Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2019

Open Access 01.12.2019 | Research

Fuglede–Putnam type theorems for \((p,k)\)-quasihyponormal operators via hyponormal operators

verfasst von: Jiang-Tao Yuan, Cai-Hong Wang

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2019

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For Hilbert space operators S, X, and T, \((S,X,T)\in FP\) means Fuglede–Putnam theorem holds for triplet \((S,X,T)\), that is, \(SX=XT\) ensures \(S^{\ast }X=XT^{\ast }\). Similarly, \((S,T)\in FP\) means \((S,X,T)\in FP\) holds for each operator X. This paper is devoted to the study of Fuglede–Putnam type theorems for \((p,k)\)-quasihyponormal operators via a class of operators based on hyponormal operators \(FP(H):=\{S|(S,T)\in FP \mbox{ holds for each hyponormal operator } T^{\ast }\}\). Fuglede–Putnam type theorems involving \((p,k)\)-quasihyponormal, dominant, and w-hyponormal operators, which are extensions of the results by Tanahashi, Patel, Uchiyama, et al., are obtained.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Let \(\mathcal{H}\) and \(\mathcal{K}\) be complex Hilbert spaces, and let \(\mathcal{B}(\mathcal{H})\) and \(\mathcal{B}(\mathcal{H},\mathcal{K})\) be the set of all bounded linear operators on \(\mathcal{H}\) and the set of all bounded linear operators from \(\mathcal{H}\) to \(\mathcal{K}\), respectively.
Theorem 1.1
(Fuglede–Putnam theorem, [3, 10])
Let \(S\in \mathcal{B}(\mathcal{H})\), \(T\in \mathcal{B}(\mathcal{K})\), and \(X\in \mathcal{B}(\mathcal{H},\mathcal{K})\). If S, T are normal operators, then \(SX=XT\) ensures \(S^{\ast }X=XT^{\ast }\).
Theorem 1.2
([14])
Let \(S\in \mathcal{B}(\mathcal{H})\), \(T\in \mathcal{B}(\mathcal{K})\). The following assertions are equivalent.
(1)
If \(SX=XT\), then \(S^{\ast}X=XT^{\ast}\).
 
(2)
If \(SX=XT\), then \([R(X)]\) reduces S, where \([R(X)]\) means the closure of range \(R(X)\) of X, kerX reduces T, \(S|_{[R(X)]}\) and \(T|_{(\ker X)^{\bot }}\) are unitarily equivalent normal operators.
 
For \(S\in \mathcal{B}(\mathcal{H})\), \(T\in \mathcal{B}(\mathcal{K})\), and \(X\in \mathcal{B}(\mathcal{H},\mathcal{K})\), \((S,X,T)\in FP\) means Fuglede–Putnam theorem holds for the triplet \((S,X,T)\), that is, \(SX=XT\) ensures \(S^{\ast }X=XT^{\ast }\). Similarly, \((S,T)\in FP\) means \((S,X,T)\in FP\) holds for all \(X\in \mathcal{B}(\mathcal{H},\mathcal{K})\).
There are various extensions of Fuglede–Putnam theorem for non-normal operators including dominant operators (an operator T is called dominant if, for each complex number z, there exists \(M_{z}>0\) such that \((T-z)^{\ast }(T-z)\geq M_{z}^{2}(T-z)(T-z)^{\ast }\)), \((p,k)\)-quasihyponormal operators (defined by \(T^{\ast k}|T|^{2p}T ^{k}\geq T^{\ast k}|T^{\ast }|^{2p}T^{k}\), where \(0< p\le 1\) and k is a nonnegative integer, a \((p,0)\)-quasihyponormal operator means a p-hyponormal operator), w-hyponormal operators (defined by \((|T^{*}|^{\frac{1}{2}}|T||T^{*}|^{\frac{1}{2}})^{\frac{1}{2}}\ge |T ^{*}|\), the class of w-hyponormal operators coincides with class \(A(\frac{1}{2},\frac{1}{2})\)), and so on. See [1, 2, 1113, 15, 18].
Among others, Tanahashi, Patel, and Uchiyama [15] proved three kinds of Fuglede–Putnam type theorems with kernel conditions as follows.
(I) Fuglede–Putnam type theorems with restrictions on kerS or \(\ker T^{\ast }\).
Theorem 1.3
([15])
Let S be \((p,k)\)-quasihyponormal and \(T^{\ast }\) be \((p,k)\)-quasihyponormal or dominant.
(1)
If \(\ker S=\{0\}\) or \(\ker T^{\ast }=\{0\}\), then \((S,T)\in FP\).
 
(2)
If \(\ker S\subseteq \ker S^{\ast }\) and \(\ker T^{\ast }\subseteq \ker T\), then \((S, T)\in FP\).
 
It is known that every dominant operator has a reducing kernel, so the condition \(\ker T^{\ast }\subseteq \ker T\) in (2) of the above theorem in the case when \(T^{\ast }\) is dominant holds.
(II) Fuglede–Putnam type theorems with restrictions on kerX or \(\ker X^{\ast }\).
Theorem 1.4
([12, 15])
The following assertions hold.
(1)
Let S be \((p,k)\)-quasihyponormal and T be normal. If X has a dense range, then \((S,X,T)\in FP\) and S is normal.
 
(2)
Let S be p-hyponormal and \(T^{\ast }\) be \((p,k)\)-quasihyponormal. If \(\ker X=\{0\}\), then \((S,X,T)\in FP\) and T is normal.
 
