Skip to main content

2012 | OriginalPaper | Buchkapitel

9. Fuel Pin Thermal Performance

verfasst von : Alan Waltar, Donald Todd

Erschienen in: Fast Spectrum Reactors

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fast reactor design requires the simultaneous application of mechanical and thermal-hydraulics analysis methods. We reviewed some aspects of mechanical analysis in Chapter 8; we will discuss mechanical design further in Chapter 12. Chapters 9 and 10 will deal with thermal-hydraulics analysis. In the present chapter we will investigate methods of determining temperature distributions within fuel pins. We will then extend these methods to assembly and core-wide temperature distributions in Chapter 10. While the actual analysis of fuel pin thermal performance depends strongly on the material, the mathematics and concepts associated with determining temperature distributions within fuel pins is essentially independent of the material in a fast reactor. Throughout this chapter, the discussions of correlations and closure relationships necessary to complete the mathematical analyses, and to introduce important concepts, are generally based on oxide fuel with notes where other fuel types show different behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Neglect of neutronics spatial self-shielding is an excellent assumption for fast reactors. The spatial variation of the heat source is complicated by restructuring of the fuel, however, as in Eq. (9.9).
 
2
This is an acceptable approximation in most cases, since the radial temperature gradient is much greater than the gradient in the axial direction.
 
3
Alternatively, Eq. (9.2) can be obtained by defining; \(\theta = \int_{T_s }^{T\left( r \right)} {k\;dT}\) so that \({{d\theta } \mathord{\left/ {\vphantom {{d\theta } {dr}}} \right. \kern-\nulldelimiterspace} {dr}} = k{{dT} \mathord{\left/ {\vphantom {{dT} {dr}}} \right. \kern-\nulldelimiterspace} {dr}}\). Equation (9.1) can then be written as \({{d^2 \theta } \mathord{\left/ {\vphantom {{d^2 \theta } {dr^2 }}} \right. \kern-\nulldelimiterspace} {dr^2 }} + \left( {{1 \mathord{\left/ {\vphantom {1 r}} \right. \kern-\nulldelimiterspace} r}} \right)\left( {{{d\theta } \mathord{\left/ {\vphantom {{d\theta } {dr}}} \right. \kern-\nulldelimiterspace} {dr}}} \right) + Q = 0\). The solution of this equation is \({{\theta \left( r \right) = - Qr^2 } \mathord{\left/ {\vphantom {{\theta \left( r \right) = - Qr^2 } 4}} \right. \kern-\nulldelimiterspace} 4} + C\ln r\).
 
4
Laboratory measurements indicate that the thermal conductivity of mixed oxide fuel varies with the oxygen-to-metal (O/M) ratio. Equation (9.6) and Fig. 9.2 correspond to a stoichiometric O/M ratio of 2.00. The precise effect of O/M ratio on fuel conductivity and temperature during actual reactor operation, however, is still in question.
 
5
See Chapter 11 for a discussion of the thermal properties of these fuels.
 
6
Additional details in the solution are given in Ref. [3].
 
7
Throughout the literature the word “gap” is used for the width or thickness of the gap in addition to referring to the region between the fuel and the cladding.
 
8
The deleterious effect of Xe can be observed by comparing Figs. 9.10 and 9.11, which are included in the last part of this section in conjunction with linear-power-to-melting discussions.
 
9
See Section 10.​4 for a discussion of overpower and hot channel factors.
 
10
See Section 9.3.3 and Eqs. (9.31) and (9.32) for further details of geometry for each type of channel.
 
11
A boomerang has a dog-leg shape. If the reader is still uncertain about this shape, he can ask anyone who plays golf, for there are always several dog-leg holes on a golf course.
 
