Hayes W, Stoneham AM (1985) Defects and defect processes in nonmetallic solids. Wiley, New York Hayes W, Stoneham AM (1985) Defects and defect processes in nonmetallic solids. Wiley, New York
25.
Zurück zum Zitat Kilner JA, Steele BCH (1981) Mass transport in anion-deficient fluorite oxides. In: Sørensen OT (ed) Nonstoichiometric oxides. Academic, New York, pp 233–269CrossRef Kilner JA, Steele BCH (1981) Mass transport in anion-deficient fluorite oxides. In: Sørensen OT (ed) Nonstoichiometric oxides. Academic, New York, pp 233–269CrossRef
26.
Zurück zum Zitat Kofstad P (1972) Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Wiley, New York Kofstad P (1972) Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Wiley, New York
27.
Zurück zum Zitat Eyring L (1979) The binary rare earth oxides. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. North-Holland, Amsterdam, pp 337–399. Chap 27 Eyring L (1979) The binary rare earth oxides. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. North-Holland, Amsterdam, pp 337–399. Chap 27
28.
Zurück zum Zitat Tuller HL (1991) Highly conductive ceramics. In: Buchanan RC (ed) Ceramic materials for electronics. Marcel Dekker, New York, pp 379–433 Tuller HL (1991) Highly conductive ceramics. In: Buchanan RC (ed) Ceramic materials for electronics. Marcel Dekker, New York, pp 379–433
29.
Zurück zum Zitat Tuller HL (1981) Mixed conduction in nonstoichiometric oxides. In: Sørensen OT, Sørensen OT (eds) Nonstoichiometric oxides. Academic, New York, pp 271–335CrossRef Tuller HL (1981) Mixed conduction in nonstoichiometric oxides. In: Sørensen OT, Sørensen OT (eds) Nonstoichiometric oxides. Academic, New York, pp 271–335CrossRef
30.
Zurück zum Zitat Shimizu K, Kashiwagi K, Nishiyama H, Kakimoto S, Sugaya S, Yokoi H, Satsuma A (2008) Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOx sensing materials. Sens Actuators B Chem 130:707–712CrossRef Shimizu K, Kashiwagi K, Nishiyama H, Kakimoto S, Sugaya S, Yokoi H, Satsuma A (2008) Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOx sensing materials. Sens Actuators B Chem 130:707–712CrossRef
31.
Zurück zum Zitat Gong J, Li Y, Tang Z, Zhang Z (2000) Enhancement of the ionic conductivity of mixed calcia/yttria stabilized zirconia. Mater Lett 46:115–119CrossRef Gong J, Li Y, Tang Z, Zhang Z (2000) Enhancement of the ionic conductivity of mixed calcia/yttria stabilized zirconia. Mater Lett 46:115–119CrossRef
32.
Zurück zum Zitat Gauckler LJ, Sasaki K (1994) Ionic and electronic conductivities of homogeneous and heterogeneous materials in the system ZrO2-In2O3. Solid State Ionics 75:203–210CrossRef Gauckler LJ, Sasaki K (1994) Ionic and electronic conductivities of homogeneous and heterogeneous materials in the system ZrO2-In2O3. Solid State Ionics 75:203–210CrossRef
33.
Zurück zum Zitat Sasaki K (1993) Phase equilibria, electrical conductivity, and electrochemical properties of ZrO2-In2O3. Dissertation, Swiss Federal Institute of Technology, Zürich Sasaki K (1993) Phase equilibria, electrical conductivity, and electrochemical properties of ZrO2-In2O3. Dissertation, Swiss Federal Institute of Technology, Zürich
34.
Zurück zum Zitat Stafford RJ, Rothman SJ, Routbort JL (1989) Effect of dopant size on the ionic conductivity of cubic stabilized ZrO2. Solid State Ionics 37:67–72CrossRef Stafford RJ, Rothman SJ, Routbort JL (1989) Effect of dopant size on the ionic conductivity of cubic stabilized ZrO2. Solid State Ionics 37:67–72CrossRef
35.
Zurück zum Zitat Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishi N (1999) Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system. Solid State Ionics 121:133–139CrossRef Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishi N (1999) Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system. Solid State Ionics 121:133–139CrossRef
36.
Zurück zum Zitat Patterson JW (1971) Conduction domains for solid electrolytes. J Electrochem Soc 118:1033–1039CrossRef Patterson JW (1971) Conduction domains for solid electrolytes. J Electrochem Soc 118:1033–1039CrossRef
37.
Zurück zum Zitat Heyne L, Engleson D (1977) The speed of response of solid electrolyte galvanic cells for Gas sensing. J Electrochem Soc 124:727–735CrossRef Heyne L, Engleson D (1977) The speed of response of solid electrolyte galvanic cells for Gas sensing. J Electrochem Soc 124:727–735CrossRef
38.
Zurück zum Zitat Tuller HL, Moon PK (1988) Fast ion conductors: future trends. Mater Sci Eng B1:171–191CrossRef Tuller HL, Moon PK (1988) Fast ion conductors: future trends. Mater Sci Eng B1:171–191CrossRef
39.
Zurück zum Zitat Nernst W (1899) Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen. Z Elektrochem 6(2):41–43CrossRef Nernst W (1899) Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen. Z Elektrochem 6(2):41–43CrossRef
40.
Zurück zum Zitat Baur E, Preis H (1937) Über Brennstoff-Ketten mit Festleitern. Z Elektrochem 44(9):695–698 Baur E, Preis H (1937) Über Brennstoff-Ketten mit Festleitern. Z Elektrochem 44(9):695–698
41.
Zurück zum Zitat Sasaki K, Maier J (2000) Re-analysis of defect equilibria and transport properties of Y2O3-stabilized ZrO2 using EPR and optical relaxation. Solid State Ionics 134(3–4):303–321CrossRef Sasaki K, Maier J (2000) Re-analysis of defect equilibria and transport properties of Y2O3-stabilized ZrO2 using EPR and optical relaxation. Solid State Ionics 134(3–4):303–321CrossRef
42.
Zurück zum Zitat Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83:1–16CrossRef Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83:1–16CrossRef
43.
Zurück zum Zitat Sammes NM, Tompsett GA, Näfe H, Aldinger F (1999) Bismuth based oxide electrolytes-structure and ionic conductivity. J Eur Ceram Soc 19:1801–1826CrossRef Sammes NM, Tompsett GA, Näfe H, Aldinger F (1999) Bismuth based oxide electrolytes-structure and ionic conductivity. J Eur Ceram Soc 19:1801–1826CrossRef
44.
Zurück zum Zitat Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94CrossRef Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94CrossRef
45.
Zurück zum Zitat Yamamoto O, Arachi Y, Sakai H, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1998) Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics 4:403–408CrossRef Yamamoto O, Arachi Y, Sakai H, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1998) Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics 4:403–408CrossRef
46.
Zurück zum Zitat Arachi Y, Asai T, Yamamoto O, Takeda Y, Imanishi N, Kawate K, Tamakoshi C (2001) Electrical conductivity of ZrO2-Sc2O3 doped with HfO2, CeO2, and Ga2O3. J Electrochem Soc 148(5):A520–A523CrossRef Arachi Y, Asai T, Yamamoto O, Takeda Y, Imanishi N, Kawate K, Tamakoshi C (2001) Electrical conductivity of ZrO2-Sc2O3 doped with HfO2, CeO2, and Ga2O3. J Electrochem Soc 148(5):A520–A523CrossRef
47.
Zurück zum Zitat Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics 79:137–142CrossRef Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics 79:137–142CrossRef
48.
Zurück zum Zitat Tietz F, Fischer W, Hauber T, Mariotto G (1997) Structural evolution of Sc-containing zirconia electrolytes. Solid State Ionics 100:289–295CrossRef Tietz F, Fischer W, Hauber T, Mariotto G (1997) Structural evolution of Sc-containing zirconia electrolytes. Solid State Ionics 100:289–295CrossRef
49.
Zurück zum Zitat Wang Z, Cheng M, Bi Z, Dong Y, Zhang H, Zhang J, Feng Z, Li C (2005) Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater Lett 59:2579–2582CrossRef Wang Z, Cheng M, Bi Z, Dong Y, Zhang H, Zhang J, Feng Z, Li C (2005) Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater Lett 59:2579–2582CrossRef
50.
Zurück zum Zitat Gödickemeier M, Michel B, Orliukas A, Bohac P, Sasaki K, Gauckler LJ, Heinrich H, Schwander P, Kostorz G, Hofmann H, Frei O (1994) Effect of intergranular glass films on the electrical conductivity of 3Y-TZP. J Mater Res 9(5):1228–1240CrossRef Gödickemeier M, Michel B, Orliukas A, Bohac P, Sasaki K, Gauckler LJ, Heinrich H, Schwander P, Kostorz G, Hofmann H, Frei O (1994) Effect of intergranular glass films on the electrical conductivity of 3Y-TZP. J Mater Res 9(5):1228–1240CrossRef
51.
Zurück zum Zitat Bieberle-Hütter A, Beckel D, Infortuna A, Muecke UP, JLM R, Gauckler LJ, Rey-Mermet S, Muralt P, Bieri NR, Hotz N, Stutz MJ, Poulikakos D, Heeb P, Müller P, Bernard A, Gmür R, Hocker T (2008) A micro-solid oxide fuel cell system as battery replacement. J Power Sources 177:123–130CrossRef Bieberle-Hütter A, Beckel D, Infortuna A, Muecke UP, JLM R, Gauckler LJ, Rey-Mermet S, Muralt P, Bieri NR, Hotz N, Stutz MJ, Poulikakos D, Heeb P, Müller P, Bernard A, Gmür R, Hocker T (2008) A micro-solid oxide fuel cell system as battery replacement. J Power Sources 177:123–130CrossRef
52.
Zurück zum Zitat Ji Y, Kilner JA, Carolan MF (2005) Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnO3±δ(LSM) composites. Solid State Ionics 176:937–943CrossRef Ji Y, Kilner JA, Carolan MF (2005) Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnO3±δ(LSM) composites. Solid State Ionics 176:937–943CrossRef
53.
Zurück zum Zitat Ralph JM, Rossignol C, Kumar R (2003) Cathode materials for reduced-temperature SOFCs. J Electrochem Soc 150(11):A1518–A1522CrossRef Ralph JM, Rossignol C, Kumar R (2003) Cathode materials for reduced-temperature SOFCs. J Electrochem Soc 150(11):A1518–A1522CrossRef
54.
Zurück zum Zitat Stochniol G, Syskakis E, Naoumidis A (1995) Chemical compatibility between strontium-doped lanthanum manganite and yttria-stabilized zirconia. J Am Ceram Soc 78:929–932CrossRef Stochniol G, Syskakis E, Naoumidis A (1995) Chemical compatibility between strontium-doped lanthanum manganite and yttria-stabilized zirconia. J Am Ceram Soc 78:929–932CrossRef
55.
Zurück zum Zitat Zhao H, Huo I, Sun L, Yu L, Gao S, Zhao J (2004) Preparation, chemical stability and electrochemical properties of LSCF-CBO composite cathodes. Mater Chem Phys 88:160–166CrossRef Zhao H, Huo I, Sun L, Yu L, Gao S, Zhao J (2004) Preparation, chemical stability and electrochemical properties of LSCF-CBO composite cathodes. Mater Chem Phys 88:160–166CrossRef
56.
Zurück zum Zitat Yahiro H, Eguchi K, Arai H (1986) Ionic conduction and microstructure of the ceria-strontia system. Solid State Ionics 21:37–47CrossRef Yahiro H, Eguchi K, Arai H (1986) Ionic conduction and microstructure of the ceria-strontia system. Solid State Ionics 21:37–47CrossRef
57.
Zurück zum Zitat Thangadurai V, Kopp P (2007) Chemical synthesis of Ca-doped CeO2 – intermediate temperature oxide ion electrolytes. J Power Sources 168:178–183CrossRef Thangadurai V, Kopp P (2007) Chemical synthesis of Ca-doped CeO2 – intermediate temperature oxide ion electrolytes. J Power Sources 168:178–183CrossRef
58.
Zurück zum Zitat Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52:165–172CrossRef Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52:165–172CrossRef
59.
Zurück zum Zitat Yahiro H, Baba Y, Eguchi Y, Eguchi K, Arai H (1988) High temperature fuel cell with ceria-yttria solid electrolyte. J Electrochem Soc 135:2077–2080CrossRef Yahiro H, Baba Y, Eguchi Y, Eguchi K, Arai H (1988) High temperature fuel cell with ceria-yttria solid electrolyte. J Electrochem Soc 135:2077–2080CrossRef
60.
Zurück zum Zitat Shobit Omar S, Wachsman ED, Nino JC (2008) Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178:1890–1897CrossRef Shobit Omar S, Wachsman ED, Nino JC (2008) Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178:1890–1897CrossRef
61.
Zurück zum Zitat Bance P, Brandon NP, Girvan B, Holbeche P, O'Dea S, Steele BCH (2004) Spinning-out a fuel cell company from a UK University-2 years of progress at Ceres Power. J Power Sources 131:86–90CrossRef Bance P, Brandon NP, Girvan B, Holbeche P, O'Dea S, Steele BCH (2004) Spinning-out a fuel cell company from a UK University-2 years of progress at Ceres Power. J Power Sources 131:86–90CrossRef
62.
Zurück zum Zitat Göedickemeier M, Gauckler LJ (1998) Engineering of solid oxide fuel cells with ceria-based electrolytes. J Electrochem Soc 145:414–421CrossRef Göedickemeier M, Gauckler LJ (1998) Engineering of solid oxide fuel cells with ceria-based electrolytes. J Electrochem Soc 145:414–421CrossRef
63.