(III) Fuglede–Putnam type theorems with restrictions on kerS, \(\ker S^{\ast }\), and \(\ker X^{\ast }\).
Theorem 1.5
([15])
Let S and \(T^{\ast }\) be \((p,k)\)-quasihyponormal. If \(\ker S\subseteq \ker S^{\ast k}\) and \(\ker S^{\ast k}\subseteq \ker X^{\ast }\), then \((S,X,T)\in FP\).
In this paper, we shall show extensions of Theorems 1.31.5 via the following classes of operators based on hyponormal operators.
$$\begin{aligned}& FP(N):= \bigl\{ S|(S,T)\in FP \mbox{ holds for each normal operator } T ^{\ast }\bigr\} . \\& FP(H):= \bigl\{ S|(S,T)\in FP \mbox{ holds for each hyponormal operator } T^{\ast }\bigr\} . \\& FP(p\mbox{-}H):= \bigl\{ S|(S,T)\in FP \mbox{ holds for each $p$-hyponormal operator } T^{\ast }\bigr\} . \end{aligned}$$
It is clear that \(FP(N)\supseteq FP(H)\supseteq FP(p\mbox{-}H)\).
A part of an operator is its restriction to a closed invariant subspace. A class of operators is called hereditary if each part of an operator in the class also belongs to the class.
Remark 1.6
It is well known that the class \(FP(p\mbox{-}H)\) includes many classes of operators, such as dominant operators [1113, 18], \((p,k)\)-quasihyponormal operators with reducing kernels [15, 17], and w-hyponormal operators with reducing kernels [1]. Moreover, it is known that the classes above also belong to the class of hereditary \(FP(H)\) (denote this class by \(HFP(H)\)), that is, every restriction of an operator to its closed invariant subspace also belongs to the class. See [1, 7, 13, 16, 18].
In Sect. 2, some elementary properties of \(FP(H)\) are considered. For example, the reducibility of invariant subspaces of \(FP(N)\) operators; the relations between \(HFP(H)\) and \(HFP(p\mbox{-}H)\); the relations between Fuglede–Putnam type theorems with \(\ker S=\{0\}\) or \(\ker T^{\ast }=\{0\}\) and Fuglede–Putnam type theorems with reducing kernels. Sections 35 are devoted to generalizations of Theorems 1.31.5, respectively. Among others, it is proved that Theorem 1.3 holds if \(T^{\ast }\) is a w-hyponormal operator, Theorem 1.4 holds if \(T^{\ast }\) in Theorem 1.4(1) and S in Theorem 1.4(2) are replaced with a \((p,k)\)-quasihyponormal operator, and Theorem 1.5 holds without the restriction \(\ker S\subseteq \ker S^{\ast k}\). Lastly, an example is given which says that some kernel conditions in Fuglede–Putnam type theorems are inevitable.

2 Elementary properties of \(FP(H)\)

By observation, the definitions of \(FP(N)\), \(FP(H)\), and \(FP(p \mbox{-}H)\) are equivalent to the following assertions.
$$\begin{aligned}& FP(N):= \bigl\{ T|\bigl(S,T^{\ast }\bigr)\in FP \mbox{ holds for each normal operator } S\bigr\} , \\& FP(H):= \bigl\{ T|\bigl(S,T^{\ast }\bigr)\in FP \mbox{ holds for each hyponormal operator } S\bigr\} , \\& FP(p\mbox{-}H):= \bigl\{ T|\bigl(S,T^{\ast }\bigr)\in FP \mbox{ holds for each $p$-hyponormal operator } S\bigr\} . \end{aligned}$$
In order to consider the reducibility of invariant subspaces of an operator, four properties are introduced in [20]. Let \(\mathcal{M}\) be a nontrivial closed invariant subspace of T and \(T|_{\mathcal{M}}\) be the restriction of T on \(\mathcal{M}\).
\(R_{1}\)
If the restriction \(T|_{\mathcal{M}}\) is normal, then \(\mathcal{M}\) reduces T.
\(R_{2}\)
If there exists a positive integer k such that for each \(\mathcal{M}\subseteq [R(T^{k})]\), the assertion that \(T|_{\mathcal{M}}\) is normal ensures that \(\mathcal{M}\) reduces T.
\(R_{3}\)
If \(T|_{\mathcal{M}}\) is normal and injective, then \(\mathcal{M}\) reduces T.
\(R_{4}\)
If \(\lambda \neq 0\), then \(\ker (T-\lambda )\) reduces T.
It is obvious that the property \(R_{1}\) can be regarded as the case \(k=0\) of \(R_{2}\). An operator \(T\in R_{i}\) means T has the property \(R_{i}\), \(i=1,2,3,4\). It is known that, for each \(i\in \{1,2,3\}\), \(T\in R_{i}\) implies \(T\in R_{i+1}\) [20, Lemma 2.2]. There exists an operator T such that \(T\in R_{3}\) and \(T\notin R _{2}\) (Example 5.3(4)).
Lemma 2.1
The following assertions hold.
(1)
If \(T\in FP(N)\), then \(T\in R_{1}\).
 
(2)
If T is a \((p,k)\)-quasihyponormal or w-hyponormal operator with reducing kernel, then \(T\in R_{1}\).
 
(3)
If T is \((p,k)\)-quasihyponormal, then \(T\in R_{2}\).
 
