Skip to main content

2013 | OriginalPaper | Buchkapitel

3. Fully Integrated Time References

verfasst von : Fabio Sebastiano, Lucien J. Breems, Kofi A. A. Makinwa

Erschienen in: Mobility-based Time References for Wireless Sensor Networks

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Measuring the time interval between two events requires the choice of a repetitive and regular phenomenon, such as the oscillation of a pendulum, and then counting how many times this phenomenon takes place between the two events. The science of timekeeping has evolved through the centuries by basically adopting more and more precise and reliable periodic phenomena to keep track of time. From the first attempts using evident astronomical events, such as the motion of the sun and the moon, chronometry evolved by employing periodic phenomena in man-made devices, such as sand motion in hourglasses, oscillations in pendulums, balance wheel rotations in mechanical clocks, electromechanical vibrations in quartz crystal oscillators and absorption or emission of radiations in atomic clocks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
x(t) is obtained using the Fourier series expansion of m(t), i.e. \(A(t) = S(t)\sqrt{{a}_{1 }^{2 } + {b}_{1 }^{2}}\), \(\phi (t) + \theta (t) = 2\pi {f}_{0}\epsilon (t) +\arcsin \frac{{a}_{1}} {\sqrt{{a}_{1 }^{2 }+{b}_{1 }^{2}}}\), where \({a}_{1} = \frac{2} {T}{\int \nolimits \nolimits }_{0}^{{T}_{0}}m(t)\cos (2\pi {f}_{0}t)\,\textrm{ d}t\), \({b}_{1} = \frac{2} {T}{\int \nolimits \nolimits }_{0}^{{T}_{0}}m(t)\sin (2\pi {f}_{0}t)\,\textrm{ d}t\).
 
2
Note that phase noise can in general also not be a stationary process, since its statistical property changes with time, such as, for example, its variance that can increase with time. The relation between its standard deviation and its PSD is then not well defined. However, defining jitter as a stationary process with parameter τ justifies the calculations presented in this section, even if not all of them are not formally correct, including the integration of S ϕ(f) to compute the jitter.
 
3
It can be proven, integrating by parts, that \({\int \nolimits \nolimits }_{0}^{+\infty }\frac{{\sin }^{2}x} {{x}^{2}} \textrm{ d}x ={ \int \nolimits \nolimits }_{0}^{+\infty }\frac{\sin x} {x}\textrm{ d}x\); the latter term can be proven to be equal to π ∕ 2 [7].
 
4
The linearity of passive components describes the variation of the component properties, i.e. resistance or capacitance, for a change in the voltage applied to the component. A high linearity is sign of robustness to voltage variation and consequently low sensitivity to supply voltage variations.
 
5
Reference capacitors can be constructed whose capacitance is only dependent on the permittivity and one dimension, such as the Thompson–Lampard capacitor [20, 21]. However, their implementation in an integrated circuit is unpractical.
 
6
This condition can be fulfilled by simply embedding in the oscillator tank all reactive components of the active circuit, such as the parasitic capacitances.
 
7
In order to fulfill this condition, the parasitic capacitances introduced by the active circuit must be minimized; those parasitic can be due to junction capacitances and MOS capacitances, which have different temperature coefficient than the tank capacitor and consequently can not be trimmed out by a temperature compensation.
 
8
A more efficient circuit could be employed by adding a cross-coupled pMOS pair in parallel with the tank and re-using the same bias current of the nMOS pair. This would result in a factor 2 for the lower bound for the bias current but it would not radically change the conclusions.
 
9
State-of-the-art CMOS temperature sensors can achieve an inaccuracy of the order of 0.1 ∘ C, as shown in [39] and as will be further discussed in Chap. 5.
 