Zurück zum Zitat Atkinson A (1997) Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics 95:249–258CrossRef Atkinson A (1997) Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics 95:249–258CrossRef
64.
Zurück zum Zitat Marques FMB, Navarro LM (1997) Performance of double layer electrolyte cells Part II: GCO/YSZ, a case study. Solid State Ionics 100:29–38CrossRef Marques FMB, Navarro LM (1997) Performance of double layer electrolyte cells Part II: GCO/YSZ, a case study. Solid State Ionics 100:29–38CrossRef
65.
Zurück zum Zitat Tsoda A, Gupta A, Naoumoidis A, Skarmoutsos D, Nikolopoulos P (1998) Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells. Ionics 4:234–240CrossRef Tsoda A, Gupta A, Naoumoidis A, Skarmoutsos D, Nikolopoulos P (1998) Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells. Ionics 4:234–240CrossRef
66.
Zurück zum Zitat Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36:1105–1117CrossRef Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36:1105–1117CrossRef
67.
Zurück zum Zitat Oishi N, Atkinson A, Brandon NP, Kilner JA, Steele BCH (2005) Fabrication of an anode-supported gadolinium-doped ceria solid oxide fuel cell and its operation at 550°C. J Am Ceram Soc 88(6):1394–1396CrossRef Oishi N, Atkinson A, Brandon NP, Kilner JA, Steele BCH (2005) Fabrication of an anode-supported gadolinium-doped ceria solid oxide fuel cell and its operation at 550°C. J Am Ceram Soc 88(6):1394–1396CrossRef
68.
Zurück zum Zitat Oishi N, Yoo Y (2010) Evaluation of metal supported ceria based solid oxide fuel cell fabricated by wet powder spray and sintering. J Electrochem Soc 157(1):B125–B129CrossRef Oishi N, Yoo Y (2010) Evaluation of metal supported ceria based solid oxide fuel cell fabricated by wet powder spray and sintering. J Electrochem Soc 157(1):B125–B129CrossRef
69.
Zurück zum Zitat Moon PK, Tuller HL (1990) Evaluation of the Gd2(ZrxTi1-x)2O7 pyroclore system as an oxygen Gas sensor. Sens Actuators B Chem 1:199–202CrossRef Moon PK, Tuller HL (1990) Evaluation of the Gd2(ZrxTi1-x)2O7 pyroclore system as an oxygen Gas sensor. Sens Actuators B Chem 1:199–202CrossRef
70.
Zurück zum Zitat Yamamura H, Nishino H, Kakinuma K, Nomura K (2003) Electrical conductivity anomaly around fluorite-pyrochlore phase boundary. Solid State Ionics 158:359–365CrossRef Yamamura H, Nishino H, Kakinuma K, Nomura K (2003) Electrical conductivity anomaly around fluorite-pyrochlore phase boundary. Solid State Ionics 158:359–365CrossRef
71.
Zurück zum Zitat Moon PK, Tuller HL (1988) Ionic-conduction in the Gd2Ti2O7-Gd2Zr2O7 system. Solid State Ionics 28–30(1):470–474CrossRef Moon PK, Tuller HL (1988) Ionic-conduction in the Gd2Ti2O7-Gd2Zr2O7 system. Solid State Ionics 28–30(1):470–474CrossRef
72.
Zurück zum Zitat Kramer SA, Tuller HL (1995) A novel titanate-based oxygen ion conductor: Gd2Ti2O7. Solid State Ionics 82:15–23CrossRef Kramer SA, Tuller HL (1995) A novel titanate-based oxygen ion conductor: Gd2Ti2O7. Solid State Ionics 82:15–23CrossRef
73.
Zurück zum Zitat Kharton VV, Tsipis EV, Yaremechenko AA, Vyshatko NP, Shaula AL, Naumovich EN, Frade JR (2003) Oxygen ionic and electronic transport in Gd2-xCaxTi2O7-δ pyrochlores. J Solid State Electrochem 7:468–476CrossRef Kharton VV, Tsipis EV, Yaremechenko AA, Vyshatko NP, Shaula AL, Naumovich EN, Frade JR (2003) Oxygen ionic and electronic transport in Gd2-xCaxTi2O7-δ pyrochlores. J Solid State Electrochem 7:468–476CrossRef
74.
Zurück zum Zitat Mori M, Tompsett GM, Sammes NM, Suda E, Takeda Y (2003) Compatibility of GdxTi2O7 pyrochlores (1.72 ≤ x ≤ 2.0) as electrolytes in high-temperature solid oxide fuel cells. Solid State Ionics 158:79–90CrossRef Mori M, Tompsett GM, Sammes NM, Suda E, Takeda Y (2003) Compatibility of GdxTi2O7 pyrochlores (1.72 ≤ x ≤ 2.0) as electrolytes in high-temperature solid oxide fuel cells. Solid State Ionics 158:79–90CrossRef
75.
Zurück zum Zitat Yasuda I, Matsuzaki Y, Yamakawa T, Koyama T (2000) Electrical conductivity and mechanical properties of alumina-dispersed doped lanthanum gallates. Solid State Ionics 135:381–388CrossRef Yasuda I, Matsuzaki Y, Yamakawa T, Koyama T (2000) Electrical conductivity and mechanical properties of alumina-dispersed doped lanthanum gallates. Solid State Ionics 135:381–388CrossRef
76.
Zurück zum Zitat Tietz F (1999) Thermal expansion of SOFC materials. Ionics 5:129–139CrossRef Tietz F (1999) Thermal expansion of SOFC materials. Ionics 5:129–139CrossRef
77.
Zurück zum Zitat Lee JH, Yoshimura M (1999) Phase stability and electrical conductivity of the Zr0.5Y0.5O1.75-Y0.75Nb0.25O1.75 system. Solid State Ionics 124:185–191CrossRef Lee JH, Yoshimura M (1999) Phase stability and electrical conductivity of the Zr0.5Y0.5O1.75-Y0.75Nb0.25O1.75 system. Solid State Ionics 124:185–191CrossRef
78.
Zurück zum Zitat Lee JH, Yashima M, Yoshimura M (1998) Ionic conductivity of fluorite-structured solid solution Y0.8Nb0.2O1.7. Solid State Ionics 107:47–51CrossRef Lee JH, Yashima M, Yoshimura M (1998) Ionic conductivity of fluorite-structured solid solution Y0.8Nb0.2O1.7. Solid State Ionics 107:47–51CrossRef
79.
Zurück zum Zitat West AR (1999) Basic solid state chemistry. Wiley, Chichester West AR (1999) Basic solid state chemistry. Wiley, Chichester
80.
Zurück zum Zitat Roth RS (1957) Classification of perovskite and other ABO3-type compounds. J Res Natl Bur Stand 58:75–88CrossRef Roth RS (1957) Classification of perovskite and other ABO3-type compounds. J Res Natl Bur Stand 58:75–88CrossRef
81.
Zurück zum Zitat Takahashi T, Iwahara H (1971) Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell. Energy Convers 11:105–111CrossRef Takahashi T, Iwahara H (1971) Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell. Energy Convers 11:105–111CrossRef
82.
Zurück zum Zitat Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803CrossRef Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803CrossRef
83.
Zurück zum Zitat Ishihara T, Matsuda H, Takita Y (1995) Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide. Solid State Ionics 79:147–151CrossRef Ishihara T, Matsuda H, Takita Y (1995) Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide. Solid State Ionics 79:147–151CrossRef
84.
Zurück zum Zitat Ishihara T, Ishikawa S, Yu C, Akbay T, Hosoi K, Nishiguchi H, Takita Y (2003) Oxide ion and electronic conductivity in Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite oxide. Phys Chem Chem Phys 5:2257–2263CrossRef Ishihara T, Ishikawa S, Yu C, Akbay T, Hosoi K, Nishiguchi H, Takita Y (2003) Oxide ion and electronic conductivity in Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite oxide. Phys Chem Chem Phys 5:2257–2263CrossRef
85.
Zurück zum Zitat Ishihara T (2001) Current status of intermediate temperature solid oxide fuel cell (in Japanese). Bull Ceram Soc Jpn 36:483–485 Ishihara T (2001) Current status of intermediate temperature solid oxide fuel cell (in Japanese). Bull Ceram Soc Jpn 36:483–485
86.
Zurück zum Zitat Islam MS, Davis RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93CrossRef Islam MS, Davis RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93CrossRef
87.
Zurück zum Zitat Huang K, Feng M, Goodenough JB, Schmerling M (1996) Characterization of Sr-doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell. J Electrochem Soc 143(11):3630–3636CrossRef Huang K, Feng M, Goodenough JB, Schmerling M (1996) Characterization of Sr-doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell. J Electrochem Soc 143(11):3630–3636CrossRef
88.
Zurück zum Zitat Kostogloudis GC, Ftikos C, Ahmad-Khanlou A, Naoumidis A, Stöver D (2000) Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte. Solid State Ionics 134:127–138CrossRef Kostogloudis GC, Ftikos C, Ahmad-Khanlou A, Naoumidis A, Stöver D (2000) Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte. Solid State Ionics 134:127–138CrossRef
89.
Zurück zum Zitat Shaula AL, Kharton VV, Marques FMB (2004) Phase interaction and oxygen transport in La0.8Sr0.2Fe0.8Co0.2O3-(La0.9Sr0.1)0.98 Ga0.8Mg0.2O3 composites. J Eur Ceram Soc 24:2631–2639CrossRef Shaula AL, Kharton VV, Marques FMB (2004) Phase interaction and oxygen transport in La0.8Sr0.2Fe0.8Co0.2O3-(La0.9Sr0.1)0.98 Ga0.8Mg0.2O3 composites. J Eur Ceram Soc 24:2631–2639CrossRef
90.
Zurück zum Zitat Sakai N, Horita T, Yamaji K, Brito ME, Yokokawa H, Kawakami A, Matsuoka S, Watanabe N, Ueno A (2006) Interface stability among solid oxide fuel cell materials with perovskite structures. J Electrochem Soc 153(3):A621–A625CrossRef Sakai N, Horita T, Yamaji K, Brito ME, Yokokawa H, Kawakami A, Matsuoka S, Watanabe N, Ueno A (2006) Interface stability among solid oxide fuel cell materials with perovskite structures. J Electrochem Soc 153(3):A621–A625CrossRef
91.
Zurück zum Zitat Joshi AV, Steppan JJ, Taylor DM, Elangovan S (2004) Solid electrolyte materials, devices, and applications. J Electroceram 13:619–625CrossRef Joshi AV, Steppan JJ, Taylor DM, Elangovan S (2004) Solid electrolyte materials, devices, and applications. J Electroceram 13:619–625CrossRef
92.
Zurück zum Zitat Schober T (1998) Protonic conduction in BaIn0.5Sn0.5O2.75. Solid State Ionics 109:1–11CrossRef Schober T (1998) Protonic conduction in BaIn0.5Sn0.5O2.75. Solid State Ionics 109:1–11CrossRef
93.
Zurück zum Zitat Goodenough JB (1997) Ceramic solid electrolytes. Solid State Ionics 94:17–25CrossRef Goodenough JB (1997) Ceramic solid electrolytes. Solid State Ionics 94:17–25CrossRef
94.
Zurück zum Zitat Goodenough JB, Ruiz-Dias JE, Zhen YS (1990) Oxide-ion conduction in Ba2In2O5 and Ba3In2MO8 (M = Ce, Hf, or Zr). Solid State Ionics 44:21–31CrossRef Goodenough JB, Ruiz-Dias JE, Zhen YS (1990) Oxide-ion conduction in Ba2In2O5 and Ba3In2MO8 (M = Ce, Hf, or Zr). Solid State Ionics 44:21–31CrossRef
95.
Zurück zum Zitat Manthiram A, Kuo JF, Goodenough JB (1993) Characterization of oxygen-deficient perovskites as oxide-ion electrolytes. Solid State Ionics 62:225–234CrossRef Manthiram A, Kuo JF, Goodenough JB (1993) Characterization of oxygen-deficient perovskites as oxide-ion electrolytes. Solid State Ionics 62:225–234CrossRef
96.
Zurück zum Zitat Uchimoto Y, Kinuhata M, Takagi H, Yao T, Inagaki T, Yoshida H (1999) Crystal structure of metal cation-doped Ba2In2O5 and its oxide Ion conductivity. In: Proceedings of SOFC VI. Electrochemical Society, Pennington, pp 317–326 Uchimoto Y, Kinuhata M, Takagi H, Yao T, Inagaki T, Yoshida H (1999) Crystal structure of metal cation-doped Ba2In2O5 and its oxide Ion conductivity. In: Proceedings of SOFC VI. Electrochemical Society, Pennington, pp 317–326
97.
Zurück zum Zitat Schober T, Friedrich J, Krug F (1997) Phase transition in the oxygen and proton conductor Ba2In2O5 in humid atmospheres below 300°C. Solid State Ionics 99:9–13CrossRef Schober T, Friedrich J, Krug F (1997) Phase transition in the oxygen and proton conductor Ba2In2O5 in humid atmospheres below 300°C. Solid State Ionics 99:9–13CrossRef
98.
Zurück zum Zitat Hashimoto T, Inagaki Y, Kishi A, Dokiya M (2000) Absorption and secession of H2O and CO2 on Ba2In2O5 and their effects on crystal structure. Solid State Ionics 128:227–231CrossRef Hashimoto T, Inagaki Y, Kishi A, Dokiya M (2000) Absorption and secession of H2O and CO2 on Ba2In2O5 and their effects on crystal structure. Solid State Ionics 128:227–231CrossRef
99.