Lemma 2.1 is a generalization of [15, Lemma 2.2].
Proof
(1) Let \(\mathcal{M}\) be a nontrivial closed invariant subspace of T, T = ( T 11 T 12 0 T 22 ) on \(\mathcal{M}\oplus \mathcal{M}^{\perp }\), \(T_{11}=T|_{ \mathcal{M}}\) be normal, and \(P=P_{\mathcal{M}}\) be a projection. Since ( T 11 0 0 0 ) is normal and T P = ( T 11 0 0 0 ) = P ( T 11 0 0 0 ) , \(T\in FP(N)\) implies S P = ( ( T 11 ) 0 ( T 12 ) 0 ) = P ( ( T 11 ) 0 0 0 ) . Then \(T_{12}=0\) and \(\mathcal{M}\) reduces T.
(2) The assertion follows by Remark 1.6.
(3) Let \(\mathcal{M}\subseteq [R(T^{k})]\), T = ( T 11 T 12 0 T 22 ) on \(\mathcal{M}\oplus \mathcal{M}^{\perp }\), \(T_{11}=T|_{ \mathcal{M}}\) be normal and \(P=P_{\mathcal{M}}\). Then
$$ \begin{aligned} &TT^{\ast }= \begin{pmatrix} T_{11}(T_{11})^{\ast }+T_{12}(T_{12})^{\ast }&T_{12}(T_{22})^{\ast } \\ T_{22}(T_{12})^{\ast }&T_{22}(T_{22})^{\ast } \end{pmatrix} , \\ &P|T|^{2p}P=PP_{[R(T^{k})]}|T|^{2p}P_{[R(T^{k})]}P\ge P \bigl\vert T^{\ast } \bigr\vert ^{2p}P. \end{aligned} $$
(1)
By Hansen’s inequality and Loewner–Heinz’ inequality [5], [4, p.127],
$$\begin{aligned} \begin{pmatrix} (T_{11})^{\ast }T_{11}&0 \\ 0&0 \end{pmatrix} ^{p} &= \bigl(P|T|^{2}P\bigr)^{p} \geq P|T|^{2p}P\geq P \bigl\vert T^{\ast } \bigr\vert ^{2p}P \\ &\geq P\bigl(TPT^{\ast }\bigr)^{p}P=\bigl(TPT^{\ast } \bigr)^{p} = \begin{pmatrix} T_{11}(T_{11})^{\ast })&0 \\ 0&0 \end{pmatrix} ^{p}. \end{aligned}$$
The normality of \(T_{11}\) implies ( T T ) p = ( | T 11 | 2 p A A B ) , where A is an operator and B is a positive semidefinite operator.
Let ( T T ) p 2 = ( X Y Y Z ) , again, by Hansen’s inequality and Loewner–Heinz’s inequality,
$$ \begin{pmatrix} |T_{11}|^{2p}&0 \\ 0&0 \end{pmatrix} ^{\frac{1}{2}} =\bigl(P \bigl(TT^{\ast }\bigr)^{p}P\bigr)^{\frac{1}{2}} \geq P \bigl(TT^{\ast }\bigr)^{ \frac{p}{2}}P \geq P\bigl(TPT^{\ast } \bigr)^{\frac{p}{2}}P = \begin{pmatrix} |T_{11}|^{2}&0 \\ 0&0 \end{pmatrix} ^{\frac{p}{2}}. $$
So \(X=|T_{11}|^{p}\), ( T T ) p = ( ( T T ) p 2 ) 2 = ( | T 11 | 2 p + Y Y ) , where ∗ means some elements of the matrix.
Thus \(Y=0\), ( T T ) p 2 = ( | T 11 | p 0 0 Z ) , and T T = ( T T ) p 2 2 p = ( | T 11 | 2 0 0 Z 2 p ) . Then \(T_{12}=0\) follows by (1). □
Aluthge introduced Aluthge transform \(\widetilde{T}=|T|^{1/2}U|T|^{1/2}\) where the polar decomposition of T is \(T=U|T|\). For each \(s>0\) and \(t>0\), \(T(s,t)=|T|^{s}U|T|^{t}\) is called generalized Aluthge transform.
Lemma 2.2
([9])
Let \(s>0\), \(t>0\), \(T\in A(s,t)\). If \(T(s,t)\) is quasinormal (normal), then T is quasinormal (normal).
Lemma 2.3
([6, 19])
If T is p-hyponormal and \(\alpha =\min \{p+s, p+t, s+t\}\), then
$$ \bigl(T(s,t)^{\ast }T(s,t)\bigr)^{\frac{\alpha }{s+t}} \ge \bigl(T(s,t)T(s,t)^{ \ast } \bigr)^{\frac{\alpha }{s+t}}. $$
Lemma 2.4
\(HFP(H)=HFP(p\mbox{-}H)\).
Proof
It is sufficient to prove \(HFP(H)\subseteq HFP(p\mbox{-}H)\).
Let \(T^{\ast }\in HFP(H)\), S be p-hyponormal and \(SX=XT\). Decompose S, T, X into
$$ \begin{aligned} &S= \begin{pmatrix} S_{11}&S_{12} \\ 0&S_{22} \end{pmatrix} \in \mathcal{B}\bigl(\bigl[R(X)\bigr]\oplus \ker X^{\ast }\bigr), \\ &T= \begin{pmatrix} T_{11}&0 \\ T_{21}&T_{22} \end{pmatrix} \in \mathcal{B} \bigl(\bigl[R\bigl(X^{\ast }\bigr)\bigr]\oplus \ker X\bigr), \\ &X= \begin{pmatrix} X_{11}&0 \\ 0&0 \end{pmatrix} \in \mathcal{B} \bigl(\bigl[R\bigl(X^{\ast }\bigr)\bigr]\oplus \ker X,\bigl[R(X)\bigr]\oplus \ker X^{ \ast }\bigr). \end{aligned} $$
(2)
Then
$$\begin{aligned}& SX=XT\quad \Longleftrightarrow\quad \begin{pmatrix} S_{11}X_{11}&0 \\ 0&0 \end{pmatrix} = \begin{pmatrix} X_{11}T_{11}&0 \\ 0&0 \end{pmatrix} \quad \Longleftrightarrow\quad S_{11}X_{11}=X_{11}T_{11}, \end{aligned}$$
(3)
$$\begin{aligned}& \begin{aligned}[b] S^{\ast }X=XT^{\ast }& \quad \Longleftrightarrow\quad \begin{pmatrix} (S_{11})^{\ast }X_{11}&0 \\ (S_{12})^{\ast }X_{11}&0 \end{pmatrix} = \begin{pmatrix} X_{11}(T_{11})^{\ast }&X_{11}(T_{21})^{\ast } \\ 0&0 \end{pmatrix} \\ &\quad \Longleftrightarrow\quad (S_{11})^{\ast }X_{11}=X_{11}(T_{11})^{\ast },\ (S _{12})^{\ast }X_{11}=0=X_{11}(T_{21})^{\ast }. \end{aligned} \end{aligned}$$
(4)
Since \(S, T^{\ast }\in R_{1}\) by Lemma 2.1 and \(X_{11}\) is quasiaffine, it is sufficient to prove \((S_{11},T_{11})\in FP\). By the assumption, \(S_{11}\) is p-hyponormal and \(T_{11}^{\ast }\in FP(H)\).
If \(\frac{1}{2}\le p\le 1\), by Lemma 2.3, the Aluthge transform \(S_{11}(\frac{1}{2},\frac{1}{2})\) of \(S_{11}\) is hyponormal and \((S_{11}(\frac{1}{2},\frac{1}{2}),T_{11})\in FP\). So
$$\begin{aligned} &S_{11}X_{11}=X_{11}T_{11} \\ &\quad \Longrightarrow\quad S_{11}\biggl(\frac{1}{2}, \frac{1}{2} \biggr)|S_{11}|^{\frac{1}{2}}X_{11}=|S_{11}|^{\frac{1}{2}}X_{11}T _{11} \\ &\quad \Longrightarrow \quad S_{11}\biggl(\frac{1}{2}, \frac{1}{2}\biggr)=\biggl(S_{11}\biggl(\frac{1}{2}, \frac{1}{2}\biggr)\biggr)\bigg|_{[R(|S_{11}|^{\frac{1}{2}}X_{11})]}\oplus \biggl(S_{11} \biggl( \frac{1}{2},\frac{1}{2}\biggr)\biggr)\bigg|_{\ker (X_{11}^{\ast }|S_{11}|^{\frac{1}{2}})}, \end{aligned}$$
where \((S_{11}(\frac{1}{2},\frac{1}{2}))|_{[R(|S_{11}|^{\frac{1}{2}}X _{11})]}\) is normal. The assertion “\(X_{11}\) is quasiaffine” implies that \([R(|S_{11}|^{\frac{1}{2}}X_{11})]=[R(|S_{11}|^{\frac{1}{2}})]\) and \(\ker (X_{11}^{\ast }|S_{11}|^{\frac{1}{2}})=\ker (|S_{11}|)\subseteq \ker S_{11}(\frac{1}{2},\frac{1}{2})\). Then \(S_{11}(\frac{1}{2}, \frac{1}{2})=(S_{11}(\frac{1}{2},\frac{1}{2}))|_{[R(|S_{11}|)]}\oplus 0\) is normal, \(S_{11}\) is normal by Lemma 2.2, and \((S_{11},T_{11})\in FP\) for \(T_{11}^{\ast }\in FP(H)\).
If \(0< p\le \frac{1}{2}\), then \(S_{11}(\frac{1}{2},\frac{1}{2})\) is \((p+\frac{1}{2})\)-hyponormal and \((S_{11}(\frac{1}{2},\frac{1}{2}),T _{11})\in FP\) in the case \(\frac{1}{2}\le p\le 1\). Similar to the proof of the case \(\frac{1}{2}\le p\le 1\), \(S_{11}(\frac{1}{2},\frac{1}{2})=(S _{11}(\frac{1}{2},\frac{1}{2}))|_{[R(|S_{11}|)]}\oplus 0\) is normal, \(S_{11}\) is normal and \((S_{11},T_{11})\in FP\) for \(T_{11}^{\ast } \in FP(H)\). □
Lemma 2.5
Let \(C_{1}\), \(C_{2}\) be two classes of operators with heredity. The following assertions (1)(2) are equivalent to each other, (1) ensures (4) and (3) ensures (4).
(1)
If \(S\in C_{1}\) with \(\ker S=\{0\}\) and \(T^{\ast }\in C_{2}\), then \((S,T)\in FP\).
 