12
This can be observed from Fig.​ 10.​4 in Chapter 10.
 
Literatur
1.
Zurück zum Zitat Y. S. Tang, R. D. Coffield, Jr., and R. A. Markley, Thermal Analysis of Liquid Metal Fast Breeder Reactors, The American Nuclear Society, La Grange Park, Illinois, 1978. Y. S. Tang, R. D. Coffield, Jr., and R. A. Markley, Thermal Analysis of Liquid Metal Fast Breeder Reactors, The American Nuclear Society, La Grange Park, Illinois, 1978.
2.
Zurück zum Zitat A. B. G. Washington, Preferred Values for the Thermal Conductivity of Sintered Ceramic Fuel for Fast Reactor Use, TRG-Report-2236, September 1973. A. B. G. Washington, Preferred Values for the Thermal Conductivity of Sintered Ceramic Fuel for Fast Reactor Use, TRG-Report-2236, September 1973.
3.
Zurück zum Zitat D. R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Chapter 10, TID-26711-P1, Office of Public Affairs, U.S. ERDA, 1976. D. R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Chapter 10, TID-26711-P1, Office of Public Affairs, U.S. ERDA, 1976.
4.
Zurück zum Zitat R. B. Baker, Calibration of a Fuel-to-Cladding Gap Conductance Model for Fast Reactor Fuel Pins, HEDL-TME 77-86, Hanford Engineering Development Laboratory, Richland, WA, 1978.CrossRef R. B. Baker, Calibration of a Fuel-to-Cladding Gap Conductance Model for Fast Reactor Fuel Pins, HEDL-TME 77-86, Hanford Engineering Development Laboratory, Richland, WA, 1978.CrossRef
5.
Zurück zum Zitat A. M. Ross and R. L. Stoute, Heat Transfer Coefficient between UO 2 and Zircalloy 2, AECL-1552, Chalk River, Ontario, June 1962. A. M. Ross and R. L. Stoute, Heat Transfer Coefficient between UO 2 and Zircalloy 2, AECL-1552, Chalk River, Ontario, June 1962.
6.
Zurück zum Zitat G. J. Calamai, R. D. Coffield, L. Jossens, J. L. Kerian, J. V. Miller, E. H. Novendstern, G. H. Ursim, H. West, and P. J. Wood, Steady State Thermal and Hydraulic Characteristics of the FFTF Fuel Assemblies, FRT-1582, June 1974. G. J. Calamai, R. D. Coffield, L. Jossens, J. L. Kerian, J. V. Miller, E. H. Novendstern, G. H. Ursim, H. West, and P. J. Wood, Steady State Thermal and Hydraulic Characteristics of the FFTF Fuel Assemblies, FRT-1582, June 1974.
7.
Zurück zum Zitat R. D. Leggett, E. O. Ballard, R. B. Baker, G. R. Horn, and D. S. Dutt, “Linear Heat Rating for Incipient Fuel Melting in UO2-PuO2 Fuel,” Trans. ANS, 15, 1972, 752. R. D. Leggett, E. O. Ballard, R. B. Baker, G. R. Horn, and D. S. Dutt, “Linear Heat Rating for Incipient Fuel Melting in UO2-PuO2 Fuel,” Trans. ANS, 15, 1972, 752.
8.
Zurück zum Zitat R. B. Baker, Integral Heat Rate-to-Incipient Melting in UO 2 -PuO 2 Fast Reactor Fuel, HEDL-TME 77-23. Hanford Engineering Development Laboratory, Richland, WA, 1978.CrossRef R. B. Baker, Integral Heat Rate-to-Incipient Melting in UO 2 -PuO 2 Fast Reactor Fuel, HEDL-TME 77-23. Hanford Engineering Development Laboratory, Richland, WA, 1978.CrossRef
9.
Zurück zum Zitat W. H. McCarthy, Power to Melt Mixed-Oxide Fuel-A Progress Report on the GE F20 Experiment, GEAP-14134, September 1976. W. H. McCarthy, Power to Melt Mixed-Oxide Fuel-A Progress Report on the GE F20 Experiment, GEAP-14134, September 1976.
10.
Zurück zum Zitat M. G. Adamson, E. A. Aitken, and R. W. Caputi, “Experimental and Thermodynamic Evaluation of the Melting Behavior of Irradiated Oxide Fuels,” J. Nucl. Mater., 130 (1985) 349–365.CrossRef M. G. Adamson, E. A. Aitken, and R. W. Caputi, “Experimental and Thermodynamic Evaluation of the Melting Behavior of Irradiated Oxide Fuels,” J. Nucl. Mater., 130 (1985) 349–365.CrossRef
11.
Zurück zum Zitat J. P. Holman, Heat Transfer, McGraw Hill Co., New York, NY, 4th Edition, 1976. J. P. Holman, Heat Transfer, McGraw Hill Co., New York, NY, 4th Edition, 1976.