Zurück zum Zitat Zhang GB, Smyth DM (1995) Defects and transport of the brownmillerite oxides with high oxygen ion conductivity – Ba2In2O5. Solid State Ionics 82:161–172CrossRef Zhang GB, Smyth DM (1995) Defects and transport of the brownmillerite oxides with high oxygen ion conductivity – Ba2In2O5. Solid State Ionics 82:161–172CrossRef
100.
Zurück zum Zitat Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York
101.
Zurück zum Zitat Oyane A (2010) Development of apatite-based composites by a biomimetic process for biomedical applications. J Ceram Soc Jpn 118(2):77–81CrossRef Oyane A (2010) Development of apatite-based composites by a biomimetic process for biomedical applications. J Ceram Soc Jpn 118(2):77–81CrossRef
102.
Zurück zum Zitat Felsche J (1972) Rare earth silicates with the apatite structure. J Solid State Chem 5:266–275CrossRef Felsche J (1972) Rare earth silicates with the apatite structure. J Solid State Chem 5:266–275CrossRef
103.
Zurück zum Zitat Park J, Lakes RS (2007) Biomaterials: an introduction, 3rd edn. Springer, New York Park J, Lakes RS (2007) Biomaterials: an introduction, 3rd edn. Springer, New York
104.
105.
Zurück zum Zitat Higuchi Y, Sugawara M, Onishi K, Sakamoto M, Nakayama S (2010) Oxide ionic conductivities of apatite-type lanthanum silicates and germanates and their possibilities as an electrolyte of lower temperature operating SOFC. Ceram Int 36:955–959CrossRef Higuchi Y, Sugawara M, Onishi K, Sakamoto M, Nakayama S (2010) Oxide ionic conductivities of apatite-type lanthanum silicates and germanates and their possibilities as an electrolyte of lower temperature operating SOFC. Ceram Int 36:955–959CrossRef
106.
Zurück zum Zitat Panteix PJ, Béchade E, Julien I, Abélard P, Bernache-Assollant D (2008) Influence of anionic vacancies on the ionic conductivity of silicated rare earth apatites. Mater Res Bull 43:1223–1231CrossRef Panteix PJ, Béchade E, Julien I, Abélard P, Bernache-Assollant D (2008) Influence of anionic vacancies on the ionic conductivity of silicated rare earth apatites. Mater Res Bull 43:1223–1231CrossRef
107.
Zurück zum Zitat Yoshioka H (2006) Oxide ionic conductivity of apatite-type lanthanum silicates. J Alloys Comp 408–412:649–652CrossRef Yoshioka H (2006) Oxide ionic conductivity of apatite-type lanthanum silicates. J Alloys Comp 408–412:649–652CrossRef
108.
Zurück zum Zitat Higuchi M, Masubuchi Y, Nakayama S, Kikkawa S, Kodaira K (2004) Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates. Solid State Ionics 174:73–80CrossRef Higuchi M, Masubuchi Y, Nakayama S, Kikkawa S, Kodaira K (2004) Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates. Solid State Ionics 174:73–80CrossRef
109.
Zurück zum Zitat Masubuchi Y, Higuchi M, Takeda T, Kikkawa S (2006) Preparation of apatite-type La9.33(SiO4)6O2 oxide ion conductor by alcoxide-hydrolysis. J Alloys Comp 408–412:641–644CrossRef Masubuchi Y, Higuchi M, Takeda T, Kikkawa S (2006) Preparation of apatite-type La9.33(SiO4)6O2 oxide ion conductor by alcoxide-hydrolysis. J Alloys Comp 408–412:641–644CrossRef
110.
Zurück zum Zitat Nojiri Y, Tanase S, Iwasa M, Yoshioka H, Matsumura Y, Sakai T (2010) Ionic conductivity of apatite-type solid electrolyte material, La10−XBaXSi6O27−X/2 (X = 0−1), and its fuel cell performance. J Power Sources 195:4059–4064CrossRef Nojiri Y, Tanase S, Iwasa M, Yoshioka H, Matsumura Y, Sakai T (2010) Ionic conductivity of apatite-type solid electrolyte material, La10−XBaXSi6O27−X/2 (X = 0−1), and its fuel cell performance. J Power Sources 195:4059–4064CrossRef
111.
Zurück zum Zitat Mineshige A, Nakao T, Kobune M, Yazawa T, Yoshioka H (2008) Electrical properties of La10Si6O27-based oxides. Solid State Ionics 179:1009–1012CrossRef Mineshige A, Nakao T, Kobune M, Yazawa T, Yoshioka H (2008) Electrical properties of La10Si6O27-based oxides. Solid State Ionics 179:1009–1012CrossRef
112.
Zurück zum Zitat Nakao T, Mineshige A, Kobune M, Yazawa T, Yoshioka H (2008) Chemical stability of La10Si6O27 and its application to electrolytes for solid oxide fuel cells. Solid State Ionics 179:1567–1569CrossRef Nakao T, Mineshige A, Kobune M, Yazawa T, Yoshioka H (2008) Chemical stability of La10Si6O27 and its application to electrolytes for solid oxide fuel cells. Solid State Ionics 179:1567–1569CrossRef
113.
Zurück zum Zitat Nakayama S, Kageyama T, Aono H, Sadaoka Y (1995) Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J Mater Chem 5:1801–1805CrossRef Nakayama S, Kageyama T, Aono H, Sadaoka Y (1995) Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J Mater Chem 5:1801–1805CrossRef
114.
Zurück zum Zitat Nakayama S, Sakamoto M (1998) Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). J Euro Ceram Soc 18:1413–1418CrossRef Nakayama S, Sakamoto M (1998) Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). J Euro Ceram Soc 18:1413–1418CrossRef
115.
Zurück zum Zitat Yoshioka H (2007) Enhancement of ionic conductivity of apatite-type lanthanum silicates doped with cations. J Am Ceram Soc 90:3099–3105CrossRef Yoshioka H (2007) Enhancement of ionic conductivity of apatite-type lanthanum silicates doped with cations. J Am Ceram Soc 90:3099–3105CrossRef
116.
Zurück zum Zitat Yoshioka H, Nojiri Y, Tanase S (2008) Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions. Solid State Ionics 179:2165–2169CrossRef Yoshioka H, Nojiri Y, Tanase S (2008) Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions. Solid State Ionics 179:2165–2169CrossRef
117.
Zurück zum Zitat Li B, Liu W, Pan W (2010) Synthesis and electrical properties of apatite-type La10Si6O27. J Power Sources 195:2196–2201CrossRef Li B, Liu W, Pan W (2010) Synthesis and electrical properties of apatite-type La10Si6O27. J Power Sources 195:2196–2201CrossRef
118.
Zurück zum Zitat Pivak YV, Kharton VV, Yaremchenko AA, Yakovlev SO, Kovalevsky AV, Frade JR, Marques FMB (2007) Phase relationships and transport in Ti-, Ce- and Zr-substituted lanthanum silicate systems. J Eur Ceram Soc 27:2445–2454CrossRef Pivak YV, Kharton VV, Yaremchenko AA, Yakovlev SO, Kovalevsky AV, Frade JR, Marques FMB (2007) Phase relationships and transport in Ti-, Ce- and Zr-substituted lanthanum silicate systems. J Eur Ceram Soc 27:2445–2454CrossRef
119.
Zurück zum Zitat Nojiri Y, Chen WF, Tanase S, Iwasa M, Matsumura Y, Sakai T, Tanase S (2008) Lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature SOFCs and the electrode materials. ITE-IBA Lett 1(6):498–506 Nojiri Y, Chen WF, Tanase S, Iwasa M, Matsumura Y, Sakai T, Tanase S (2008) Lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature SOFCs and the electrode materials. ITE-IBA Lett 1(6):498–506
120.
Zurück zum Zitat León-Reina L, Porras-Vázquez JM, Losilla ER, Aranda MAG (2007) Phase transition and mixed oxide-proton conductivity in germanium oxy-apatites. J Solid State Chem 180:1250–1258CrossRef León-Reina L, Porras-Vázquez JM, Losilla ER, Aranda MAG (2007) Phase transition and mixed oxide-proton conductivity in germanium oxy-apatites. J Solid State Chem 180:1250–1258CrossRef
121.
Zurück zum Zitat Arikawa H, Nishiguchi H, Ishihara T, Takita Y (2000) Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide. Solid State Ionics 136–137:31–37CrossRef Arikawa H, Nishiguchi H, Ishihara T, Takita Y (2000) Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide. Solid State Ionics 136–137:31–37CrossRef
122.
Zurück zum Zitat Ishihara T, Arikawa H, Akbay T, Nishiguchi H, Takita Y (2001) Nonstoichiometric La2−xGeO5−δ monoclinic oxide as a new fast oxide ion conductor. J Am Chem Soc 123:203–209CrossRef Ishihara T, Arikawa H, Akbay T, Nishiguchi H, Takita Y (2001) Nonstoichiometric La2−xGeO5−δ monoclinic oxide as a new fast oxide ion conductor. J Am Chem Soc 123:203–209CrossRef
123.
Zurück zum Zitat Nakayama S, Higuchi Y, Kondo Y, Sakamoto M (2004) Effects of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics. Solid State Ionics 170:219–223CrossRef Nakayama S, Higuchi Y, Kondo Y, Sakamoto M (2004) Effects of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics. Solid State Ionics 170:219–223CrossRef
124.
Zurück zum Zitat Berastegui P, Hull S, García García FJ, Grins J (2002) A structural investigation of La2(GeO4)O and alkaline-earth-doped La9.33(GeO4)6O2. J Solid State Chem 168:294–305CrossRef Berastegui P, Hull S, García García FJ, Grins J (2002) A structural investigation of La2(GeO4)O and alkaline-earth-doped La9.33(GeO4)6O2. J Solid State Chem 168:294–305CrossRef
125.
Zurück zum Zitat Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8(3):610–641CrossRef Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8(3):610–641CrossRef
126.
Zurück zum Zitat Wagner C (1968) Die Löslichkeit von Wasserdampf in ZrO2-Y2O3-Mischkristallen, Berichte Bunseng. Phys Chem 72(7):778–781 Wagner C (1968) Die Löslichkeit von Wasserdampf in ZrO2-Y2O3-Mischkristallen, Berichte Bunseng. Phys Chem 72(7):778–781
127.
Zurück zum Zitat Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16CrossRef Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16CrossRef
128.
Zurück zum Zitat ZP X, Jin Y, Diniz da Costa JC, GQM L (2008) Zr(HPO4)2 based organic/inorganic nanohybrids as new proton conductors. Solid State Ionics 178:1654–1659CrossRef ZP X, Jin Y, Diniz da Costa JC, GQM L (2008) Zr(HPO4)2 based organic/inorganic nanohybrids as new proton conductors. Solid State Ionics 178:1654–1659CrossRef
129.
Zurück zum Zitat Ahmad MI, Zaidi SMJ, Ruhman SU, Ahmed S (2006) Synthesis and proton conductivity of heteropolyacids loaded Y-zeolite as solid proton conductors for fuel cell applications. Miropor Mesopor Mater 91:296–304CrossRef Ahmad MI, Zaidi SMJ, Ruhman SU, Ahmed S (2006) Synthesis and proton conductivity of heteropolyacids loaded Y-zeolite as solid proton conductors for fuel cell applications. Miropor Mesopor Mater 91:296–304CrossRef
130.
Zurück zum Zitat Norby T (1999) Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics 125:1–11CrossRef Norby T (1999) Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics 125:1–11CrossRef
131.
Zurück zum Zitat Daiko Y, Nguyen VH, Yazawa T, Muto H, Sakai M, Matsuda A (2010) Phase transition and proton conductivity of CsHSO4-WPA composites prepared by mechanical milling. Solid State Ionics 181:183–186CrossRef Daiko Y, Nguyen VH, Yazawa T, Muto H, Sakai M, Matsuda A (2010) Phase transition and proton conductivity of CsHSO4-WPA composites prepared by mechanical milling. Solid State Ionics 181:183–186CrossRef
132.
Zurück zum Zitat Sugahara T, Hayashi A, Tadanaga K, Tatsumisago M (2010) Characterization of proton conducting CsHSO4-CsH2PO4 ionic glasses prepared by the melt-quenching method. Solid State Ionics 181:190–192CrossRef Sugahara T, Hayashi A, Tadanaga K, Tatsumisago M (2010) Characterization of proton conducting CsHSO4-CsH2PO4 ionic glasses prepared by the melt-quenching method. Solid State Ionics 181:190–192CrossRef
133.
Zurück zum Zitat Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3(4):359–363CrossRef Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3(4):359–363CrossRef
134.
Zurück zum Zitat Fukatsu N, Kurita N, Yajima T, Koide K, Ohashi T (1995) Proton conductors of oxide and their application to research into metal-hydrogen systems. J Alloys Comp 231:706–712CrossRef Fukatsu N, Kurita N, Yajima T, Koide K, Ohashi T (1995) Proton conductors of oxide and their application to research into metal-hydrogen systems. J Alloys Comp 231:706–712CrossRef
135.
Zurück zum Zitat Schwartz M, Link BF, Sammells AF (1993) New brownmillerite solid electrolytes. J Electrochem Soc 140:L62–L63CrossRef Schwartz M, Link BF, Sammells AF (1993) New brownmillerite solid electrolytes. J Electrochem Soc 140:L62–L63CrossRef
136.