(2)
If \(S\in C_{2}\) and \(T^{\ast }\in C_{1}\) with \(\ker T^{\ast }=\{0\}\), then \((S,T)\in FP\).
 
(3)
If \(S\in C_{1}\) and \(T^{\ast }\in C_{2}\) with \(\ker T^{\ast }=\{0\}\), then \((S,T)\in FP\).
 
(4)
If \(S\in C_{1}\) with \(\ker S\subseteq \ker S ^{\ast }\) and \(T^{\ast }\in C_{2}\) with \(\ker T^{\ast }\subseteq \ker T\), then \((S,T)\in FP\).
 
Proof
Since
$$ SX=XT\quad \Leftrightarrow \quad X^{\ast }S^{\ast }=T^{\ast }X^{\ast } \quad \mbox{and}\quad S^{\ast }X=XT^{\ast }\quad \Leftrightarrow\quad X^{\ast }S=TX^{\ast }, $$
we have
$$ (S,X,T)\in FP\quad \Leftrightarrow\quad \bigl(T^{\ast },X^{\ast },S^{\ast } \bigr)\in FP \quad \mbox{and}\quad (S,T)\in FP\quad \Leftrightarrow\quad \bigl(T^{\ast },S^{\ast }\bigr)\in FP. $$
(5)
By (5), it is sufficient to prove \((1)\Rightarrow (4)\) and \((3)\Rightarrow (4)\).
\((1)\Rightarrow (4)\) Let \(\ker S\subseteq \ker S^{\ast }\) and \(\ker T^{\ast }\subseteq \ker T\). Decompose S, T, X into
$$ \begin{aligned} &S= \begin{pmatrix} S_{11}&0 \\ 0&0 \end{pmatrix} \in \mathcal{B}\bigl(\bigl[R\bigl(S^{\ast } \bigr)\bigr]\oplus \ker S\bigr), \\ &T= \begin{pmatrix} T_{11}&0 \\ 0&0 \end{pmatrix} \in \mathcal{B} \bigl(\bigl[R(T)\bigr]\oplus \ker T^{\ast }\bigr), \\ &X= \begin{pmatrix} X_{11}&X_{12} \\ X_{21}&X_{22} \end{pmatrix} \in \mathcal{B} \bigl(\bigl[R(T)\bigr]\oplus \ker T^{\ast }, \bigl[R\bigl(S^{\ast } \bigr)\bigr]\oplus \ker S\bigr). \end{aligned} $$
(6)
Then \(\ker S_{11}=\{0\}=\ker T_{11}^{\ast }\),
$$\begin{aligned}& \begin{aligned}[b] SX=XT&\quad \Longleftrightarrow \quad \begin{pmatrix} S_{11}X_{11}&S_{11}X_{12} \\ 0&0 \end{pmatrix} = \begin{pmatrix} X_{11}T_{11}&0 \\ X_{21}T_{11}&0 \end{pmatrix} \\ &\quad \Longleftrightarrow\quad S_{11}X_{11}=X_{11}T_{11},\ S_{11}X_{12}=0=X_{21}T _{11}, \end{aligned} \end{aligned}$$
(7)
$$\begin{aligned}& \begin{aligned}[b] S^{\ast }X=XT^{\ast }& \quad \Longleftrightarrow\quad \begin{pmatrix} (S_{11})^{\ast }X_{11}&(S_{11})^{\ast }X_{12} \\ 0&0 \end{pmatrix} = \begin{pmatrix} X_{11}(T_{11})^{\ast }&0 \\ X_{21}(T_{11})^{\ast }&0 \end{pmatrix} \\ &\quad \Longleftrightarrow\quad (S_{11})^{\ast }X_{11}=X_{11}(T_{11})^{\ast },\ (S _{11})^{\ast }X_{12}=0=X_{21}(T_{11})^{\ast }. \end{aligned} \end{aligned}$$
(8)
By heredity and (1), \((S_{11},T_{11})\in FP\). Since \(\ker S_{11}=\{0 \}=\ker T_{11}^{\ast }\), the assertion \(S_{11}X_{12}=0=X_{21}T_{11}\) implies \(X_{12}=0=X_{21}\). So that \((S,T)\in FP\).
\((3)\Rightarrow (4)\) The assertion holds in a similar manner to \((1)\Rightarrow (4)\). □
Lemma 2.6
Let C be a class of operators with heredity. The following assertion (1) ensures (2).
(1)
If \(S\in C\) with \(\ker S=\{0\}\) and \(T^{\ast } \in FP(N)\), then \((S,T)\in FP\).
 
(2)
If \(S\in C\) with \(\ker S\subseteq \ker S^{ \ast }\) and \(T^{\ast }\in FP(N)\), then \((S,T)\in FP\).
 
