Skip to main content
Erschienen in: Environmental Earth Sciences 21/2016

01.11.2016 | Original Article

Full 3D nonlinear time history analysis of dynamic soil–structure interaction for a historical masonry arch bridge

verfasst von: Hamza Güllü, Handren Salih Jaf

Erschienen in: Environmental Earth Sciences | Ausgabe 21/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Historical masonry arch bridges, which represent the richness of cultural heritage of the country (Anatolia, Turkey), should be protected against detrimental effects and transferred well to next generations with a thorough effort given for the accurate estimations under the seismic responses affected by the nonlinear soil and structural characteristics. In this viewpoint, a relatively comprehensive method, full 3D nonlinear time history analysis of soil–structure interaction (SSI) (using direct method of configuration), has been employed in this work through the understanding of SSI effect well specifically investigated for a historical masonry stone arch bridge (Mataracı Bridge, Trabzon). For this purpose, the SSI model of bridge–substructure soil was built with the finite elements in 3D using the solid element, and then figured out in detail based on the results of seismic responses due to earthquake excitation. It is found from the results that in comparison with the fixed base solution, the influence of SSI becomes relatively prominent on the responses of displacement, acceleration, rotation, frequency (at lower modes of vibration), modal shapes, base shear, and overturning moment, while the stresses almost remain unchanged. The effort given in this study could be beneficial for other historical structures in the country for accurate estimations of the responses when seismically considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat AASHTO (2014) LRFD Bridge Design Specifications. 7th Ed. American Association of State Highway and Transportation Officials AASHTO (2014) LRFD Bridge Design Specifications. 7th Ed. American Association of State Highway and Transportation Officials
Zurück zum Zitat Ates S, Constantinou MC (2011) Example of application of response spectrum analysis for seismically isolated curved bridges including soil–foundation effects. Soil Dyn Earthq Eng 31(4):648–661CrossRef Ates S, Constantinou MC (2011) Example of application of response spectrum analysis for seismically isolated curved bridges including soil–foundation effects. Soil Dyn Earthq Eng 31(4):648–661CrossRef
Zurück zum Zitat Betti R, Abdel-Ghaffar AM, Niazy AS (1993) Kinematic soil–structure interaction for long-span cable-supported bridge. Earthq Eng Struct Dyn 22(5):415–430CrossRef Betti R, Abdel-Ghaffar AM, Niazy AS (1993) Kinematic soil–structure interaction for long-span cable-supported bridge. Earthq Eng Struct Dyn 22(5):415–430CrossRef
Zurück zum Zitat Bhaumik L, Raychowdhury P (2013) Seismic response analysis of a nuclear reactor structure considering nonlinear soil–structure interaction. Nucl Eng Des 265:1078–1090CrossRef Bhaumik L, Raychowdhury P (2013) Seismic response analysis of a nuclear reactor structure considering nonlinear soil–structure interaction. Nucl Eng Des 265:1078–1090CrossRef
Zurück zum Zitat Byrne PM., Wijewickreme D (2006) Liquefaction resistance and post-liquefaction response of soils for seismic design of buildings in greater Vancouver. In: Proceedings of 59th Canadian geotechnical conference, pp 1267–1278 Byrne PM., Wijewickreme D (2006) Liquefaction resistance and post-liquefaction response of soils for seismic design of buildings in greater Vancouver. In: Proceedings of 59th Canadian geotechnical conference, pp 1267–1278