Zurück zum Zitat Zahang GB, Smyth DM (1995) Protonic conduction in Ba2In2O5. Solid State Ionics 82:153–160CrossRef Zahang GB, Smyth DM (1995) Protonic conduction in Ba2In2O5. Solid State Ionics 82:153–160CrossRef
137.
Zurück zum Zitat Fisher CSJ, Islam MS (1999) Defect, protons and conductivity in brownmillerite-structured Ba2In2O5. Solid State Ionics 118:355–363CrossRef Fisher CSJ, Islam MS (1999) Defect, protons and conductivity in brownmillerite-structured Ba2In2O5. Solid State Ionics 118:355–363CrossRef
138.
Zurück zum Zitat Orera A, Slater PR (2010) Water incorporation studies in apatite-type rare earth silicates/germinates. Solid State Ionics 181:110–114CrossRef Orera A, Slater PR (2010) Water incorporation studies in apatite-type rare earth silicates/germinates. Solid State Ionics 181:110–114CrossRef
139.
Zurück zum Zitat Marrero-López D, Martín-Sedeño MC, Ruiz-Morales JC, Núñez P, Ramos-Barrado JR (2010) Preparation and characterisation of La10-xGe5.5Al0.5O26±δ apatites by freeze-drying precursor method. Mater Res Bull 45:409–415CrossRef Marrero-López D, Martín-Sedeño MC, Ruiz-Morales JC, Núñez P, Ramos-Barrado JR (2010) Preparation and characterisation of La10-xGe5.5Al0.5O26±δ apatites by freeze-drying precursor method. Mater Res Bull 45:409–415CrossRef
140.
Zurück zum Zitat Ito N, Iijima M, Kimura K, Iguchi S (2005) New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte. J Power Sources 152:200–203CrossRef Ito N, Iijima M, Kimura K, Iguchi S (2005) New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte. J Power Sources 152:200–203CrossRef
141.
Zurück zum Zitat Matsumoto H, Nomura I, Okada S, Ishihara T (2008) Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate. Solid State Ionics 179:1486–1489CrossRef Matsumoto H, Nomura I, Okada S, Ishihara T (2008) Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate. Solid State Ionics 179:1486–1489CrossRef
142.
Zurück zum Zitat Ishigaki T, Yamauchi S, Kishio K, Fueki K, Iwahara H (1986) Dissolution of deuterium into proton conductor SrCe0.95Yb0.05O3−δ. Solid State Ionics 21:239–241CrossRef Ishigaki T, Yamauchi S, Kishio K, Fueki K, Iwahara H (1986) Dissolution of deuterium into proton conductor SrCe0.95Yb0.05O3−δ. Solid State Ionics 21:239–241CrossRef
143.
Zurück zum Zitat Iwahara H, Uchida H, Ono K, Ogaki K (1998) Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc 135:529–533CrossRef Iwahara H, Uchida H, Ono K, Ogaki K (1998) Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc 135:529–533CrossRef
144.
Zurück zum Zitat Bonanos N, Ellis B, Mahmood MN (1991) Construction and operation of fuel cells based on the solid electrolyte BaCeO3: Gd. Solid State Ionics 44:305–311CrossRef Bonanos N, Ellis B, Mahmood MN (1991) Construction and operation of fuel cells based on the solid electrolyte BaCeO3: Gd. Solid State Ionics 44:305–311CrossRef
145.
Zurück zum Zitat Ma G, Matsumoto H, Iwahara H (1999) Ionic conduction and nonstoichiometry in non-doped BaxCeO3−α. Solid State Ionics 122:237–247CrossRef Ma G, Matsumoto H, Iwahara H (1999) Ionic conduction and nonstoichiometry in non-doped BaxCeO3−α. Solid State Ionics 122:237–247CrossRef
146.
Zurück zum Zitat Taniguchi N, Hatoh K, Niikura J, Gamo T, Iwahara H (1992) Proton conductive properties of gadolinium-doped barium cerates at high temperatures. Solid State Ionics 53–56:998–1003CrossRef Taniguchi N, Hatoh K, Niikura J, Gamo T, Iwahara H (1992) Proton conductive properties of gadolinium-doped barium cerates at high temperatures. Solid State Ionics 53–56:998–1003CrossRef
147.
Zurück zum Zitat Ma G, Shimura T, Iwahara H (1998) Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3−α. Solid State Ionics 110:103–110CrossRef Ma G, Shimura T, Iwahara H (1998) Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3−α. Solid State Ionics 110:103–110CrossRef
148.
Zurück zum Zitat Ma G, Shimura T, Iwahara H (1999) Simultaneous doping with La3+ and Y3+ for Ba2+ −and Ce4+ −sites in BaCeO3 and the ionic conduction. Solid State Ionics 120:51–60CrossRef Ma G, Shimura T, Iwahara H (1999) Simultaneous doping with La3+ and Y3+ for Ba2+ −and Ce4+ −sites in BaCeO3 and the ionic conduction. Solid State Ionics 120:51–60CrossRef
149.
Zurück zum Zitat Katahira K, Kohchi Y, Shimura T, Iwahara H (2000) Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138:91–98CrossRef Katahira K, Kohchi Y, Shimura T, Iwahara H (2000) Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138:91–98CrossRef
150.
Zurück zum Zitat Ranran P, Yan W, Lizhai Y, Zongqiang M (2006) Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics 177:389–393CrossRef Ranran P, Yan W, Lizhai Y, Zongqiang M (2006) Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics 177:389–393CrossRef
151.
Zurück zum Zitat XT S, Yan QZ, Ma YH, Zhang WF, Ge CC (2006) Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte. Solid State Ionics 177:1041–1045CrossRef XT S, Yan QZ, Ma YH, Zhang WF, Ge CC (2006) Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte. Solid State Ionics 177:1041–1045CrossRef
152.
Zurück zum Zitat Gorbova E, Zhuravlev BV, Demin AK, Song SQ, Tsiakaras PE (2006) Charge transfer properties of BaCe0.88Nd0.12O3−δ co-ionic electrolyte. J Power Sources 157:720–723CrossRef Gorbova E, Zhuravlev BV, Demin AK, Song SQ, Tsiakaras PE (2006) Charge transfer properties of BaCe0.88Nd0.12O3−δ co-ionic electrolyte. J Power Sources 157:720–723CrossRef
153.
Zurück zum Zitat Taherparvar H, Kilner JA, Baker RT, Sahibzada M (2003) Effect of humidification at anode and cathode in proton-conducting SOFCs. Solid State Ionics 162–163:297–303CrossRef Taherparvar H, Kilner JA, Baker RT, Sahibzada M (2003) Effect of humidification at anode and cathode in proton-conducting SOFCs. Solid State Ionics 162–163:297–303CrossRef
154.
Zurück zum Zitat Du Y, Nowick AS (1995) Structural transitions and proton conduction in nonstoichiometric A3B′B2″O9 perovskite-type oxides. J Am Ceram Soc 78:3033–3039CrossRef Du Y, Nowick AS (1995) Structural transitions and proton conduction in nonstoichiometric A3B′B2″O9 perovskite-type oxides. J Am Ceram Soc 78:3033–3039CrossRef
155.
Zurück zum Zitat Murugaraj P, Kreuer KD, He T, Schober T, Maier J (1997) High proton conductivity in barium yttrium stannate Ba2YSnO5.5. Solid State Ionics 98:1–6CrossRef Murugaraj P, Kreuer KD, He T, Schober T, Maier J (1997) High proton conductivity in barium yttrium stannate Ba2YSnO5.5. Solid State Ionics 98:1–6CrossRef
156.
Zurück zum Zitat Kreuer KD (2003) Proton conducting oxides. Ann Rev Mater Res 33:333–359CrossRef Kreuer KD (2003) Proton conducting oxides. Ann Rev Mater Res 33:333–359CrossRef
157.
Zurück zum Zitat He T, Kreuer KD, Baikov YM, Maier J (1997) Impedance spectroscopic study of thermodynamics and kinetics of Gd-doped BaCeO3 single crystal. Solid State Ionics 95:301–308CrossRef He T, Kreuer KD, Baikov YM, Maier J (1997) Impedance spectroscopic study of thermodynamics and kinetics of Gd-doped BaCeO3 single crystal. Solid State Ionics 95:301–308CrossRef
158.
Zurück zum Zitat Fabbri E, D'Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179:558–564CrossRef Fabbri E, D'Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179:558–564CrossRef
159.
Zurück zum Zitat Kreuer KD (1999) Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125:285–302CrossRef Kreuer KD (1999) Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125:285–302CrossRef
160.
Zurück zum Zitat He T, Ehrhart P, Meuffels P (1995) Optical band gap and Urbach tail in Y-doped BaCeO3. J Appl Phys 79:3219–3223CrossRef He T, Ehrhart P, Meuffels P (1995) Optical band gap and Urbach tail in Y-doped BaCeO3. J Appl Phys 79:3219–3223CrossRef
161.
162.
Zurück zum Zitat Mackor A, Koster TPM, Kraaijkamp JG, Gerretsen J, van Eijk JPGM (1991) Influence of La-substitution and -substoichiometry on conductivity, thermal expansion and chemical stability of Ca- or Sr-doped lanthanum manganites as SOFC cathodes. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium of solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 463–471 Mackor A, Koster TPM, Kraaijkamp JG, Gerretsen J, van Eijk JPGM (1991) Influence of La-substitution and -substoichiometry on conductivity, thermal expansion and chemical stability of Ca- or Sr-doped lanthanum manganites as SOFC cathodes. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium of solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 463–471
163.
Zurück zum Zitat Anderson HU (1992) Review of p-type doped perovskite materials for SOFC and other applications. Solid State Ionics 52:33–41CrossRef Anderson HU (1992) Review of p-type doped perovskite materials for SOFC and other applications. Solid State Ionics 52:33–41CrossRef
164.
Zurück zum Zitat Kuo JH, Anderson HU, Sparlin DM (1989) Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: nonstoichiometry and defect structure. J Solid State Chem 83:52–60CrossRef Kuo JH, Anderson HU, Sparlin DM (1989) Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: nonstoichiometry and defect structure. J Solid State Chem 83:52–60CrossRef
165.
Zurück zum Zitat Kuo JH, Anderson HU, Sparlin DM (1990) Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J Solid State Chem 87:55–63CrossRef Kuo JH, Anderson HU, Sparlin DM (1990) Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J Solid State Chem 87:55–63CrossRef
166.
Zurück zum Zitat van Roosmalen JAM, Huijsmans JPP, Cordfunke EHP (1991) Sinter behavior and electrical conductivity of (La,Sr)MnO3 as a function of Sr-content. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings 2nd International symposium on solid oxide fuel cells. Commission of European Communities, Luxemborg, pp 507–516 van Roosmalen JAM, Huijsmans JPP, Cordfunke EHP (1991) Sinter behavior and electrical conductivity of (La,Sr)MnO3 as a function of Sr-content. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings 2nd International symposium on solid oxide fuel cells. Commission of European Communities, Luxemborg, pp 507–516
167.
Zurück zum Zitat Hammouche A, Siebert E, Hammou A (1989) Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells. Mater Res Bull 24:367–380CrossRef Hammouche A, Siebert E, Hammou A (1989) Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells. Mater Res Bull 24:367–380CrossRef
168.
Zurück zum Zitat Yamada H, Nagamoto H (1993) Thermal expansion coefficient and electrical conductivity of Mn-based perovskite-type oxides. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd International symposium on solid oxide fuel cells, vol 93–94. The Electrochem Society Inc, Pennington, pp 213–219 Yamada H, Nagamoto H (1993) Thermal expansion coefficient and electrical conductivity of Mn-based perovskite-type oxides. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd International symposium on solid oxide fuel cells, vol 93–94. The Electrochem Society Inc, Pennington, pp 213–219
169.
Zurück zum Zitat Nasrallah MM, Anderson HU, Stevenson JW (1991) Defect chemistry and properties of Y1−xCaxMnO3. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 545–552 Nasrallah MM, Anderson HU, Stevenson JW (1991) Defect chemistry and properties of Y1−xCaxMnO3. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 545–552
170.
Zurück zum Zitat Stevenson JW, Nasrallah MM, Anderson HU, Parlin DMS (1993) Defect structure of Y1−yCayMnO3 and La1−yCayMnO3, I. Electrical properties. J Solid State Chem 102:175–184CrossRef Stevenson JW, Nasrallah MM, Anderson HU, Parlin DMS (1993) Defect structure of Y1−yCayMnO3 and La1−yCayMnO3, I. Electrical properties. J Solid State Chem 102:175–184CrossRef
171.
Zurück zum Zitat Stevenson JW, Nasrallah MM, Anderson HU, Sparlin DM (1993) Defect structure of Y1−yCayMnO3 and La1−yCayMnO3 II Oxidation-reduction behavior. J Solid State Chem 102:185–197CrossRef Stevenson JW, Nasrallah MM, Anderson HU, Sparlin DM (1993) Defect structure of Y1−yCayMnO3 and La1−yCayMnO3 II Oxidation-reduction behavior. J Solid State Chem 102:185–197CrossRef
172.
Zurück zum Zitat Fu B, Huebner W, Trubelja MF, Stubican VS (1993) (Y1−xCax)FeO3: a potential cathode material for solid oxide fuel cells. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 276–287 Fu B, Huebner W, Trubelja MF, Stubican VS (1993) (Y1−xCax)FeO3: a potential cathode material for solid oxide fuel cells. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 276–287
173.
Zurück zum Zitat Yamamoto O, Takeda Y, Imanishi N, Sakaki Y (1993) Electrochemical properties of La1−xCaxMnO3−z as cathode in SOFC. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 205–212 Yamamoto O, Takeda Y, Imanishi N, Sakaki Y (1993) Electrochemical properties of La1−xCaxMnO3−z as cathode in SOFC. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 205–212
174.