12.
Zurück zum Zitat R. C. Martinelli, “Heat Transfer to Molten Metals,” Trans. ASME, 69 (1947) 949–959. R. C. Martinelli, “Heat Transfer to Molten Metals,” Trans. ASME, 69 (1947) 949–959.
13.
Zurück zum Zitat J. Muraoka, R. E. Peterson, R. G. Brown, W. D. Yule, D. S. Dutt, and J. E. Hanson, Assessment of FFTF Hot Channel Factors, HEDL-TI-75226. Hanford Engineering Development Laboratory, Richland, WA, November 1976. J. Muraoka, R. E. Peterson, R. G. Brown, W. D. Yule, D. S. Dutt, and J. E. Hanson, Assessment of FFTF Hot Channel Factors, HEDL-TI-75226. Hanford Engineering Development Laboratory, Richland, WA, November 1976.
14.
Zurück zum Zitat O. E. Dwyer, “Heat Transfer to Liquid Metals Flowing In-Line Through Unbaffled Rod Bundles: A Review,” Nucl. Eng. Des., 10 (1969) 3–20.CrossRef O. E. Dwyer, “Heat Transfer to Liquid Metals Flowing In-Line Through Unbaffled Rod Bundles: A Review,” Nucl. Eng. Des., 10 (1969) 3–20.CrossRef
15.
Zurück zum Zitat M. S. Kazimi and M. D. Carelli, Heat Transfer Correlation for Analysis of CRBRP Assemblies, CRBRP-ARD-0034, November 1976. M. S. Kazimi and M. D. Carelli, Heat Transfer Correlation for Analysis of CRBRP Assemblies, CRBRP-ARD-0034, November 1976.
16.
Zurück zum Zitat V. M. Borishanskii, M. A. Gotovskii and E. V. Firsova, “Heat Transfer to Liquid Metal Flowing Longitudinally in Wetted Bundles of Rods,” Sov. At. Energy 27 (1969) 1347–1350.CrossRef V. M. Borishanskii, M. A. Gotovskii and E. V. Firsova, “Heat Transfer to Liquid Metal Flowing Longitudinally in Wetted Bundles of Rods,” Sov. At. Energy 27 (1969) 1347–1350.CrossRef
17.
Zurück zum Zitat H. Graber and M. Reiger, “Experimental Study of Heat Transfer to Liquid Metals Flowing In-Line Through Tube Bundles,” Progress in Heat and Mass Transfer, 7, Pergamon Press, New York, NY, 1973, 151–166. H. Graber and M. Reiger, “Experimental Study of Heat Transfer to Liquid Metals Flowing In-Line Through Tube Bundles,” Progress in Heat and Mass Transfer, 7, Pergamon Press, New York, NY, 1973, 151–166.
18.
Zurück zum Zitat O. E. Dwyer, H. Berry and P. Hlavac, “Heat Transfer to Liquid Metals Flowing Turbulently and Longitudinally Through Closely Spaced Rod Bundles,” Nucl. Eng. Des., 23 (1972) 295–308.CrossRef O. E. Dwyer, H. Berry and P. Hlavac, “Heat Transfer to Liquid Metals Flowing Turbulently and Longitudinally Through Closely Spaced Rod Bundles,” Nucl. Eng. Des., 23 (1972) 295–308.CrossRef
19.
Zurück zum Zitat W. Pfrang and D. Struwe, Assessment of Correlations for Heat Transfer to the Coolant for Heavy Liquid Metal Cooled Core Designs, FZKA 7352.Forschungszentrum Karlsruhe GmbH, Karlsruhe, October 2007. W. Pfrang and D. Struwe, Assessment of Correlations for Heat Transfer to the Coolant for Heavy Liquid Metal Cooled Core Designs, FZKA 7352.Forschungszentrum Karlsruhe GmbH, Karlsruhe, October 2007.
20.
Zurück zum Zitat A. E. Waltar, N. P. Wilburn, D. C. Kolesar, L. D. O’Dell, A. Padilla, Jr., L. N. Stewart, and W. L. Partain, An Analysis of the Unprotected Transient Overpower Accident In the FTR, HEDL-TME 75-50., Hanford Engineering Development Laboratory, Richland, WA, June 1975.CrossRef A. E. Waltar, N. P. Wilburn, D. C. Kolesar, L. D. O’Dell, A. Padilla, Jr., L. N. Stewart, and W. L. Partain, An Analysis of the Unprotected Transient Overpower Accident In the FTR, HEDL-TME 75-50., Hanford Engineering Development Laboratory, Richland, WA, June 1975.CrossRef
Metadaten
Titel
Fuel Pin Thermal Performance
verfasst von
Alan Waltar
Donald Todd
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-9572-8_9