Proof
The proof is similar to the proof of [8, Theorem 7]. Let \(\ker S\subseteq \ker S^{\ast }\). Decompose S, X into \(S=S_{n} \oplus S_{p}\) on \(\mathcal{H}=\mathcal{H}_{1}\oplus \mathcal{H}_{2}\) where \(S_{n}\) and \(S_{p}\) are normal part and pure part of S, respectively,
$$ X= \begin{pmatrix} X_{11} \\ X_{21} \end{pmatrix} : \mathcal{K} \longrightarrow \mathcal{H}_{1}\oplus \mathcal{H}_{2}. $$
Then \(\ker S_{p}=\{0\}\),
$$\begin{aligned}& SX=XT\quad \Longleftrightarrow\quad \begin{pmatrix} S_{n}X_{11} \\ S_{p}X_{21} \end{pmatrix} = \begin{pmatrix} X_{11}T \\ X_{21}T \end{pmatrix} , \\& S^{\ast }X=XT^{\ast }\quad \Longleftrightarrow\quad \begin{pmatrix} S_{n}^{\ast }X_{11} \\ S_{p}^{\ast }X_{21} \end{pmatrix} = \begin{pmatrix} X_{11}T^{\ast } \\ X_{21}T^{\ast } \end{pmatrix} . \end{aligned}$$
Since \(T^{\ast }\in FP(N)\), \((S_{n},T)\in FP\) follows. By \(\ker S_{p}= \{0\}\) and (1), \((S_{p},T)\in FP\) and \((S,T)\in FP\). □

3 Extensions of Theorem 1.3

Theorem 3.1
Let S be \((p,k)\)-quasihyponormal and \(T^{\ast }\) be \((p,k)\)-quasihyponormal, or dominant, or w-hyponormal.
(1)
If \(\ker T^{\ast }=\{0\}\), then \((S,T)\in FP\).
 
(2)
If \(T^{\ast }\) is \((p,k)\)-quasihyponormal, \(\ker S\subseteq \ker S^{\ast }\), and \(\ker T^{\ast }\subseteq \ker T\), then \((S, T)\in FP\).
 
(3)
If \(T^{\ast }\) is dominant and \(\ker S\subseteq \ker S^{\ast }\), then \((S, T)\in FP\).
 
(4)
If \(T^{\ast }\) is w-hyponormal, \(\ker S\subseteq \ker S^{\ast }\), and \(\ker T^{\ast }\subseteq \ker T\), then \((S, T)\in FP\).
 
Tanahashi et al. [15, Theorems 2.5, 2.7, 2.10–2.12] proved the case “\(T^{\ast }\) is \((p,k)\)-quasihyponormal or dominant” of Theorem 3.1. Here we prove Theorem 3.1 by using the class \(HFP(H)\) (Remark 1.6). Theorem 3.1 means that Theorem 1.3 holds if \(T^{\ast }\) is a w-hyponormal operator.
Lemma 3.2
([7, 16])
Let T be \((p,k)\)-quasihyponormal.
(1)
If \(T^{k}\mathcal{H}\) is not dense and T = ( T 11 T 12 0 T 22 ) on \([T^{k}\mathcal{H}]\oplus \ker T^{\ast k}\), then \(T_{11}\) is p-hyponormal, \(T_{22}^{k}=0\), and \(\sigma (T)=\sigma (T_{11})\cup \{0\}\).
 
(2)
Each restriction \(T|_{\mathcal{M}}\) of T to its invariant subspace \(\mathcal{M}\) is also \((p,k)\)-quasihyponormal.
 
Lemma 3.3
Let S be \((p,k)\)-quasihyponormal and \(T^{\ast }\in HFP(H)\).
(1)
If \(\ker T^{\ast }=\{0\}\), then \((S,T)\in FP\).
 
(2)
If \(\ker S\subseteq \ker S^{\ast }\), then \((S,T)\in FP\).
 
Proof
By Lemma 2.1(1), every \(FP(N)\) operator has a reducing kernel. Thus, by Lemma 2.5, we only need to prove (1). Let \(SX=XT\). As in the proof of Lemma 2.4, (2)–(4) hold. By \(\ker T^{\ast }=\{0\}\) and Lemma 3.2(2),
$$ S_{11}X_{11}=X_{11}T_{11}\quad \Longrightarrow\quad \ker S_{11}^{\ast }=\{0\},\quad S _{11} \mbox{ is } (p,k)\mbox{-quasihyponormal}, $$
thus \(S_{11}\) is p-hyponormal follows by Lemma 3.2(1). Hence \((S_{11},T_{11})\in FP\) by \(T_{11}^{\ast }\in HFP(H)\) and Lemma 2.4. So \(S_{11}\) is normal and injective. Lemma 2.1(3) ensures \(S_{12}=0\). Since \(X_{11}\) is quasiaffine, by Theorem 1.2 and Lemma 2.1(1), \(T_{11}\) is normal and \(T_{21}=0\) hold. So that the assertion holds by (4). □
Proof of Theorem 3.1
(1) If \(\ker T^{\ast }=\{0\}\), then \(T^{\ast }\in HFP(H)\) by Remark 1.6, and the assertion follows by Lemma 3.3(1).
(2) If \(T^{\ast }\) is \((p,k)\)-quasihyponormal and \(\ker T^{\ast } \subseteq \ker T\), then \(T^{\ast }\in HFP(H)\) (Remark 1.6). So \(\ker S\subseteq \ker S^{\ast }\) and Lemma 3.3(2) ensure \((S, T)\in FP\).
(3)–(4) hold in a similar manner to (2). □

4 Extensions of Theorem 1.4

Theorem 4.1
The following assertions hold and they are equivalent to each other.
(1)
Let S be \((p,k)\)-quasihyponormal, let \(T^{\ast }\) be \((p,k)\)-quasihyponormal with reducing kernel, or dominant, or w-hyponormal with reducing kernel. If \(\ker X^{\ast }= \{0\}\), then \((S,X,T)\in FP\) and S is normal.
 
(2)
Let S be \((p,k)\)-quasihyponormal with reducing kernel, or dominant, or w-hyponormal with reducing kernel, let \(T^{\ast }\) be \((p,k)\)-quasihyponormal. If \(\ker X=\{0\}\), then \((S,X,T)\in FP\) and T is normal.
 
Theorem 4.1 implies that the normal operator \(T^{\ast }\) in Theorem 1.4(1) can be replaced with a \((p,k)\)-quasihyponormal operator with reducing kernel, or a dominant operator, or a w-hyponormal operator with reducing kernel; and the p-hyponormal operator S in Theorem 1.4(2) can be replaced with a \((p,k)\)-quasihyponormal operator with reducing kernel, or a dominant operator, or a w-hyponormal operator with reducing kernel.
Lemma 4.2
The following assertions hold and (1) is equivalent to (2).
(1)
If S is \((p,k)\)-quasihyponormal, \(T^{\ast } \in HFP(H)\), and \(\ker X^{\ast }=\{0\}\), then \((S,X,T)\in FP\) and S is normal.
 
(2)
If \(S\in HFP(H)\), \(T^{\ast }\) is \((p,k)\)-quasihyponormal and X is injective, then \((S,X,T)\in FP\) and T is normal.
 