Literatur
1.
Zurück zum Zitat Jespersen J, Fitz-Randolph J (1977) From sundials to atomic clocks: understanding time and frequency. Dover Publications, Inc., New York Jespersen J, Fitz-Randolph J (1977) From sundials to atomic clocks: understanding time and frequency. Dover Publications, Inc., New York
2.
Zurück zum Zitat Lee TH (2008) It’s about time: a brief chronology of chronometry. IEEE Solid State Circ, 13(3):42–49 Lee TH (2008) It’s about time: a brief chronology of chronometry. IEEE Solid State Circ, 13(3):42–49
3.
Zurück zum Zitat IEEE (1999) IEEE standard definitions of physical quantities for fundamental frequency and time metrology – random instabilities, Std. 1139–1999 IEEE (1999) IEEE standard definitions of physical quantities for fundamental frequency and time metrology – random instabilities, Std. 1139–1999
4.
Zurück zum Zitat Razavi B (1998) RF microelectronics. Prentice-Hall, NJ Razavi B (1998) RF microelectronics. Prentice-Hall, NJ
5.
Zurück zum Zitat ITU-T (1997) Definitions and terminology for synchronization networks, Std. G810 ITU-T (1997) Definitions and terminology for synchronization networks, Std. G810
7.
Zurück zum Zitat Courant R, John F (1965) Introduction to calculus and analysis, vol 1. Wiley, NJ, pp 589–591 Courant R, John F (1965) Introduction to calculus and analysis, vol 1. Wiley, NJ, pp 589–591
8.
Zurück zum Zitat Demir A (2006) Computing timing jitter from phase noise spectra for oscillators and phase-locked loops with white and 1/f noise. IEEE Trans Circ Syst I 53(9):1869–1884. DOI 10.1109/TCSI.2006.881184CrossRef Demir A (2006) Computing timing jitter from phase noise spectra for oscillators and phase-locked loops with white and 1/f noise. IEEE Trans Circ Syst I 53(9):1869–1884. DOI 10.1109/TCSI.2006.881184CrossRef
9.
Zurück zum Zitat Liu C, McNeill J (2004) Jitter in oscillators with 1/f noise sources. Proc ISCAS 1:I–773–6. DOI 10.1109/ISCAS.2004.1328309 Liu C, McNeill J (2004) Jitter in oscillators with 1/f noise sources. Proc ISCAS 1:I–773–6. DOI 10.1109/ISCAS.2004.1328309
10.
Zurück zum Zitat Gray PR, Hurst PJ, Lewis SH, Meyer RG (2001) Analysis and design of analog integrated circuits, 4th edn. Wiley, NJ Gray PR, Hurst PJ, Lewis SH, Meyer RG (2001) Analysis and design of analog integrated circuits, 4th edn. Wiley, NJ
11.
Zurück zum Zitat Hastings A (2005) The art of analog layout. Prentice Hall, NJ Hastings A (2005) The art of analog layout. Prentice Hall, NJ
12.
Zurück zum Zitat Ueda N, Nishiyama E, Aota H, Watanabe H (2009) Evaluation of packaging-induced performance change for small-scale analog IC. IEEE Trans Semicond Manuf 22(1):103–109. DOI 10.1109/TSM.2008.2010739CrossRef Ueda N, Nishiyama E, Aota H, Watanabe H (2009) Evaluation of packaging-induced performance change for small-scale analog IC. IEEE Trans Semicond Manuf 22(1):103–109. DOI 10.1109/TSM.2008.2010739CrossRef
13.
Zurück zum Zitat Abesingha B, Rincon-Mora G, Briggs D (2002) Voltage shift in plastic-packaged bandgap references. IEEE Trans Circ Syst I 49(10):681–685. DOI 10.1109/TCSII. 2002.806734CrossRef Abesingha B, Rincon-Mora G, Briggs D (2002) Voltage shift in plastic-packaged bandgap references. IEEE Trans Circ Syst I 49(10):681–685. DOI 10.1109/TCSII. 2002.806734CrossRef
14.
Zurück zum Zitat Ali H (1997) Stress-induced parametric shift in plastic packaged devices. IEEE Trans Comp Packag Manuf Technol B 20(4):458–462CrossRef Ali H (1997) Stress-induced parametric shift in plastic packaged devices. IEEE Trans Comp Packag Manuf Technol B 20(4):458–462CrossRef
15.
Zurück zum Zitat De Smedt V, De Wit P, Vereecken W, Steyaert M (2009) A 66 μW 86 ppm/ ∘ C fully-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid State Circ 44(7):1990–2001. DOI 10.1109/JSSC.2009.2021914CrossRef De Smedt V, De Wit P, Vereecken W, Steyaert M (2009) A 66 μW 86 ppm/ ∘ C fully-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid State Circ 44(7):1990–2001. DOI 10.1109/JSSC.2009.2021914CrossRef
16.
Zurück zum Zitat Lee J, Cho S (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: 2009 Symposium on VLSI Circuits Dig. Tech. Papers, pp 226–227 Lee J, Cho S (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: 2009 Symposium on VLSI Circuits Dig. Tech. Papers, pp 226–227
17.
Zurück zum Zitat Ueno K, Asai T, Amemiya Y (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: Proc. ESSCIRC, pp 226–227 Ueno K, Asai T, Amemiya Y (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: Proc. ESSCIRC, pp 226–227
18.