Zurück zum Zitat Cakir T (2013) Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil–structure interaction. Soil Dyn Earthq Eng 45:96–111CrossRef Cakir T (2013) Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil–structure interaction. Soil Dyn Earthq Eng 45:96–111CrossRef
Zurück zum Zitat Casciati S, Borja RI (2004) Dynamic FE analysis of South Memnon Colossus including 3D soil–foundation–structure interaction. Comput Struct 82:1719–1736CrossRef Casciati S, Borja RI (2004) Dynamic FE analysis of South Memnon Colossus including 3D soil–foundation–structure interaction. Comput Struct 82:1719–1736CrossRef
Zurück zum Zitat Chouw N, Hao H (2008) Significance of SSI and nonuniform near-fault ground motions in bridge response I: effect on response with conventional expansion joint. Eng Struct 30(1):141–153CrossRef Chouw N, Hao H (2008) Significance of SSI and nonuniform near-fault ground motions in bridge response I: effect on response with conventional expansion joint. Eng Struct 30(1):141–153CrossRef
Zurück zum Zitat Crouse CB, Hushmand B, Martin GR (1987) Dynamic soil–structure interaction of a single-span bridge. Earthq Eng Struct Dyn 15:711–729CrossRef Crouse CB, Hushmand B, Martin GR (1987) Dynamic soil–structure interaction of a single-span bridge. Earthq Eng Struct Dyn 15:711–729CrossRef
Zurück zum Zitat Della Corte G, De Matteis G, Landolfo R (2000) Influence of different hysteretic behaviours on seismic response of sdof systems. In: 12th world conference on earthquake engineering (12 WCEE 2000), Auckland, New Zeland, 30 January-4 February, Paper no: 2402, pp 1–8 Della Corte G, De Matteis G, Landolfo R (2000) Influence of different hysteretic behaviours on seismic response of sdof systems. In: 12th world conference on earthquake engineering (12 WCEE 2000), Auckland, New Zeland, 30 January-4 February, Paper no: 2402, pp 1–8
Zurück zum Zitat Ellis EA, Springman SM (2001) Modelling of soil–structure interaction for a piled bridge abutment in plane strain FEM analysis. Comput Geotech 28:79–98CrossRef Ellis EA, Springman SM (2001) Modelling of soil–structure interaction for a piled bridge abutment in plane strain FEM analysis. Comput Geotech 28:79–98CrossRef
Zurück zum Zitat Erhan S, Dicleli M (2014) Effect of dynamic soil–bridge interaction modeling assumptions on the calculated seismic response of integral bridges. Soil Dyn Earthq Eng 66:42–55CrossRef Erhan S, Dicleli M (2014) Effect of dynamic soil–bridge interaction modeling assumptions on the calculated seismic response of integral bridges. Soil Dyn Earthq Eng 66:42–55CrossRef
Zurück zum Zitat Galal K, Naimi M (2008) Effect of conditions on the response of reinforced concrete tall structures to near fault earthquakes. Struct Des Tall Spec Build 17(3):541–562CrossRef Galal K, Naimi M (2008) Effect of conditions on the response of reinforced concrete tall structures to near fault earthquakes. Struct Des Tall Spec Build 17(3):541–562CrossRef
Zurück zum Zitat Gazetas G, Mylonakis G (1998) Seismic soil–structure interaction: New evidence and emerging issues. In: Soil dynamics III, ASCE, specialty geotechnical conference, Seattle, vol 2, pp 1119–1174 Gazetas G, Mylonakis G (1998) Seismic soil–structure interaction: New evidence and emerging issues. In: Soil dynamics III, ASCE, specialty geotechnical conference, Seattle, vol 2, pp 1119–1174
Zurück zum Zitat Grange S, Kotronis P, Mazars J (2009) A macro-element to simulate 3D soil–structure interaction considering plasticity and uplift. Int J Solids Struct 31:3034–3046 Grange S, Kotronis P, Mazars J (2009) A macro-element to simulate 3D soil–structure interaction considering plasticity and uplift. Int J Solids Struct 31:3034–3046