Proof
According to (5), it is sufficient to prove (1). Decompose S, T, X into
$$ \begin{aligned} &S= \begin{pmatrix} S_{11}&S_{12} \\ 0&S_{22} \end{pmatrix} \in \mathcal{B}\bigl([S\mathcal{H}]\oplus \ker S^{\ast }\bigr), \\ &T= \begin{pmatrix} T_{11}&0 \\ 0&0 \end{pmatrix} \in \mathcal{B} \bigl([T\mathcal{K}]\oplus \ker T^{\ast }\bigr), \\ &X= \begin{pmatrix} X_{11}&X_{12} \\ X_{21}&X_{22} \end{pmatrix} \in \mathcal{B} \bigl([T\mathcal{K}]\oplus \ker T^{\ast },[S\mathcal{H}] \oplus \ker S^{\ast }\bigr). \end{aligned} $$
(9)
Since X has a dense range,
$$\begin{aligned} SX=XT&\quad \Longrightarrow\quad [X T\mathcal{K}]=[SX \mathcal{K}]=[S\mathcal{H}] \\ &\quad \Longrightarrow\quad X_{21}=0,\ \ker X_{11}^{\ast }=\ker X_{22}^{\ast }=\{0 \}. \end{aligned}$$
(10)
Then
$$\begin{aligned}& \begin{aligned}[b] SX=XT&\quad \Longleftrightarrow \quad \begin{pmatrix} S_{11}X_{11}&S_{11}X_{12}+S_{12}X_{22} \\ 0&S_{22}X_{22} \end{pmatrix} = \begin{pmatrix} X_{11}T_{11}&0 \\ 0&0 \end{pmatrix} \\ &\quad \Longleftrightarrow\quad S_{11}X_{11}=X_{11}T_{11},\ S_{11}X_{12}+S_{12}X _{22}=S_{22}X_{22}=0, \end{aligned} \end{aligned}$$
(11)
$$\begin{aligned}& \begin{aligned}[b] S^{\ast }X=XT^{\ast } & \quad \Longleftrightarrow\quad \begin{pmatrix} (S_{11})^{\ast }X_{11}&(S_{11})^{\ast }X_{12} \\ (S_{12})^{\ast }X_{11}&(S_{12})^{\ast }X_{12}+(S_{22})^{\ast }X_{22} \end{pmatrix} = \begin{pmatrix} X_{11}(T_{11})^{\ast }&0 \\ 0&0 \end{pmatrix} \\ &\quad \Longleftrightarrow\quad (S_{11})^{\ast }X_{11}=X_{11}(T_{11})^{\ast }, \\ &\hphantom{\quad \Longleftrightarrow\quad\ \ } (S _{11})^{\ast }X_{12}=(S_{12})^{\ast }X_{11}=(S_{12})^{\ast }X_{12}+(S _{22})^{\ast }X_{22}=0. \end{aligned} \end{aligned}$$
(12)
Since \(S_{11}\) is \((p,k)\)-quasihyponormal, \(T_{11}^{\ast }\in HFP(H)\) and \(\ker T_{11}^{\ast }=\{0\}\), \((S_{11},T_{11})\in FP\) by Lemma 3.3. So \(S_{11}=S_{11}|_{[R(X_{11})]}\) is normal, \(\ker S _{11}^{\ast }=\{0\}\) follows by \(S_{11}X_{11}=X_{11}T_{11}\) and \(\ker X_{11}^{\ast }=\ker T_{11}^{\ast }=\{0\}\).
Then \(S_{12}=0\) holds by Lemma 2.1(3). Equation (11) and \(\ker S_{11}=\ker X_{22}^{\ast }=\{0\}\) imply \(X_{12}=S_{22}=0\). The assertion holds by (12). □
According to Remark 1.6, Theorem 4.1 follows by Lemma 4.2 directly.

5 Extensions of Theorem 1.5

Theorem 5.1
The following assertions hold and they are equivalent to each other.
(1)
Let S be \((p,k)\)-quasihyponormal, let \(T^{\ast }\) be \((p,k)\)-quasihyponormal, or dominant, or w-hyponormal with reducing kernel. If \(\ker S^{\ast k}\subseteq \ker X^{\ast }\), then \((S,X,T)\in FP\) and S is normal.
 
(2)
Let S be \((p,k)\)-quasihyponormal with reducing kernel, or dominant, or w-hyponormal with reducing kernel, let \(T^{\ast }\) be \((p,k)\)-quasihyponormal. If \(\ker T^{k}\subseteq \ker X\), then \((S,X,T)\in FP\) and T is normal.
 
Theorem 5.1(1) holds for every \((p,k)\)-quasihyponormal operator \(T^{\ast }\) and implies that the restriction \(\ker S\subseteq \ker S ^{\ast k}\) in Theorem 1.5 is redundant.
Lemma 5.2
The following assertions hold and they are equivalent to each other.
(1)
If S is \((p,k)\)-quasihyponormal, \(T^{\ast } \in HFP(H)\) and \(\ker S^{\ast k}\subseteq \ker X^{\ast }\), then \((S,X,T)\in FP\).
 
(2)
If \(S\in HFP(H)\), \(T^{\ast }\) is \((p,k)\)-quasihyponormal and \(\ker T^{k}\subseteq \ker X\), then \((S,X,T)\in FP\).
 