Zurück zum Zitat Mizusaki J, Tagawa H, Katou M, Hirano K, Sawata A, Tsuneyoshi K (1991) Electrochemical properties of some perovskite-type oxides as oxygen gas electrodes on yttria stabilized zirconia. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 487–494 Mizusaki J, Tagawa H, Katou M, Hirano K, Sawata A, Tsuneyoshi K (1991) Electrochemical properties of some perovskite-type oxides as oxygen gas electrodes on yttria stabilized zirconia. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 487–494
175.
Zurück zum Zitat Mizusaki J, Tagawa H, Tsuneyoshi K, Sawata A (1991) Reaction kinetics and microstructure of the solid oxide fuel cells air electrode La0.6Ca0.4MnO3/YSZ. J Electrochem Soc 138(7):1867–1873CrossRef Mizusaki J, Tagawa H, Tsuneyoshi K, Sawata A (1991) Reaction kinetics and microstructure of the solid oxide fuel cells air electrode La0.6Ca0.4MnO3/YSZ. J Electrochem Soc 138(7):1867–1873CrossRef
176.
Zurück zum Zitat Dokiya M (1992) A historical review on the SOFC research activity at NCLI, (in Japanese). In: Extended abstracts 1st symposium on solid oxide fuel cells, Japan. Solid Oxide Fuel Cells Society, Tokyo, pp 11–14 Dokiya M (1992) A historical review on the SOFC research activity at NCLI, (in Japanese). In: Extended abstracts 1st symposium on solid oxide fuel cells, Japan. Solid Oxide Fuel Cells Society, Tokyo, pp 11–14
177.
Zurück zum Zitat Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) Chemical thermodynamic compatibility of solid oxide fuel cell materials. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 663–670 Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) Chemical thermodynamic compatibility of solid oxide fuel cell materials. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 663–670
178.
Zurück zum Zitat Yokokawa H, Sakai N, Kawada T, Dokiya M (1992) Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials. Solid State Ionics 52:43–56CrossRef Yokokawa H, Sakai N, Kawada T, Dokiya M (1992) Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials. Solid State Ionics 52:43–56CrossRef
179.
Zurück zum Zitat Otoshi S, Sasaki H, Ohnishi H, Hase M, Ishimaru K, Ippommatsu M, Higuchi T, Miyayama M, Yanagida H (1991) Changes in the phases and electrical conduction properties of (La1−xSrx)1−yMnO3−δ. J Electrochem Soc 138(5):1519–1523CrossRef Otoshi S, Sasaki H, Ohnishi H, Hase M, Ishimaru K, Ippommatsu M, Higuchi T, Miyayama M, Yanagida H (1991) Changes in the phases and electrical conduction properties of (La1−xSrx)1−yMnO3−δ. J Electrochem Soc 138(5):1519–1523CrossRef
180.
Zurück zum Zitat Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia. J Electrochem Soc 134(11):2656–2661CrossRef Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia. J Electrochem Soc 134(11):2656–2661CrossRef
181.
Zurück zum Zitat Mizusaki J (1992) Nonstoichiometry, diffusion, and electrical properties of perovskite-type oxide electrode materials. Solid State Ionics 52:79–91CrossRef Mizusaki J (1992) Nonstoichiometry, diffusion, and electrical properties of perovskite-type oxide electrode materials. Solid State Ionics 52:79–91CrossRef
182.
Zurück zum Zitat Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N (1991) Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics 48:207–212CrossRef Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N (1991) Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics 48:207–212CrossRef
183.
Zurück zum Zitat Ivers-Tiffée E, Schieβl M, Oel HJ, Wersing W (1993) Investigations of cobalt- containing perovskites in SOFC single cells with respect to interface reactions and cell performance. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 613–622 Ivers-Tiffée E, Schieβl M, Oel HJ, Wersing W (1993) Investigations of cobalt- containing perovskites in SOFC single cells with respect to interface reactions and cell performance. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 613–622
184.
Zurück zum Zitat Iberl A, von Philipsborn H, Schieβl M, Ivers-Tiffée E, Wersing W, Zorn G (1991) High-temperature X-ray diffraction measurements of phase transitions and thermal expansion in (La,Sr)(Mn,Co)O3-cathode materials. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 527–535 Iberl A, von Philipsborn H, Schieβl M, Ivers-Tiffée E, Wersing W, Zorn G (1991) High-temperature X-ray diffraction measurements of phase transitions and thermal expansion in (La,Sr)(Mn,Co)O3-cathode materials. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 527–535
185.
Zurück zum Zitat Mackor A, Spee CIMA, van der Zouwen-Assink EA, Baptista JL, Schoonman J (1990) Mixed conductivity in perovskite SOFC materials La1−xMxMn1−yCoyO3 (M = Ca or Sr). In: Proceedings of the 25th intersociety energy conversion engineering conference, American Institute of Chemical Engineers, vol 3, pp 251–255 Mackor A, Spee CIMA, van der Zouwen-Assink EA, Baptista JL, Schoonman J (1990) Mixed conductivity in perovskite SOFC materials La1−xMxMn1−yCoyO3 (M = Ca or Sr). In: Proceedings of the 25th intersociety energy conversion engineering conference, American Institute of Chemical Engineers, vol 3, pp 251–255
186.
Zurück zum Zitat Tai LW, Nasrallah MM, Anderson HU (1993) (La1−xSrx)(Co1−yFey)O3, A potential cathode for intermediate temperature SOFC applications. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 241–251 Tai LW, Nasrallah MM, Anderson HU (1993) (La1−xSrx)(Co1−yFey)O3, A potential cathode for intermediate temperature SOFC applications. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 241–251
187.
Zurück zum Zitat Chen CC, Nasrallah MM, Anderson HU (1993) Preparation and electrode characteristics of dense La0.6Sr0.4Co0.2Fe0.8O3 thin film by polymetric precursors. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society Inc., Pennington, pp 252–266 Chen CC, Nasrallah MM, Anderson HU (1993) Preparation and electrode characteristics of dense La0.6Sr0.4Co0.2Fe0.8O3 thin film by polymetric precursors. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society Inc., Pennington, pp 252–266
188.
Zurück zum Zitat Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ. Mater Res Bull 23:51–58CrossRef Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ. Mater Res Bull 23:51–58CrossRef
189.
Zurück zum Zitat Ftikos C, Carter S, Steele BCH (1993) Mixed electronic/ionic conductivity of the solid solutions La(1−x)SrxCo(1−y)NiyO3−δ (x:0.4, 0.5, 0.6 and y:0.2, 0.4, 0.6). J Europ Ceram Soc 12:79–86CrossRef Ftikos C, Carter S, Steele BCH (1993) Mixed electronic/ionic conductivity of the solid solutions La(1−x)SrxCo(1−y)NiyO3−δ (x:0.4, 0.5, 0.6 and y:0.2, 0.4, 0.6). J Europ Ceram Soc 12:79–86CrossRef
190.
Zurück zum Zitat Inoue T, Seki N, Eguchi K, Arai H (1990) Low-temperature operation of solid electrolyte oxygen sensors using perovskite-type oxide electrodes and cathodic reaction kinetics. J Electrochem Soc 137(8):2523–2527CrossRef Inoue T, Seki N, Eguchi K, Arai H (1990) Low-temperature operation of solid electrolyte oxygen sensors using perovskite-type oxide electrodes and cathodic reaction kinetics. J Electrochem Soc 137(8):2523–2527CrossRef
191.
Zurück zum Zitat Sasaki K, Wurth JP, Gschwend R, Gödickemeier M, Gauckler LJ (1996) Microstructure-property relations of solid oxide fuel cell cathodes and current collectors: cathodic polarization and ohmic resistance. J Electrochem Soc 143:530–543CrossRef Sasaki K, Wurth JP, Gschwend R, Gödickemeier M, Gauckler LJ (1996) Microstructure-property relations of solid oxide fuel cell cathodes and current collectors: cathodic polarization and ohmic resistance. J Electrochem Soc 143:530–543CrossRef
192.
Zurück zum Zitat Kleitz M (1992) Reaction pathways: a new electrode modelling concept. In: McEvoy A (ed) Fundamental barriers to SOFC performance. Swiss Federal Office of Energy, Bern, pp 4–12 Kleitz M (1992) Reaction pathways: a new electrode modelling concept. In: McEvoy A (ed) Fundamental barriers to SOFC performance. Swiss Federal Office of Energy, Bern, pp 4–12
193.
Zurück zum Zitat Steele BCH, Carter S, Kajda J, Kontoulis I, Kilner JA (1991) Optimisation of fuel cell components using 18O/16O exchange and dynamic SIMS techniques. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 517–525 Steele BCH, Carter S, Kajda J, Kontoulis I, Kilner JA (1991) Optimisation of fuel cell components using 18O/16O exchange and dynamic SIMS techniques. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 517–525
194.
Zurück zum Zitat Hammou A (1992) Solid oxide fuel cells. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering, vol 2. VCH-Verlag, Weinheim, pp 87–139 Hammou A (1992) Solid oxide fuel cells. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering, vol 2. VCH-Verlag, Weinheim, pp 87–139
195.
Zurück zum Zitat Hammouche A, Siebert E, Hammou A, Kleitz M, Caneiro A (1991) Electrocatalytic properties and nonstoichiometry of the high temperature air electrode La1−xSrxMnO3. J Electrochem Soc 138(5):1212–1216CrossRef Hammouche A, Siebert E, Hammou A, Kleitz M, Caneiro A (1991) Electrocatalytic properties and nonstoichiometry of the high temperature air electrode La1−xSrxMnO3. J Electrochem Soc 138(5):1212–1216CrossRef
196.
Zurück zum Zitat Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K (1988) Diffusion of oxide Ion vacancies in perovskite-type oxides. J Solid State Chem 73:179–187CrossRef Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K (1988) Diffusion of oxide Ion vacancies in perovskite-type oxides. J Solid State Chem 73:179–187CrossRef
197.
Zurück zum Zitat Takeda Y, Ueno H, Imanishi N, Yamamoto O, Sammes N, Phillipps M (1996) Gd1−xSrxCoO3 for the electrode of solid oxide fuel cells. Solid State Ionics 86–88:1187–1190CrossRef Takeda Y, Ueno H, Imanishi N, Yamamoto O, Sammes N, Phillipps M (1996) Gd1−xSrxCoO3 for the electrode of solid oxide fuel cells. Solid State Ionics 86–88:1187–1190CrossRef
198.
Zurück zum Zitat Tu H, Takeda Y, Imanishi N, Yamamoto O (1997) Ln1−xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ionics 100:283–288 Tu H, Takeda Y, Imanishi N, Yamamoto O (1997) Ln1−xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ionics 100:283–288
199.
Zurück zum Zitat Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Iio M, Esaki Y (1999) Ln1−xSrxMnO3 (Ln = Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells. Solid State Ionics 118:187–194CrossRef Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Iio M, Esaki Y (1999) Ln1−xSrxMnO3 (Ln = Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells. Solid State Ionics 118:187–194CrossRef
200.
Zurück zum Zitat Phillipps M, Sammes N, Yamamoto O (1999) Gd1−xAxCo1−yMnyO3 (A = Sr, Ca) as a cathode for the SOFC. Solid State Ionics 123:131–138CrossRef Phillipps M, Sammes N, Yamamoto O (1999) Gd1−xAxCo1−yMnyO3 (A = Sr, Ca) as a cathode for the SOFC. Solid State Ionics 123:131–138CrossRef
201.
Zurück zum Zitat Tu H, Takeda Y, Imanishi N, Yamamoto O (1999) Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics 117:277–281CrossRef Tu H, Takeda Y, Imanishi N, Yamamoto O (1999) Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics 117:277–281CrossRef
202.
Zurück zum Zitat Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y (2003) Ln1−xSrxCo1−yFeyO3−δ(Ln = Pr, Nd, Gd; x = 0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics 158:55–65CrossRef Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y (2003) Ln1−xSrxCo1−yFeyO3−δ(Ln = Pr, Nd, Gd; x = 0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics 158:55–65CrossRef
203.
Zurück zum Zitat Ishihara T, Honda M, Shibayama T, Nishiguchi H, Takita Y (1998) Intermediate temperature solid oxide fuel cells using a New LaGaO3 based oxide ion conductor. J Electrochem Soc 145:3177–3183CrossRef Ishihara T, Honda M, Shibayama T, Nishiguchi H, Takita Y (1998) Intermediate temperature solid oxide fuel cells using a New LaGaO3 based oxide ion conductor. J Electrochem Soc 145:3177–3183CrossRef
204.
Zurück zum Zitat Ishihara T, Fukui S, Nishiguchi H, Takita Y (2002) Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell. Solid State Ionics 152–153:609–613CrossRef Ishihara T, Fukui S, Nishiguchi H, Takita Y (2002) Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell. Solid State Ionics 152–153:609–613CrossRef
205.
Zurück zum Zitat Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173CrossRef Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173CrossRef
206.
Zurück zum Zitat Li S, Lu Z, Wei B, Huang X, Miao J, Cao G, Zhu R, Su W (2006) A study of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ as a cathode material for IT-SOFCs. J Alloys Comp 426:408–414CrossRef Li S, Lu Z, Wei B, Huang X, Miao J, Cao G, Zhu R, Su W (2006) A study of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ as a cathode material for IT-SOFCs. J Alloys Comp 426:408–414CrossRef
207.