Zurück zum Zitat Güllü H (2001) Microzonation of Dinar with respect to soil amplification by using geographic information systems. Ph.D. Thesis, Civil Engineering Department, Istanbul Technical University, p 289 Güllü H (2001) Microzonation of Dinar with respect to soil amplification by using geographic information systems. Ph.D. Thesis, Civil Engineering Department, Istanbul Technical University, p 289
Zurück zum Zitat Güllü H (2013) On the prediction of shear wave velocity at local site of strong ground motion stations: an application using artificial intelligience. Bull Earthq Eng 11:969–997CrossRef Güllü H (2013) On the prediction of shear wave velocity at local site of strong ground motion stations: an application using artificial intelligience. Bull Earthq Eng 11:969–997CrossRef
Zurück zum Zitat Güllü H, Pala M (2014) On the resonance effect by dynamic soil–structure interaction: a revelation study. Nat Hazards 72(2):827–847CrossRef Güllü H, Pala M (2014) On the resonance effect by dynamic soil–structure interaction: a revelation study. Nat Hazards 72(2):827–847CrossRef
Zurück zum Zitat Kampitsis AE, Sapountzakis EJ, Giannakos SK, Gerolymos NA (2013) Seismic soil–pile–structure kinematic and inertial interaction—a new beam approach. Soil Dyn Earthq Eng 55:211–224CrossRef Kampitsis AE, Sapountzakis EJ, Giannakos SK, Gerolymos NA (2013) Seismic soil–pile–structure kinematic and inertial interaction—a new beam approach. Soil Dyn Earthq Eng 55:211–224CrossRef
Zurück zum Zitat Kappos AJ, Manolis GD, Moschonas IF (2002) Seismic assessment and design of R/C bridges with irregular congiguration, including SSI effects. Eng Struct 24:1337–1348CrossRef Kappos AJ, Manolis GD, Moschonas IF (2002) Seismic assessment and design of R/C bridges with irregular congiguration, including SSI effects. Eng Struct 24:1337–1348CrossRef
Zurück zum Zitat Karantzikis M, Spyrakos CC (2000) Seismic analysis of bridges including soil–abutment interaction. Proceedings of the12th world congress on earthquake engineering. Paper No: 2471, New Zealand Karantzikis M, Spyrakos CC (2000) Seismic analysis of bridges including soil–abutment interaction. Proceedings of the12th world congress on earthquake engineering. Paper No: 2471, New Zealand
Zurück zum Zitat Kobayashi T, Yoshikawa K, Takaoka E, Nakazawa M, Shikama Y (2002) Time history nonlinear earthquake response analysis considering materials and geometrical nonlinearity. Nucl Eng Des 212(1–3):145–154CrossRef Kobayashi T, Yoshikawa K, Takaoka E, Nakazawa M, Shikama Y (2002) Time history nonlinear earthquake response analysis considering materials and geometrical nonlinearity. Nucl Eng Des 212(1–3):145–154CrossRef
Zurück zum Zitat Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River
Zurück zum Zitat Lee JH, Kim JK, Kim JH (2014) Nonlinear analysis of soil–structure interaction using perfectly matched discrete layers. Comput Struct 142:28–44CrossRef Lee JH, Kim JK, Kim JH (2014) Nonlinear analysis of soil–structure interaction using perfectly matched discrete layers. Comput Struct 142:28–44CrossRef
Zurück zum Zitat Li M, Lu X, Lu X, Ye L (2014) Influence of soil–structure interaction on seismic collapse resistance of super-tall buildings. J Rock Mech Geotech Eng 6:477–485CrossRef Li M, Lu X, Lu X, Ye L (2014) Influence of soil–structure interaction on seismic collapse resistance of super-tall buildings. J Rock Mech Geotech Eng 6:477–485CrossRef