Proof
By (5), it is sufficient to prove (1). Decompose S, T, X into
$$ \begin{aligned} &S= \begin{pmatrix} S_{11}&S_{12} \\ 0&S_{22} \end{pmatrix} \in \mathcal{B}\bigl(\bigl[S^{k} \mathcal{H}\bigr]\oplus \ker S^{\ast k}\bigr), \\ &T= \begin{pmatrix} T_{11}&0 \\ T_{21}&T_{22} \end{pmatrix} \in \mathcal{B} \bigl(\bigl[R\bigl(X^{\ast }\bigr)\bigr]\oplus \ker X\bigr), \\ &X= \begin{pmatrix} X_{11}&0 \\ X_{21}&0 \end{pmatrix} \in \mathcal{B} \bigl(\bigl[R\bigl(X^{\ast }\bigr)\bigr]\oplus \ker X,\bigl[S^{k} \mathcal{H}\bigr]\oplus \ker S^{\ast k}\bigr). \end{aligned} $$
(13)
The condition \(\ker S^{\ast k}\subseteq \ker X^{\ast }\) implies that \(R(X)\subseteq [S^{k}\mathcal{H}]\), \(X_{21}=0\) and \(\ker X_{11}=\{0\}\). Thus
$$\begin{aligned}& SX=XT\quad \Longleftrightarrow\quad \begin{pmatrix} S_{11}X_{11}&0 \\ 0&0 \end{pmatrix} = \begin{pmatrix} X_{11}T_{11}&0 \\ 0&0 \end{pmatrix} \quad \Longleftrightarrow \quad S_{11}X_{11}=X_{11}T_{11}, \end{aligned}$$
(14)
$$\begin{aligned}& S^{\ast }X=XT^{\ast }\quad \Longleftrightarrow\quad (S_{11})^{\ast }X_{11}=X_{11}(T _{11})^{\ast },\ (S_{12})^{\ast }X_{11}=X_{11}(T_{21})^{\ast }=0. \end{aligned}$$
(15)
The operator \(S_{11}\) is p-hyponormal follows by Lemma 3.2. Since each p-hyponormal operator has a reducing kernel and \(T_{11}^{\ast }\in HFP(H)\), \((S_{11},T_{11}) \in FP\) follows. Hence \(S_{11}|_{[R(X_{11})]}\) (\(=S|_{[R(X)]}\)) and \(T_{11}|_{[R(( X_{11})^{\ast })]}(=T_{11})\) are unitarily equivalent normal operators. So \(T_{21}=0\) holds by Lemma 2.1(1), \(S_{12}=0\) by \([R(X)]\subseteq [S^{k}\mathcal{H}]\), and (3) of Lemma 2.1. Therefore the assertion holds by (15). □
Proof of Theorem 5.1
It is sufficient to prove (1). If \(T^{\ast }\) is dominant or w-hyponormal with reducing kernel, the assertion is a direct result of Lemma 5.2.
If \(T^{\ast }\) is \((p,k)\)-quasihyponormal, as in the proof of Lemma 5.2, (13)–(15) hold. Since \(S_{11}\) is p-hyponormal and \(\ker X_{11}=\{0\}\), \((S_{11},X_{11},T _{11})\in FP\) holds by Lemma 4.2(2). Then \(S_{11}|_{[R(X _{11})]}(=S|_{[R(X)]})\) and \(T_{11}\) are normal operators, and \(S_{12}=0\) follows by \([R(X)]\subseteq [S^{k}\mathcal{H}]\) and Lemma 2.1(3).
Furthermore, let \(P=P_{[R(S^{k})]}\) and \(x\in \ker S_{11}\), then \(P(S^{\ast }S)^{p}P\ge P(SS^{\ast })^{p}P\) and \(S^{\ast }Sx=0=(S^{ \ast }S)^{p}x\). Hence \(0=\langle (S^{\ast }S)^{p}Px,Px\rangle \ge \langle (SS^{\ast })^{p}Px,Px\rangle =\|(SS^{\ast })^{\frac{p}{2}}x\| ^{2}\), \(x\in \ker (SS^{\ast })^{\frac{p}{2}}\cap [R(S^{k})]=\ker S ^{\ast }\cap [R(S^{k})]\subseteq \ker S^{\ast k}\cap [R(S^{k})]=\{0\}\). Therefore \(\ker S_{11}=\{0\}\). Thus, by Lemma 2.1,
$$ S_{11}X_{11}=X_{11}T_{11}\quad \Longrightarrow \quad \ker T_{11}=\{0\}\quad \Longrightarrow\quad T_{21}=0. $$
So \((S,X,T)\in FP\) follows. □
At the end, we give an example which implies that some kernel conditions in Fuglede–Putnam type theorems above are crucial.
Example 5.3
Let \(k\ge 2\) be a positive integer, S be an operator such that \(S^{k-1}\neq 0\) and \(S^{k}= 0\).
(1)
S and \(S^{\ast }\) are \((p,k)\)-quasihyponormal with \(\ker S\neq 0\) and \(\ker S^{\ast }\neq 0\), and \((S,S,S)\notin FP\).
 
(2)
Let \(P=P_{[R(S^{k-1})]}\), then \(\ker S\nsubseteq \ker S^{\ast }\) and \((S,P,1-P)\notin FP\).
 
(3)
Let \(P=P_{[R(S^{k-1})]}\), then \(\ker P^{\ast } \neq 0\) and \((S,P,1-P)\notin FP\).
 
(4)
If \(k=2\), then S is a quasiclass A operator, \(S\in R_{3}\) and \(S\notin R_{2}\).
 
Example 5.3(1)–(2) says that, if \(T^{\ast }\) is \((p,k)\)-quasihyponormal, the kernel condition \(\ker T^{\ast }=\{0\}\) in Theorem 3.1(1) is inevitable. Example 5.3(3) implies that the kernel condition \(\ker X^{\ast }=\{0\}\) in Theorem 4.1(1) is crucial.
Lemma 5.4
([20])
If \(\ker (T-\lambda )\subseteq \ker (T-\lambda )^{\ast }\) for a fixed number λ, then \(\ker (T-\lambda )=\ker (T-\lambda )^{2}\) and \(\ker (T-\lambda )\perp \ker (T-\mu )\) for each \(\mu \neq \lambda \).
Lemma 5.5
([20])
Let k be a positive integer, \(T\in k\)-\(QA(n)\), and T = ( T 11 T 12 0 T 22 ) on \(\mathcal{M}\oplus \mathcal{M}^{\perp }\).
(1)
If \([R(T^{k})]\subseteq \mathcal{M}\), then \(T_{22}^{k}=0\) and \(\sigma (T)=\sigma (T_{11})\cup \{0\}\).
 
(2)
If \(T\in k\)-\(QA(n)\) and \(\mathcal{M}\subseteq [R(T ^{k})]\), then \(T_{11}(=T|_{\mathcal{M}})\in A(n)\).
 
Proof of Example 5.3
(1) By \(S^{k}= 0=S^{\ast k}\), S and \(S^{\ast }\) are \((p,k)\)-quasihyponormal. If \(\ker S= 0\), then \(\ker S^{k}=\ker S= 0\) and it contradicts the condition \(\ker S^{k-1}\neq 0\). So \(\ker S\neq 0\), and \(\ker S^{\ast }\neq 0\) holds in a similar manner.
If \(\ker S\subseteq \ker S^{\ast }\), then Lemma 5.4 implies \(\ker S^{k}=\ker S\). It also contradicts the condition \(S^{k-1}\neq 0\). Hence \(\ker S\nsubseteq \ker S^{\ast }\), \(S^{\ast }S\neq SS^{\ast }\), and \((S,S,S)\notin FP\).
(2) The assumption \(S^{k}= 0\) implies \(SP=0=P(1-P)\). By (1), kerS does not reduce S. So \(S^{\ast }P\neq 0=P(1-P)\) and \((S,P,1-P)\notin FP\).
(3) If \(\ker P^{\ast }=\ker S^{\ast (k-1)}= 0\), then \(\ker S^{\ast }= \ker S^{\ast k}=0\). It contradicts the condition \(S^{k}= 0\). Hence \(\ker P^{\ast }\neq 0\) and \((S,P,1-P)\notin FP\).
(4) Since
$$ S^{2}= 0\quad \Longrightarrow \quad R(S)\subseteq \ker S\subseteq \ker S^{2}= \ker \bigl\vert S^{2} \bigr\vert \quad \Longrightarrow\quad S^{\ast } \bigl\vert S^{2} \bigr\vert S=0=S^{\ast }|S|^{2}S, $$
S is a quasiclass A operator. By Lemma 5.5 and \(S^{2}= 0\), S = ( 0 S 12 0 0 ) on \(\mathcal{H}=[S\mathcal{H}]\oplus \ker S^{\ast }\). The assumption \(S\neq 0\) ensures \(S_{12}\neq 0\), so \(S|_{[S\mathcal{H}]}=0\) is normal and \([S\mathcal{H}]\) does not reduce S. Hence \(S\in R_{3}\) [20, Theorem 2.4] and \(S\notin R_{2}\). □