Zurück zum Zitat Kotomin EA, Mastrikov YA, Kuklja MM, Merkle R, Roytburd A, Maier J (2011) First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1−yFeyO3−δ perovskites. Solid State Ionics 188:1–5CrossRef Kotomin EA, Mastrikov YA, Kuklja MM, Merkle R, Roytburd A, Maier J (2011) First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1−yFeyO3−δ perovskites. Solid State Ionics 188:1–5CrossRef
208.
Zurück zum Zitat Yan A, Cheng M, Dong Y, Yang W, Maragou V, Song S, Tsiakaras P (2006) Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode IT-SOFC I. The effect of CO2 on the cell performance. Appl Catal B Environ 66:64–71CrossRef Yan A, Cheng M, Dong Y, Yang W, Maragou V, Song S, Tsiakaras P (2006) Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode IT-SOFC I. The effect of CO2 on the cell performance. Appl Catal B Environ 66:64–71CrossRef
209.
Zurück zum Zitat Yan A, Yang M, Hou Z, Dong Y, Cheng M (2008) Investigation of Ba1−xSrxCo0.8Fe0.2O3−δ as cathodes for low-temperature solid oxide fuel cells both in the absence and presence of CO2. J Power Sources 185:76–84CrossRef Yan A, Yang M, Hou Z, Dong Y, Cheng M (2008) Investigation of Ba1−xSrxCo0.8Fe0.2O3−δ as cathodes for low-temperature solid oxide fuel cells both in the absence and presence of CO2. J Power Sources 185:76–84CrossRef
210.
Zurück zum Zitat Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y, Saitoh T (1995) Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator. J Power Sources 55:73–79CrossRef Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y, Saitoh T (1995) Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator. J Power Sources 55:73–79CrossRef
211.
Zurück zum Zitat Taniguchi S, Kadowaki M, Yasuo T, Akiyama Y, Itoh Y, Miyake Y, Nishio K (1996) Suppression of chromium diffusion to an SOFC cathode from an alloy separator by a cathode second layer. Denki Kagaku 64(6):568–574 Taniguchi S, Kadowaki M, Yasuo T, Akiyama Y, Itoh Y, Miyake Y, Nishio K (1996) Suppression of chromium diffusion to an SOFC cathode from an alloy separator by a cathode second layer. Denki Kagaku 64(6):568–574
212.
Zurück zum Zitat Matsuzaki Y, Yasuda I (2001) Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes. J Electrochem Soc 148(2):A126–A131CrossRef Matsuzaki Y, Yasuda I (2001) Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes. J Electrochem Soc 148(2):A126–A131CrossRef
213.
Zurück zum Zitat Chiba R, Yoshimura F, Sakurai Y (1999) An investigation of LaNi1−xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ionics 124:281–288CrossRef Chiba R, Yoshimura F, Sakurai Y (1999) An investigation of LaNi1−xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ionics 124:281–288CrossRef
214.
Zurück zum Zitat Komatsu T, Chiba R, Arai H, Sato K (2008) Chemical compatibility and electrochemical property of intermediate-temperature SOFC cathodes under Cr poisoning condition. J Power Sources 176:132–137CrossRef Komatsu T, Chiba R, Arai H, Sato K (2008) Chemical compatibility and electrochemical property of intermediate-temperature SOFC cathodes under Cr poisoning condition. J Power Sources 176:132–137CrossRef
215.
Zurück zum Zitat Jiang SP, Zhen Y (2008) Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells. Solid State Ionics 179:1459–1464CrossRef Jiang SP, Zhen Y (2008) Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells. Solid State Ionics 179:1459–1464CrossRef
216.
Zurück zum Zitat Lee S, Bevilacqua M, Fornasiero P, Vohs JM, Gorte RJ (2009) Solid oxide fuel cell cathodes prepared by infiltration of LaNi0.6Fe0.4O3 and La0.91Sr0.09Ni0.6Fe0.4O3 in porous yttria-stabilized zirconia. J Power Sources 193:747–753CrossRef Lee S, Bevilacqua M, Fornasiero P, Vohs JM, Gorte RJ (2009) Solid oxide fuel cell cathodes prepared by infiltration of LaNi0.6Fe0.4O3 and La0.91Sr0.09Ni0.6Fe0.4O3 in porous yttria-stabilized zirconia. J Power Sources 193:747–753CrossRef
217.
Zurück zum Zitat Skinner S, Kilner J (2000) Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics 135:709–712CrossRef Skinner S, Kilner J (2000) Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics 135:709–712CrossRef
218.
Zurück zum Zitat Mauvy F, Bassat J, Boehm E, Manaud J, Dordor P, Grenier J (2003) Oxygen electrode reaction on Nd2NiO4+δcathode materials: impedance spectroscopy study. Solid State Ionics 158:17–28CrossRef Mauvy F, Bassat J, Boehm E, Manaud J, Dordor P, Grenier J (2003) Oxygen electrode reaction on Nd2NiO4+δcathode materials: impedance spectroscopy study. Solid State Ionics 158:17–28CrossRef
219.
Zurück zum Zitat Lalanne C, Prosperi G, Bassat J, Mauvy F, Fourcade S, Stevens P, Zahid M, Diethelm S, van Herle J, Grenier J (2008) Neodymium-deficient nickelate oxide Nd1.95NiO4+δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells. J Power Sources 185:1218–1224CrossRef Lalanne C, Prosperi G, Bassat J, Mauvy F, Fourcade S, Stevens P, Zahid M, Diethelm S, van Herle J, Grenier J (2008) Neodymium-deficient nickelate oxide Nd1.95NiO4+δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells. J Power Sources 185:1218–1224CrossRef
220.
Zurück zum Zitat Nie H, Wen T, Wang S, Wang Y, Guth U, Vashook V (2006) Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−αA′αMO4 (A = Pr, Sm; A′ = Sr; M = Mn, Ni; α = 0.3, 0.6) as a new cathode for SOFC. Solid State Ionics 177:1929–1932CrossRef Nie H, Wen T, Wang S, Wang Y, Guth U, Vashook V (2006) Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−αA′αMO4 (A = Pr, Sm; A′ = Sr; M = Mn, Ni; α = 0.3, 0.6) as a new cathode for SOFC. Solid State Ionics 177:1929–1932CrossRef
221.
Zurück zum Zitat Wang Y, Nie H, Wang S, Wen T, Guth U, Valshook V (2006) A2−αA′αBO4-type oxides as cathode materials for IT-SOFCs (A = Pr, Sm; A′ = Sr; B = Fe, Co). Mater Lett 60:1174–1178CrossRef Wang Y, Nie H, Wang S, Wen T, Guth U, Valshook V (2006) A2−αA′αBO4-type oxides as cathode materials for IT-SOFCs (A = Pr, Sm; A′ = Sr; B = Fe, Co). Mater Lett 60:1174–1178CrossRef
222.
Zurück zum Zitat Haanappel V, Rutenbeck D, Mai A, Uhlenbruck S, Sebold D, Wesemeyer H, Röwekamp B, Tropartz C, Tietz F (2004) The influence of noble-metal-containing cathodes on the electrochemical performance of anode-supported SOFCs. J Power Sources 130:119–128CrossRef Haanappel V, Rutenbeck D, Mai A, Uhlenbruck S, Sebold D, Wesemeyer H, Röwekamp B, Tropartz C, Tietz F (2004) The influence of noble-metal-containing cathodes on the electrochemical performance of anode-supported SOFCs. J Power Sources 130:119–128CrossRef
223.
Zurück zum Zitat Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag cathode for ceria electrolyte SOFCs. Solid State Ionics 146:203–210CrossRef Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag cathode for ceria electrolyte SOFCs. Solid State Ionics 146:203–210CrossRef
224.
Zurück zum Zitat Zhang J, Ji Y, Gao H, He T, Liu J (2005) Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells. J Alloys Compounds 395:322–325CrossRef Zhang J, Ji Y, Gao H, He T, Liu J (2005) Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells. J Alloys Compounds 395:322–325CrossRef
225.
Zurück zum Zitat Simner S, Anderson MJ, Coleman JS (2006) Performance of a novel La(Sr)Fe(Co)O3-Ag SOFC cathode. J Power Sources 161:115–122CrossRef Simner S, Anderson MJ, Coleman JS (2006) Performance of a novel La(Sr)Fe(Co)O3-Ag SOFC cathode. J Power Sources 161:115–122CrossRef
226.
Zurück zum Zitat Mogensen M, Lindegaard T, Hansen TU, Mogensen G (1994) Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2. J Electrochem Soc 141(8):2122–2128CrossRef Mogensen M, Lindegaard T, Hansen TU, Mogensen G (1994) Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2. J Electrochem Soc 141(8):2122–2128CrossRef
227.
Zurück zum Zitat Setoguchi T, Okamoto K, Eguchi K, Arai H (1992) Effects of anode material and fuel on anodic reaction of solid oxide fuel cells. J Electrochem Soc 139:2875–2880CrossRef Setoguchi T, Okamoto K, Eguchi K, Arai H (1992) Effects of anode material and fuel on anodic reaction of solid oxide fuel cells. J Electrochem Soc 139:2875–2880CrossRef
228.
Zurück zum Zitat Sasaki H, Otoshi S, Suzuki M, Sogi T, Kajimura A, Sugiura N, Ippommatsu M (1994) Fabrication of high power density tabular type solid oxide fuel cells. Solid State Ionics 72:253–256CrossRef Sasaki H, Otoshi S, Suzuki M, Sogi T, Kajimura A, Sugiura N, Ippommatsu M (1994) Fabrication of high power density tabular type solid oxide fuel cells. Solid State Ionics 72:253–256CrossRef
229.
Zurück zum Zitat Lide DR (2008) CRC handbook of chemistry and physics. CRC Press, Boca Raton Lide DR (2008) CRC handbook of chemistry and physics. CRC Press, Boca Raton
230.
Zurück zum Zitat Tao SW, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323CrossRef Tao SW, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323CrossRef
231.
Zurück zum Zitat Zha SW, Tsang P, Cheng Z, Liu ML (2005) Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−xMnxO3 under anodic conditions. J Solid State Chem 178:1844–1850CrossRef Zha SW, Tsang P, Cheng Z, Liu ML (2005) Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−xMnxO3 under anodic conditions. J Solid State Chem 178:1844–1850CrossRef
232.
Zurück zum Zitat Huang YH, Dass RI, Denyszyn JC, Goodenough JB (2006) Synthesis and characterization of Sr2MgMoO6−δ an anode material for the solid oxide fuel cell. J Electrochem Soc 153:A1266–A1272CrossRef Huang YH, Dass RI, Denyszyn JC, Goodenough JB (2006) Synthesis and characterization of Sr2MgMoO6−δ an anode material for the solid oxide fuel cell. J Electrochem Soc 153:A1266–A1272CrossRef
233.
Zurück zum Zitat Vernoux P, Guillodo M, Foulrtier J, Hammou A (2000) Alternative anode material for gradual methane reforming in solid oxide fuel cells. Solid State Ionics 135:425–431CrossRef Vernoux P, Guillodo M, Foulrtier J, Hammou A (2000) Alternative anode material for gradual methane reforming in solid oxide fuel cells. Solid State Ionics 135:425–431CrossRef
234.
Zurück zum Zitat Ruiz-morales JC, Canales-Vázquez J, Peña-Martínez J, López DM, Núñez P (2006) On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochim Acta 52:278–284CrossRef Ruiz-morales JC, Canales-Vázquez J, Peña-Martínez J, López DM, Núñez P (2006) On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochim Acta 52:278–284CrossRef
235.
Zurück zum Zitat Sauvet AL, Fouletier J (2001) Electrochemical properties of a new type of anode material La1−xSrxCr1−yRuyO3−δ for SOFC under hydrogen and methane at intermediate temperatures. Electrochim Acta 47:987–995CrossRef Sauvet AL, Fouletier J (2001) Electrochemical properties of a new type of anode material La1−xSrxCr1−yRuyO3−δ for SOFC under hydrogen and methane at intermediate temperatures. Electrochim Acta 47:987–995CrossRef
236.
Zurück zum Zitat Sauvet AL, Fouletier J, Gaillard F, Primet M (2002) Surface properties and physicochemical characterizations of a New type of anode material, La1−xSrxCr1−yRuyO3−δ, for a solid oxide fuel cell under methane at intermediate temperature. J Catal 209:25–34CrossRef Sauvet AL, Fouletier J, Gaillard F, Primet M (2002) Surface properties and physicochemical characterizations of a New type of anode material, La1−xSrxCr1−yRuyO3−δ, for a solid oxide fuel cell under methane at intermediate temperature. J Catal 209:25–34CrossRef
237.
Zurück zum Zitat Sauvet AL, Irvine JTS (2004) Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ. Solid State Ionics 167:1–8CrossRef Sauvet AL, Irvine JTS (2004) Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ. Solid State Ionics 167:1–8CrossRef
238.
Zurück zum Zitat Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricô AS, Gullo LR, Rosa DL, Antonucci V (2005) Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. J Power Sources 145:68–73CrossRef Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricô AS, Gullo LR, Rosa DL, Antonucci V (2005) Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. J Power Sources 145:68–73CrossRef
239.
Zurück zum Zitat Lepe FJ, Fernández-Urbán J, Mestres L, Martínez-Sarrión ML (2005) Synthesis and electrical properties of new rare-earth titanium perovskites for SOFC anode applications. J Power Sources 151:74–78CrossRef Lepe FJ, Fernández-Urbán J, Mestres L, Martínez-Sarrión ML (2005) Synthesis and electrical properties of new rare-earth titanium perovskites for SOFC anode applications. J Power Sources 151:74–78CrossRef
240.