Zurück zum Zitat Livaoglu R (2014) The numerical and empirical evaluation of chimneys considering soil structure interaction and high-temperature effects. Soil Dyn Earthq Eng 66:178–190CrossRef Livaoglu R (2014) The numerical and empirical evaluation of chimneys considering soil structure interaction and high-temperature effects. Soil Dyn Earthq Eng 66:178–190CrossRef
Zurück zum Zitat Livaoglu R, Dogangun A (2007) Effect of foundation embedment on seismic behavior of elevated tanks considering fluid-structure-soil interaction. Soil Dyn Earthq Eng 27:855–863CrossRef Livaoglu R, Dogangun A (2007) Effect of foundation embedment on seismic behavior of elevated tanks considering fluid-structure-soil interaction. Soil Dyn Earthq Eng 27:855–863CrossRef
Zurück zum Zitat Luco JE (2014) Effects of soil–structure interaction on seismic base isolation. Soil Dyn Earthq Eng 66:167–177CrossRef Luco JE (2014) Effects of soil–structure interaction on seismic base isolation. Soil Dyn Earthq Eng 66:167–177CrossRef
Zurück zum Zitat Maheshwari BK, Sarkar R (2011) Seismic behavior of soil–pile–structure interaction in liquefiable soils: parametric study. Int J Geomech 11(4):335–347CrossRef Maheshwari BK, Sarkar R (2011) Seismic behavior of soil–pile–structure interaction in liquefiable soils: parametric study. Int J Geomech 11(4):335–347CrossRef
Zurück zum Zitat Mylonakis G, Gazetas G (2000) Seismic soil–structure interaction: beneficial or detrimental? J Earthq Eng 4(3):277–301 Mylonakis G, Gazetas G (2000) Seismic soil–structure interaction: beneficial or detrimental? J Earthq Eng 4(3):277–301
Zurück zum Zitat NHI (2011) LRFD Seismic Analysis and Design of Transportation Geotechnical Features and Structural Foundations. U.S. Department of Federal Highway Administration, FHWA-NHI-11-032 NHI (2011) LRFD Seismic Analysis and Design of Transportation Geotechnical Features and Structural Foundations. U.S. Department of Federal Highway Administration, FHWA-NHI-11-032
Zurück zum Zitat Ouanani M, Tiliouine B (2015) Effects of foundation soil stiffness on the 3-D modal characteristics and seismic response of a highway bridge. KSCE J Civ Eng 19(4):1009–1023CrossRef Ouanani M, Tiliouine B (2015) Effects of foundation soil stiffness on the 3-D modal characteristics and seismic response of a highway bridge. KSCE J Civ Eng 19(4):1009–1023CrossRef
Zurück zum Zitat Park JH, Choo JF, Cho JR (2013) Dynamic soil–structure interaction analysis for complex soil profiles using unaligned mesh generation and nonlinear modelling approach. KSCE J Civ Eng 17(4):753–762CrossRef Park JH, Choo JF, Cho JR (2013) Dynamic soil–structure interaction analysis for complex soil profiles using unaligned mesh generation and nonlinear modelling approach. KSCE J Civ Eng 17(4):753–762CrossRef
Zurück zum Zitat Pecker A (2011) Influence of nonlinear soil structure interaction on the seismic demand of bridges. In: Proceedings of the international conference on innovations on bridges and soil bridge interaction, Athens, Greece, pp 91–106 Pecker A (2011) Influence of nonlinear soil structure interaction on the seismic demand of bridges. In: Proceedings of the international conference on innovations on bridges and soil bridge interaction, Athens, Greece, pp 91–106
Zurück zum Zitat Preisig M, Jeremic B (2005) Nonlinear finite element analysis of dynamic soil–foundation–structure interaction. SFSI report, NSF-CMS-0337811, Department of Civil and Environmental engineering. University of California, Davis Preisig M, Jeremic B (2005) Nonlinear finite element analysis of dynamic soil–foundation–structure interaction. SFSI report, NSF-CMS-0337811, Department of Civil and Environmental engineering. University of California, Davis