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bachir, A., Lombarkia, F.: Fuglede–Putnam’s theorem for w-hyponormal operators. Math. Inequal. Appl. 12, 777–786 (2012) MathSciNetMATH Bachir, A., Lombarkia, F.: Fuglede–Putnam’s theorem for w-hyponormal operators. Math. Inequal. Appl. 12, 777–786 (2012) MathSciNetMATH
2.
Zurück zum Zitat Duggal, B.P., Kubrursly, C.S., Kim, I.H.: Bishop’s property \((\beta )\), a commutativity theorem and the dynamics of class \(A(s,t)\) operators. J. Math. Anal. Appl. 427, 107–113 (2015) MathSciNetCrossRef Duggal, B.P., Kubrursly, C.S., Kim, I.H.: Bishop’s property \((\beta )\), a commutativity theorem and the dynamics of class \(A(s,t)\) operators. J. Math. Anal. Appl. 427, 107–113 (2015) MathSciNetCrossRef
3.
4.
Zurück zum Zitat Furuta, T.: Invitation to Linear Operators. Taylor & Francis, London (2001) CrossRef Furuta, T.: Invitation to Linear Operators. Taylor & Francis, London (2001) CrossRef
5.
Zurück zum Zitat Hansen, F., Pedersen, G.K.: Jensen’s inequality for operators and Löwner’s theorem. Math. Ann. 258, 229–241 (1982) MathSciNetCrossRef Hansen, F., Pedersen, G.K.: Jensen’s inequality for operators and Löwner’s theorem. Math. Ann. 258, 229–241 (1982) MathSciNetCrossRef
7.
8.
Zurück zum Zitat Mecheri, S., Uchiyama, A., Tanahashi, K.: Fuglede–Putnam theorem for p-hyponormal or class Y operators. Bull. Korean Math. Soc. 43, 747–753 (2006) MathSciNetCrossRef Mecheri, S., Uchiyama, A., Tanahashi, K.: Fuglede–Putnam theorem for p-hyponormal or class Y operators. Bull. Korean Math. Soc. 43, 747–753 (2006) MathSciNetCrossRef
9.
Zurück zum Zitat Patel, S.M., Tanahashi, K., Uchiyama, A., Yanagida, M.: Quasinormality and Fuglede–Putnam theorem for class \(A(s,t)\)-operators. Nihonkai Math. J. 17, 49–67 (2006) MathSciNetMATH Patel, S.M., Tanahashi, K., Uchiyama, A., Yanagida, M.: Quasinormality and Fuglede–Putnam theorem for class \(A(s,t)\)-operators. Nihonkai Math. J. 17, 49–67 (2006) MathSciNetMATH
11.
12.
Zurück zum Zitat Stampfli, J.G., Wadhwa, B.L.: An asymmetric Putnam–Fuglede theorem for dominant operators. Indiana Univ. Math. J. 25, 359–365 (1976) MathSciNetCrossRef Stampfli, J.G., Wadhwa, B.L.: An asymmetric Putnam–Fuglede theorem for dominant operators. Indiana Univ. Math. J. 25, 359–365 (1976) MathSciNetCrossRef
14.
Zurück zum Zitat Takahashi, K.: On the converse of some Fuglede–Putnam theorems. Acta Sci. Math. 43, 123–125 (1981) MathSciNetMATH Takahashi, K.: On the converse of some Fuglede–Putnam theorems. Acta Sci. Math. 43, 123–125 (1981) MathSciNetMATH
15.
Zurück zum Zitat Tanahashi, K., Patel, S.M., Uchiyama, A.: On extensions of some Fuglede–Putnam type theorems involving \((p,k)\)-quasihyponormal, spectral, and dominant operators. Math. Nachr. 282, 1022–1032 (2009) MathSciNetCrossRef Tanahashi, K., Patel, S.M., Uchiyama, A.: On extensions of some Fuglede–Putnam type theorems involving \((p,k)\)-quasihyponormal, spectral, and dominant operators. Math. Nachr. 282, 1022–1032 (2009) MathSciNetCrossRef
16.
Zurück zum Zitat Tanahashi, K., Uchiyama, A., Cho, M.: Isolated points of spectrum of \((p,k)\)-quasihyponormal operators. Linear Algebra Appl. 382, 221–229 (2004) MathSciNetCrossRef Tanahashi, K., Uchiyama, A., Cho, M.: Isolated points of spectrum of \((p,k)\)-quasihyponormal operators. Linear Algebra Appl. 382, 221–229 (2004) MathSciNetCrossRef
17.
Zurück zum Zitat Uchiyama, A., Tanahashi, K.: Fuglede–Putnam’s theorems for p-hyponormal or log-operators. Glasg. Math. J. 44, 397–410 (2002) MathSciNetCrossRef Uchiyama, A., Tanahashi, K.: Fuglede–Putnam’s theorems for p-hyponormal or log-operators. Glasg. Math. J. 44, 397–410 (2002) MathSciNetCrossRef
18.
19.
20.
Zurück zum Zitat Yuan, J.T., Wang, C.H.: Reducibility of invariant subspaces of operators related to k-quasiclass-\(A(n)\) operators. Complex Anal. Oper. Theory 10, 153–169 (2016) MathSciNetCrossRef Yuan, J.T., Wang, C.H.: Reducibility of invariant subspaces of operators related to k-quasiclass-\(A(n)\) operators. Complex Anal. Oper. Theory 10, 153–169 (2016) MathSciNetCrossRef
Metadaten
Titel
Fuglede–Putnam type theorems for -quasihyponormal operators via hyponormal operators
verfasst von
Jiang-Tao Yuan
Cai-Hong Wang
Publikationsdatum
01.12.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2019
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2073-z

Weitere Artikel der Ausgabe 1/2019

Journal of Inequalities and Applications 1/2019 Zur Ausgabe

Premium Partner