Zurück zum Zitat Fagg DP, Kharton VV, Kovalevsky AV, Viskup AP, Naumovich EN, Frade JR (2001) The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. J Eur Ceram Soc 21:1831–1835CrossRef Fagg DP, Kharton VV, Kovalevsky AV, Viskup AP, Naumovich EN, Frade JR (2001) The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. J Eur Ceram Soc 21:1831–1835CrossRef
241.
Zurück zum Zitat Hui S, Petric A (2002) Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. J Eur Ceram Soc 22:1673–1681CrossRef Hui S, Petric A (2002) Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. J Eur Ceram Soc 22:1673–1681CrossRef
242.
Zurück zum Zitat Moos R, Härdtl KH (1997) Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400°C. J Am Ceram Soc 80(10):2549–2562CrossRef Moos R, Härdtl KH (1997) Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400°C. J Am Ceram Soc 80(10):2549–2562CrossRef
243.
Zurück zum Zitat Hui SQ, Petric A (2001) Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures. Solid State Ionics 143:275–283CrossRef Hui SQ, Petric A (2001) Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures. Solid State Ionics 143:275–283CrossRef
244.
Zurück zum Zitat Bieger T, Waser MJ, Waser R (1992) Optical investigation of oxygen incorporation in SrTiO3. Solid State Ionics 53–56:578–582CrossRef Bieger T, Waser MJ, Waser R (1992) Optical investigation of oxygen incorporation in SrTiO3. Solid State Ionics 53–56:578–582CrossRef
245.
Zurück zum Zitat Sasaki K, Claus J, Maier J (1999) Defect chemistry of oxides in partially frozen-in states: case studies for ZrO2(Y2O3), SrZrO3(Y2O3), and SrTiO3. Solid State Ionics 121:51–60CrossRef Sasaki K, Claus J, Maier J (1999) Defect chemistry of oxides in partially frozen-in states: case studies for ZrO2(Y2O3), SrZrO3(Y2O3), and SrTiO3. Solid State Ionics 121:51–60CrossRef
246.
Zurück zum Zitat Park S, Gorte RJ, Vohs JM (2000) Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Appl Catal A Gen 200:55–61CrossRef Park S, Gorte RJ, Vohs JM (2000) Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Appl Catal A Gen 200:55–61CrossRef
247.
Zurück zum Zitat Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–267CrossRef Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–267CrossRef
248.
Zurück zum Zitat Zhou ZF, Kumar R, Thakur ST, Rudnick LR, Schobert H, Lvov SN (2007) Direct oxidation of waste vegetable oil in solid-oxide fuel cells. J Power Sources 171:856–860CrossRef Zhou ZF, Kumar R, Thakur ST, Rudnick LR, Schobert H, Lvov SN (2007) Direct oxidation of waste vegetable oil in solid-oxide fuel cells. J Power Sources 171:856–860CrossRef
249.
Zurück zum Zitat Craciun R, Park S, Gorte RJ, Vohs JM, Wang C, Worrell WL (1999) A novel method for preparing anode cermets for solid oxide fuel cells. J Electrochem Soc 146:4019–4022CrossRef Craciun R, Park S, Gorte RJ, Vohs JM, Wang C, Worrell WL (1999) A novel method for preparing anode cermets for solid oxide fuel cells. J Electrochem Soc 146:4019–4022CrossRef
250.
Zurück zum Zitat Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, Chichester Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, Chichester
251.
Zurück zum Zitat Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases I. equilibrium compositions and reforming conditions. J Electrochem Soc 150(7):A878–A884CrossRef Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases I. equilibrium compositions and reforming conditions. J Electrochem Soc 150(7):A878–A884CrossRef
252.
Zurück zum Zitat Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases II. the C─H─O ternary diagrams. J Electrochem Soc 150(7):A885–A888CrossRef Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases II. the C─H─O ternary diagrams. J Electrochem Soc 150(7):A885–A888CrossRef
253.
Zurück zum Zitat Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases. In: Proceedings of the 8th international symposium on solid oxide fuel cells, vol 2003–2007. Electrochemical Society, Pennington, pp 1225–1239 Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases. In: Proceedings of the 8th international symposium on solid oxide fuel cells, vol 2003–2007. Electrochemical Society, Pennington, pp 1225–1239
254.
Zurück zum Zitat Sasaki K, Kojo H, Hori Y, Kikuchi R, Eguchi K (2002) Direct-alcohol/hydrocarbon SOFCs: comparison of power generation characteristics for various fuels. Electrochemistry 70(1):18–22 Sasaki K, Kojo H, Hori Y, Kikuchi R, Eguchi K (2002) Direct-alcohol/hydrocarbon SOFCs: comparison of power generation characteristics for various fuels. Electrochemistry 70(1):18–22
255.
Zurück zum Zitat Eguchi K, Kojo H, Takeguchi T, Kikuchi R, Sasaki K (2002) Fuel flexibility in power generation by solid oxide fuel cells. Solid State Ionics 152:411–416CrossRef Eguchi K, Kojo H, Takeguchi T, Kikuchi R, Sasaki K (2002) Fuel flexibility in power generation by solid oxide fuel cells. Solid State Ionics 152:411–416CrossRef
256.
Zurück zum Zitat Sasaki K, Hori Y, Kikuchi R, Eguchi K, Ueno A, Takeuchi H, Aizawa M, Tsujimoto K, Tajiri H, Nishikawa H, Uchida Y (2002) Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases. J Electrochem Soc 149(3):A227–A233CrossRef Sasaki K, Hori Y, Kikuchi R, Eguchi K, Ueno A, Takeuchi H, Aizawa M, Tsujimoto K, Tajiri H, Nishikawa H, Uchida Y (2002) Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases. J Electrochem Soc 149(3):A227–A233CrossRef
257.
Zurück zum Zitat Sasaki K, Watanabe K, Teraoka Y (2004) Direct-alcohol solid oxide fuel cells: current-voltage characteristics and fuel gas compositions. J Electrochem Soc 151(7):A965–A970CrossRef Sasaki K, Watanabe K, Teraoka Y (2004) Direct-alcohol solid oxide fuel cells: current-voltage characteristics and fuel gas compositions. J Electrochem Soc 151(7):A965–A970CrossRef
258.
Zurück zum Zitat Sasaki K, Watanabe K, Shiosaki K, Susuki K, Teraoka Y (2003) Power generation characteristics of SOFCs for alcohols and hydrocarbons. In: Proceedings of the 8th international symposium on solid oxide fuel cells, vol 2003–2007. Electrochemical Society, Pennington, pp 1295–1304 Sasaki K, Watanabe K, Shiosaki K, Susuki K, Teraoka Y (2003) Power generation characteristics of SOFCs for alcohols and hydrocarbons. In: Proceedings of the 8th international symposium on solid oxide fuel cells, vol 2003–2007. Electrochemical Society, Pennington, pp 1295–1304
259.
Zurück zum Zitat Kishimoto H, Horita T, Yamaji K, Xiong Y, Sakai N, Brito ME, Yokokawa H (2005) Feasibility of n-Dodecane fuel for solid oxide fuel cell with Ni-ScSZ anode. J Electrochem Soc 152(3):A532–A538CrossRef Kishimoto H, Horita T, Yamaji K, Xiong Y, Sakai N, Brito ME, Yokokawa H (2005) Feasibility of n-Dodecane fuel for solid oxide fuel cell with Ni-ScSZ anode. J Electrochem Soc 152(3):A532–A538CrossRef
260.
Zurück zum Zitat Sasaki K, Watanabe K, Shiosaki K, Susuki K, Teraoka Y (2004) Multi-fuel capability of solid oxide fuel cells. J Electroceram 13(1–3):669–675CrossRef Sasaki K, Watanabe K, Shiosaki K, Susuki K, Teraoka Y (2004) Multi-fuel capability of solid oxide fuel cells. J Electroceram 13(1–3):669–675CrossRef
261.
Zurück zum Zitat Haga K (2010) Chemical degradation of Ni-based anode materials in solid oxide fuel cells. Dissertation, Kyushu University, Fukuoka Haga K (2010) Chemical degradation of Ni-based anode materials in solid oxide fuel cells. Dissertation, Kyushu University, Fukuoka
262.
Zurück zum Zitat Sasaki K, Haga K, Yoshizumi T, Minematsu D, Yuki E, Liu RR, Uryu C, Oshima T, Ogura T, Shiratori Y, Ito K, Koyama M, Yokomoto K (2011) Chemical durability of SOFCs: influence of impurities on long-term performance. J Power Sources 196(22):9130–9140CrossRef Sasaki K, Haga K, Yoshizumi T, Minematsu D, Yuki E, Liu RR, Uryu C, Oshima T, Ogura T, Shiratori Y, Ito K, Koyama M, Yokomoto K (2011) Chemical durability of SOFCs: influence of impurities on long-term performance. J Power Sources 196(22):9130–9140CrossRef
263.
Zurück zum Zitat Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2006) H2S poisoning of solid oxide fuel cells. J Electrochem Soc 153:A2023–A2029CrossRef Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2006) H2S poisoning of solid oxide fuel cells. J Electrochem Soc 153:A2023–A2029CrossRef
264.
Zurück zum Zitat Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2005) Sulfur tolerance of solid oxide fuel cells. In: Proceedings of the 9th international symposium on solid oxide fuel cells, vol 2005–2007. Electrochemical Society, Pennington, pp 1267–1274 Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2005) Sulfur tolerance of solid oxide fuel cells. In: Proceedings of the 9th international symposium on solid oxide fuel cells, vol 2005–2007. Electrochemical Society, Pennington, pp 1267–1274
265.
Zurück zum Zitat Sasaki K, Adachi S, Haga K, Uchikawa M, Yamamoto J, Iyoshi A, Chou J-T, Shiratori Y, Itoh K (2007) Fuel impurity tolerance of solid oxide fuel cells. Solid oxide fuel cells 10 (SOFC-10). ECS Trans 7(1):1675–1683CrossRef Sasaki K, Adachi S, Haga K, Uchikawa M, Yamamoto J, Iyoshi A, Chou J-T, Shiratori Y, Itoh K (2007) Fuel impurity tolerance of solid oxide fuel cells. Solid oxide fuel cells 10 (SOFC-10). ECS Trans 7(1):1675–1683CrossRef
266.
Zurück zum Zitat Haga K, Adachi S, Shiratori Y, Ito K, Sasaki K (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179(27–32):1427–1431CrossRef Haga K, Adachi S, Shiratori Y, Ito K, Sasaki K (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179(27–32):1427–1431CrossRef
267.
Zurück zum Zitat Haga K, Shiratori Y, Ito K, Sasaki K (2008) Chlorine poisoning of SOFC Ni-cermet anodes. J Electrochem Soc 155(12):B1233–B1239CrossRef Haga K, Shiratori Y, Ito K, Sasaki K (2008) Chlorine poisoning of SOFC Ni-cermet anodes. J Electrochem Soc 155(12):B1233–B1239CrossRef
268.
Zurück zum Zitat Haga K, Shiratori Y, Nojiri Y, Ito K, Sasaki K (2010) Phosphorus poisoning of Ni-cermet anodes in solid oxide fuel cells. J Electrochem Soc 157(11):B1693–B1700CrossRef Haga K, Shiratori Y, Nojiri Y, Ito K, Sasaki K (2010) Phosphorus poisoning of Ni-cermet anodes in solid oxide fuel cells. J Electrochem Soc 157(11):B1693–B1700CrossRef
269.
Zurück zum Zitat Park S, Cracium R, Vohs JM, Gorte RJ (1999) Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. Methane oxidation. J Electrochem Soc 146:3603–3605CrossRef Park S, Cracium R, Vohs JM, Gorte RJ (1999) Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. Methane oxidation. J Electrochem Soc 146:3603–3605CrossRef
270.
Zurück zum Zitat Shiratori Y, Oshima T, Sasaki K (2008) Feasibility of direct-biogas SOFC. Int J Hydrogen Energ 33:6316–6321CrossRef Shiratori Y, Oshima T, Sasaki K (2008) Feasibility of direct-biogas SOFC. Int J Hydrogen Energ 33:6316–6321CrossRef
271.
Zurück zum Zitat Gorte RJ, Kim H, Vohs JM (2002) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon. J Power Sources 106:10–15CrossRef Gorte RJ, Kim H, Vohs JM (2002) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon. J Power Sources 106:10–15CrossRef
272.
Zurück zum Zitat Kim H, Park S, Vohs JM, Gorte RJ (2001) Direct oxidation of liquid fuels in a solid oxide fuel cell. J Electrochem Soc 148:A693–A695CrossRef Kim H, Park S, Vohs JM, Gorte RJ (2001) Direct oxidation of liquid fuels in a solid oxide fuel cell. J Electrochem Soc 148:A693–A695CrossRef
273.
Zurück zum Zitat Zhou ZF, Gallo C, Pague MB, Schobert H, Lvov SN (2004) Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell. J Power Sources 133:181–187CrossRef Zhou ZF, Gallo C, Pague MB, Schobert H, Lvov SN (2004) Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell. J Power Sources 133:181–187CrossRef
274.
Zurück zum Zitat Shiratori Y, Tran TQ, Takahashi Y, Sasaki K (2011) Application of biofuels to solid oxide fuel cell. ECS Trans 35:2641–2651CrossRef Shiratori Y, Tran TQ, Takahashi Y, Sasaki K (2011) Application of biofuels to solid oxide fuel cell. ECS Trans 35:2641–2651CrossRef
275.