Zurück zum Zitat Raychowdhury P (2011) Seismic response of low-rise steel moment resisting frame (SMRF) building incorporating nonlinear soil–structure interaction (SSI). Eng Struct 33:958–967CrossRef Raychowdhury P (2011) Seismic response of low-rise steel moment resisting frame (SMRF) building incorporating nonlinear soil–structure interaction (SSI). Eng Struct 33:958–967CrossRef
Zurück zum Zitat Saadeghvaziri MA, Yazdani-Motlagh AR, Rashidi S (2000) Effects of soil–structure interaction on longitudinal seismic response of MSSS bridges. Soil Dyn Earthq Eng 20(1–4):231–242CrossRef Saadeghvaziri MA, Yazdani-Motlagh AR, Rashidi S (2000) Effects of soil–structure interaction on longitudinal seismic response of MSSS bridges. Soil Dyn Earthq Eng 20(1–4):231–242CrossRef
Zurück zum Zitat Saiidi M, Douglas BM (1984) Effect of design seismic loads on a highway bridge. J Struct Eng ASCE 110(11):2723–2735CrossRef Saiidi M, Douglas BM (1984) Effect of design seismic loads on a highway bridge. J Struct Eng ASCE 110(11):2723–2735CrossRef
Zurück zum Zitat SAP2000 (version 17.2) (2015) Integrated finite element analysis and design of structures basic analysis reference manual. Computer and Structures Inc, Berkeley SAP2000 (version 17.2) (2015) Integrated finite element analysis and design of structures basic analysis reference manual. Computer and Structures Inc, Berkeley
Zurück zum Zitat Seo CG, Yun CB, Kim JM (2007) Three-dimensional frequency-dependent infinite elements for soil–structure interaction. Eng Struct 29:3106–3120CrossRef Seo CG, Yun CB, Kim JM (2007) Three-dimensional frequency-dependent infinite elements for soil–structure interaction. Eng Struct 29:3106–3120CrossRef
Zurück zum Zitat Shirgir V, Ghanbari A, Shahrouzi M (2016) Natural frequency of single pier bridges considering soil–structure interaction. J Earthq Eng 20(4):611–632CrossRef Shirgir V, Ghanbari A, Shahrouzi M (2016) Natural frequency of single pier bridges considering soil–structure interaction. J Earthq Eng 20(4):611–632CrossRef
Zurück zum Zitat Spyrakos C, Loannidis G (2003) Seismic behavior of a post-tensioned integral bridge including soil–structure interaction (SSI). Soil Dyn Earthq Eng 23(1):53–63CrossRef Spyrakos C, Loannidis G (2003) Seismic behavior of a post-tensioned integral bridge including soil–structure interaction (SSI). Soil Dyn Earthq Eng 23(1):53–63CrossRef
Zurück zum Zitat Stehmeyer EH, Rizos DC (2008) Considering dynamic soil structure interaction (SSI) effects on seismic isolation retrofit efficiency and the importance of natural frequency ratio. Soil Dyn Earthq Eng 28(6):468–479CrossRef Stehmeyer EH, Rizos DC (2008) Considering dynamic soil structure interaction (SSI) effects on seismic isolation retrofit efficiency and the importance of natural frequency ratio. Soil Dyn Earthq Eng 28(6):468–479CrossRef
Zurück zum Zitat Su J, Wang Y (2013) Equivalent dynamic infinite element for soil–structure interaction. Finite Elem Anal Des 63:1–7CrossRef Su J, Wang Y (2013) Equivalent dynamic infinite element for soil–structure interaction. Finite Elem Anal Des 63:1–7CrossRef
Zurück zum Zitat Tabatabaiefar SHR, Fatahi B, Samali B (2013) Seismic behavior of building frames considering dynamic soil–structure interaction. Int J Geomech (ASCE) 13(4):409–420CrossRef Tabatabaiefar SHR, Fatahi B, Samali B (2013) Seismic behavior of building frames considering dynamic soil–structure interaction. Int J Geomech (ASCE) 13(4):409–420CrossRef
Zurück zum Zitat Toker S, Unay AI (2004) Mathematical modeling and finite element analysis of masonry arch bridges. G.U. J Sci 17(2):129–139 Toker S, Unay AI (2004) Mathematical modeling and finite element analysis of masonry arch bridges. G.U. J Sci 17(2):129–139