Zurück zum Zitat van Herle J, Maréchal F, Leuenberger S, Membrez Y, Bucheli O, Favrat D (2004) Process flow model of solid oxide fuel cell system supplied with sewage biogas. J Power Sources 131:127–141CrossRef van Herle J, Maréchal F, Leuenberger S, Membrez Y, Bucheli O, Favrat D (2004) Process flow model of solid oxide fuel cell system supplied with sewage biogas. J Power Sources 131:127–141CrossRef
276.
Zurück zum Zitat Girona K, Laurencin J, Petitjean M, Fouletier J, Lefebvre-Joud F (2009) SOFC running on biogas: identification and experimental validation of “safe” operating conditions. ECS Trans 25(2):1041–1050CrossRef Girona K, Laurencin J, Petitjean M, Fouletier J, Lefebvre-Joud F (2009) SOFC running on biogas: identification and experimental validation of “safe” operating conditions. ECS Trans 25(2):1041–1050CrossRef
277.
Zurück zum Zitat Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Internal reforming SOFC running on biogas. Int J Hydrog Energy 35:7905–7912CrossRef Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Internal reforming SOFC running on biogas. Int J Hydrog Energy 35:7905–7912CrossRef
278.
Zurück zum Zitat Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Performance of internal reforming SOFC running on biogas. In: Proceedings of 9th European SOFC Forum, Luzern, pp 4-77–4-87 Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Performance of internal reforming SOFC running on biogas. In: Proceedings of 9th European SOFC Forum, Luzern, pp 4-77–4-87
279.
Zurück zum Zitat Swaine DJ (1990) Trace elements in coal. Butterworths, London Swaine DJ (1990) Trace elements in coal. Butterworths, London
280.
Zurück zum Zitat Lobachyov K, Richter HJ (1996) Combined cycle gas turbine power plant with coal gasification and solid oxide fuel cell. J Energy Resour Technol 118:285–292CrossRef Lobachyov K, Richter HJ (1996) Combined cycle gas turbine power plant with coal gasification and solid oxide fuel cell. J Energy Resour Technol 118:285–292CrossRef
281.
Zurück zum Zitat Iritani J, Kougami K, Komiyama N, Nagata K, Ikeda K, Tomida K (2001) Pressurized 10kW class module of SOFC. In: Yokokawa H, Singhal SC (eds) Proceedings of the 7th international symposium on solid oxide fuel cells, vol 2001–2016. Pennington, Electrochemical Society, pp 63–71 Iritani J, Kougami K, Komiyama N, Nagata K, Ikeda K, Tomida K (2001) Pressurized 10kW class module of SOFC. In: Yokokawa H, Singhal SC (eds) Proceedings of the 7th international symposium on solid oxide fuel cells, vol 2001–2016. Pennington, Electrochemical Society, pp 63–71
282.
Zurück zum Zitat Doctor RD, Molburg JC, Thimmapuram PR (1997) Oxygen-blown gasification combined cycle: carbon dioxide recovery, transport, and disposal. Energy Convers Manag 38:S575–S580CrossRef Doctor RD, Molburg JC, Thimmapuram PR (1997) Oxygen-blown gasification combined cycle: carbon dioxide recovery, transport, and disposal. Energy Convers Manag 38:S575–S580CrossRef
283.
Zurück zum Zitat Timpe RC, Kulas RW, Hauserman WB, Sharma RK, Olson ES, Willson WG (1997) Catalytic gasification of coal for the production of fuel cell feedstock. Int J Hydrog Energy 22:487–492CrossRef Timpe RC, Kulas RW, Hauserman WB, Sharma RK, Olson ES, Willson WG (1997) Catalytic gasification of coal for the production of fuel cell feedstock. Int J Hydrog Energy 22:487–492CrossRef
284.
Zurück zum Zitat Sjunnesson L (1998) Utilities and their investments in fuel cells. J Power Sources 71:41–44CrossRef Sjunnesson L (1998) Utilities and their investments in fuel cells. J Power Sources 71:41–44CrossRef
285.
Zurück zum Zitat Cayan FN, Zhi M, Pakalapati SR, Celik I, Wu N, Gemmen RS (2008) Effects of coal syngas impurities on anodes of solid oxide fuel cells. J Power Sources 185:595–602CrossRef Cayan FN, Zhi M, Pakalapati SR, Celik I, Wu N, Gemmen RS (2008) Effects of coal syngas impurities on anodes of solid oxide fuel cells. J Power Sources 185:595–602CrossRef
286.
Zurück zum Zitat Marina OA, Pederson LR, Coyle CA, Thomsen EC, Coffey GW (2005) Ni/YSZ anode interactions with impurities in coal gas. ECS Trans 25(2):2125–2130 Marina OA, Pederson LR, Coyle CA, Thomsen EC, Coffey GW (2005) Ni/YSZ anode interactions with impurities in coal gas. ECS Trans 25(2):2125–2130
287.
Zurück zum Zitat Bao JE, Krishnan GN, Jayaweera P, Perez-Mariano J, Sanjurjo A (2009) Effect of various coal contaminants on the performance of solid oxide fuel cells: part I. accelerated testing. J Power Sources 193:607–616CrossRef Bao JE, Krishnan GN, Jayaweera P, Perez-Mariano J, Sanjurjo A (2009) Effect of various coal contaminants on the performance of solid oxide fuel cells: part I. accelerated testing. J Power Sources 193:607–616CrossRef
288.
Zurück zum Zitat Bao JE, Krishnan GN, Jayaweera P, Lau KH, Sanjurjo A (2009) Effect of various coal contaminants on the performance of solid oxide fuel cells: part II. ppm and sub-ppm level testing. J Power Sources 193:617–624CrossRef Bao JE, Krishnan GN, Jayaweera P, Lau KH, Sanjurjo A (2009) Effect of various coal contaminants on the performance of solid oxide fuel cells: part II. ppm and sub-ppm level testing. J Power Sources 193:617–624CrossRef
289.
Zurück zum Zitat Bao JE, Krishnan GN, Jayaweera P, Sanjurjo A (2010) Effect of various coal gas contaminants on the performance of solid oxide fuel cells: part III. synergistic effects. J Power Sources 195:1316–1324CrossRef Bao JE, Krishnan GN, Jayaweera P, Sanjurjo A (2010) Effect of various coal gas contaminants on the performance of solid oxide fuel cells: part III. synergistic effects. J Power Sources 195:1316–1324CrossRef
290.
Zurück zum Zitat Trembly JP, Gemmen RS, Bayless DJ (2007) The effect of IGFC warm gas cleanup system conditions on the gas-solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes. J Power Sources 163:986–996CrossRef Trembly JP, Gemmen RS, Bayless DJ (2007) The effect of IGFC warm gas cleanup system conditions on the gas-solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes. J Power Sources 163:986–996CrossRef
291.
Zurück zum Zitat Yoshida S, Kabata T, Nishiura M, Koga S, Tomida K, Miyamoto K, Teramoto Y, Matake N, Tsukuda H, Suemori S, Ando Y, Kobayashi Y (2011) Development of the SOFC-GT combined cycle system with tubular type cell stack. ECS Trans 35(1):105–111CrossRef Yoshida S, Kabata T, Nishiura M, Koga S, Tomida K, Miyamoto K, Teramoto Y, Matake N, Tsukuda H, Suemori S, Ando Y, Kobayashi Y (2011) Development of the SOFC-GT combined cycle system with tubular type cell stack. ECS Trans 35(1):105–111CrossRef
292.
Zurück zum Zitat Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, New YorkCrossRef Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, New YorkCrossRef
293.
Zurück zum Zitat Tsuchiya M, Lai BK, Ramanathan S (2011) Scalable nanostructured membranes for solid oxide fuel cells. Nat Nanotechnol 6:282–286CrossRef Tsuchiya M, Lai BK, Ramanathan S (2011) Scalable nanostructured membranes for solid oxide fuel cells. Nat Nanotechnol 6:282–286CrossRef
294.
Zurück zum Zitat Karageorgakis NI, Heel A, Rupp JLM, Aguirre MH, Graule T, Gauckler LJ (2011) Properties of flame sprayed Ce0.8Gd0.2O1.9−δ electrolyte thin films. Adv Funct Mater 21(3):532–539CrossRef Karageorgakis NI, Heel A, Rupp JLM, Aguirre MH, Graule T, Gauckler LJ (2011) Properties of flame sprayed Ce0.8Gd0.2O1.9−δ electrolyte thin films. Adv Funct Mater 21(3):532–539CrossRef
295.
Zurück zum Zitat Bonderer LJ, Chen PW, Kocher P, Gauckler LJ (2010) Free-standing ultrathin ceramic foils. J Am Ceram Soc 93(11):3624–3631CrossRef Bonderer LJ, Chen PW, Kocher P, Gauckler LJ (2010) Free-standing ultrathin ceramic foils. J Am Ceram Soc 93(11):3624–3631CrossRef
296.
Zurück zum Zitat Ryll T, Galinski H, Schlagenhauf L, Elser P, Rupp JLM, Bieberle-Hutter A, Gauckler LJ (2011) Microscopic and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte. Adv Funct Mater 21(3):565–572CrossRef Ryll T, Galinski H, Schlagenhauf L, Elser P, Rupp JLM, Bieberle-Hutter A, Gauckler LJ (2011) Microscopic and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte. Adv Funct Mater 21(3):565–572CrossRef
297.
Zurück zum Zitat Tuller HL, Litzelman SJ, Jung WC (2009) Micro-ionics: next generation power sources. Phys Chem Chem Phys 11:3023–3034CrossRef Tuller HL, Litzelman SJ, Jung WC (2009) Micro-ionics: next generation power sources. Phys Chem Chem Phys 11:3023–3034CrossRef
298.
Zurück zum Zitat Tuller HL, Bishop SR (2011) Point defects in oxides: tailoring materials through defect engineering. Annu Rev Mater Res 41:369–398CrossRef Tuller HL, Bishop SR (2011) Point defects in oxides: tailoring materials through defect engineering. Annu Rev Mater Res 41:369–398CrossRef
299.
Zurück zum Zitat Sasaki K, Maier J (1999) Low temperature defect chemistry of oxides: I. general aspects and numerical calculations. J Appl Phys 86(10):5422–5433CrossRef Sasaki K, Maier J (1999) Low temperature defect chemistry of oxides: I. general aspects and numerical calculations. J Appl Phys 86(10):5422–5433CrossRef
300.
Zurück zum Zitat Sasaki K, Maier J (1999) Low temperature defect chemistry of oxides: II. analytical relations. J Appl Phys 86(10):5434–5443CrossRef Sasaki K, Maier J (1999) Low temperature defect chemistry of oxides: II. analytical relations. J Appl Phys 86(10):5434–5443CrossRef
301.
Zurück zum Zitat Matsumoto K, Fujigaya T, Sasaki K, Nakashima N (2011) Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells. J Mater Chem 21(4):1187–1190CrossRef Matsumoto K, Fujigaya T, Sasaki K, Nakashima N (2011) Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells. J Mater Chem 21(4):1187–1190CrossRef
302.
Zurück zum Zitat Masao A, Noda Z, Takasaki F, Ito K, Sasaki K (2009) Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells. Electrochem Solid-State Lett 12(9):B119–B122CrossRef Masao A, Noda Z, Takasaki F, Ito K, Sasaki K (2009) Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells. Electrochem Solid-State Lett 12(9):B119–B122CrossRef
303.
Zurück zum Zitat Sasaki K, Takasaki F, Noda Z, Hayashi S, Shiratori Y, Ito K (2010) Alternative electrocatalyst support materials for polymer electrolyte fuel cells. ECS Trans 33(1):473–482CrossRef Sasaki K, Takasaki F, Noda Z, Hayashi S, Shiratori Y, Ito K (2010) Alternative electrocatalyst support materials for polymer electrolyte fuel cells. ECS Trans 33(1):473–482CrossRef
304.
Zurück zum Zitat Hayashi A, Notsu H, Kimijima K, Miyamoto J, Yagi I (2008) Preparation of Pt/mesoporous carbon (MC) electrode catalyst and its reactivity toward oxygen reduction. Electrochim Acta 53(21):6117–6125CrossRef Hayashi A, Notsu H, Kimijima K, Miyamoto J, Yagi I (2008) Preparation of Pt/mesoporous carbon (MC) electrode catalyst and its reactivity toward oxygen reduction. Electrochim Acta 53(21):6117–6125CrossRef
305.
Zurück zum Zitat Masuda H, Yamamoto A, Sasaki K, Lee S, Ito K (2011) A visualization study on relationship between water-droplet behavior and cell voltage appeared in straight, parallel and serpentine channel pattern cells. J Power Sources 196:5377–5385CrossRef Masuda H, Yamamoto A, Sasaki K, Lee S, Ito K (2011) A visualization study on relationship between water-droplet behavior and cell voltage appeared in straight, parallel and serpentine channel pattern cells. J Power Sources 196:5377–5385CrossRef
306.
Zurück zum Zitat Sasaki K, Li HW, Hayashi A, Yamabe J, Ogura T, Lyth SM (2016) Hydrogen Energy Engineering: A Japanese Perspective. Springer, Tokyo, Japan Sasaki K, Li HW, Hayashi A, Yamabe J, Ogura T, Lyth SM (2016) Hydrogen Energy Engineering: A Japanese Perspective. Springer, Tokyo, Japan
Metadaten
Titel
Fuel Cells (SOFC): Alternative Approaches (Electrolytes, Electrodes, Fuels)
verfasst von
K. Sasaki
Y. Nojiri
Y. Shiratori
S. Taniguchi
Copyright-Jahr
2019
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-7789-5_138