Zurück zum Zitat Tongaonkar NP, Jangid RS (2003) Seismic response of isolated bridges with soil–structure interaction. Soil Dyn Earthq Eng 23(4):287–302CrossRef Tongaonkar NP, Jangid RS (2003) Seismic response of isolated bridges with soil–structure interaction. Soil Dyn Earthq Eng 23(4):287–302CrossRef
Zurück zum Zitat Torabi H, Rayhani MT (2014) Three dimensional finite element modeling of seismic soil–structure interaction in soft soil. Comput Geotech 60:9–19CrossRef Torabi H, Rayhani MT (2014) Three dimensional finite element modeling of seismic soil–structure interaction in soft soil. Comput Geotech 60:9–19CrossRef
Zurück zum Zitat Ural A, Dogangun A (2007) Arch bridges in East Blacksea Region of Turkey and effects of infill materials on a sample bridge. In: Lourenco PB, Oliveira DV, Portela A (eds) ARCH’07–5th international conference on arch bridges, proceedings of the 5th international conference on arch bridges, 12–14 September, Madeira, pp 543–550 Ural A, Dogangun A (2007) Arch bridges in East Blacksea Region of Turkey and effects of infill materials on a sample bridge. In: Lourenco PB, Oliveira DV, Portela A (eds) ARCH’07–5th international conference on arch bridges, proceedings of the 5th international conference on arch bridges, 12–14 September, Madeira, pp 543–550
Zurück zum Zitat Vlassis AG, Spyrakos CC (2001) Seismically isolated bridge piers on shallow soil stratum with soil–structure interaction. Comput Struct 79(32):2847–2861CrossRef Vlassis AG, Spyrakos CC (2001) Seismically isolated bridge piers on shallow soil stratum with soil–structure interaction. Comput Struct 79(32):2847–2861CrossRef
Zurück zum Zitat Wolf JP (1985) Dynamic soil–structure interaction. Prentice-Hall, Englewood Cliffs Wolf JP (1985) Dynamic soil–structure interaction. Prentice-Hall, Englewood Cliffs
Zurück zum Zitat Wolf JP (1988) Soil–structure interaction analysis in time-domain. Prentice-Hall, Englewood Cliffs Wolf JP (1988) Soil–structure interaction analysis in time-domain. Prentice-Hall, Englewood Cliffs
Zurück zum Zitat Wolf JP (1994) Foundation vibration analysis using simple physical models. Prentice Hall, Englewood Cliffs Wolf JP (1994) Foundation vibration analysis using simple physical models. Prentice Hall, Englewood Cliffs
Zurück zum Zitat Wolf JP, Deeks AJ (2004) Foundation vibration analysis: a strength of materials approach. Elsevier, Amsterdam Wolf JP, Deeks AJ (2004) Foundation vibration analysis: a strength of materials approach. Elsevier, Amsterdam
Zurück zum Zitat Wolf JP, Preisig M (2003) Dynamic stiffness of foundation embedded in layered halfspace based on wave propagation in cones. Earthq Eng Struct Dyn 32:1075–1098CrossRef Wolf JP, Preisig M (2003) Dynamic stiffness of foundation embedded in layered halfspace based on wave propagation in cones. Earthq Eng Struct Dyn 32:1075–1098CrossRef
Zurück zum Zitat Yoo C (2013) Interaction between tunneling and bridge foundation—a 3D numerical investigation. Comput Geotech 49:70–78CrossRef Yoo C (2013) Interaction between tunneling and bridge foundation—a 3D numerical investigation. Comput Geotech 49:70–78CrossRef
Metadaten
Titel
Full 3D nonlinear time history analysis of dynamic soil–structure interaction for a historical masonry arch bridge
verfasst von
Hamza Güllü
Handren Salih Jaf
Publikationsdatum
01.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 21/2016
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-016-6230-0

Weitere Artikel der Ausgabe 21/2016

Environmental Earth Sciences 21/2016 Zur Ausgabe