Zurück zum Zitat Pertijs MA, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, Dordrecht Pertijs MA, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, Dordrecht
19.
Zurück zum Zitat Lane WA, TWrixon G (1989) The design of thin-film polysilicon resistors for analog IC applications. IEEE Trans Electron Dev 36(4):738–744. DOI 10.1109/16.22479 Lane WA, TWrixon G (1989) The design of thin-film polysilicon resistors for analog IC applications. IEEE Trans Electron Dev 36(4):738–744. DOI 10.1109/16.22479
20.
Zurück zum Zitat Lampard D (1957) A new theorem in electrostatics with applications to calculable standards of capacitance. Proc IEE C Monogr 104(6):271–280. DOI 10.1049/pi-c.1957. 0032CrossRef Lampard D (1957) A new theorem in electrostatics with applications to calculable standards of capacitance. Proc IEE C Monogr 104(6):271–280. DOI 10.1049/pi-c.1957. 0032CrossRef
21.
Zurück zum Zitat Thompson A (1959) The cylindrical cross-capacitor as a calculable standard. Proc IEE B Electron Comm Eng 106(27):307–310. DOI 10.1049/pi-b-2.1959.0262 Thompson A (1959) The cylindrical cross-capacitor as a calculable standard. Proc IEE B Electron Comm Eng 106(27):307–310. DOI 10.1049/pi-b-2.1959.0262
22.
Zurück zum Zitat McCreary J (1981) Matching properties, and voltage and temperature dependence of mos capacitors. IEEE J Solid State Circ 16(6):608–616CrossRef McCreary J (1981) Matching properties, and voltage and temperature dependence of mos capacitors. IEEE J Solid State Circ 16(6):608–616CrossRef
23.
Zurück zum Zitat St Onge S, Franz S, Puttlitz A, Kalinoski A, Johnson B, El-Kareh B (1992) Design of precision capacitors for analog applications. IEEE Trans Comp Hybrids Manuf Technol 15(6): 1064–1071. DOI 10.1109/33.206932CrossRef St Onge S, Franz S, Puttlitz A, Kalinoski A, Johnson B, El-Kareh B (1992) Design of precision capacitors for analog applications. IEEE Trans Comp Hybrids Manuf Technol 15(6): 1064–1071. DOI 10.1109/33.206932CrossRef
24.
Zurück zum Zitat Svelto F, Erratico P, Manzini S, Castello R (1999) A metal-oxide-semiconductor varactor. IEEE Electron Dev Lett 20(4):164–166. DOI 10.1109/55.753754CrossRef Svelto F, Erratico P, Manzini S, Castello R (1999) A metal-oxide-semiconductor varactor. IEEE Electron Dev Lett 20(4):164–166. DOI 10.1109/55.753754CrossRef
25.
Zurück zum Zitat Chen KM, Huang GW, Wang SC, Yeh WK, Fang YK, Yang FL (2004) Characterization and modeling of SOI varactors at various temperatures. IEEE Trans Electron Dev 51(3):427–433. DOI 10.1109/TED.2003.822585CrossRef Chen KM, Huang GW, Wang SC, Yeh WK, Fang YK, Yang FL (2004) Characterization and modeling of SOI varactors at various temperatures. IEEE Trans Electron Dev 51(3):427–433. DOI 10.1109/TED.2003.822585CrossRef
26.
Zurück zum Zitat Sedra AS, Smith KC (1998) Microelectronics circuits, 4th edn. Oxford University Press, New York Sedra AS, Smith KC (1998) Microelectronics circuits, 4th edn. Oxford University Press, New York
27.
Zurück zum Zitat Navid R, Lee T, Dutton R (2005) Minimum achievable phase noise of RC oscillators. IEEE J Solid State Circ 40(3):630–637. DOI 10.1109/JSSC.2005.843591CrossRef Navid R, Lee T, Dutton R (2005) Minimum achievable phase noise of RC oscillators. IEEE J Solid State Circ 40(3):630–637. DOI 10.1109/JSSC.2005.843591CrossRef
28.
Zurück zum Zitat Tokunaga Y, Sakiyama S, Matsumoto A, Dosho S (2010) An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J Solid State Circ 45(6):1150–1158CrossRef Tokunaga Y, Sakiyama S, Matsumoto A, Dosho S (2010) An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J Solid State Circ 45(6):1150–1158CrossRef
29.
Zurück zum Zitat McCorquodale MS, O’Day JD, Pernia SM, Carichner GA, Kubba S, Brown RB (2007) A monolithic and self-referenced RF LC clock generator compliant with USB 2.0. IEEE J Solid State Circ 42(2):385–399. DOI 10.1109/JSSC.2006.883337 McCorquodale MS, O’Day JD, Pernia SM, Carichner GA, Kubba S, Brown RB (2007) A monolithic and self-referenced RF LC clock generator compliant with USB 2.0. IEEE J Solid State Circ 42(2):385–399. DOI 10.1109/JSSC.2006.883337
30.
Zurück zum Zitat McCorquodale MS, Pernia SM, O’Day JD, Carichner G, Marsman E, Nguyen N, Kubba S, Nguyen S, Kuhn J, Brown RB (2008) A 0.5-to-480 MHz self-referenced CMOS clock generator with 90 ppm total frequency error and spread-spectrum capability. In: ISSCC Dig. of Tech. Papers, pp 524–525 McCorquodale MS, Pernia SM, O’Day JD, Carichner G, Marsman E, Nguyen N, Kubba S, Nguyen S, Kuhn J, Brown RB (2008) A 0.5-to-480 MHz self-referenced CMOS clock generator with 90 ppm total frequency error and spread-spectrum capability. In: ISSCC Dig. of Tech. Papers, pp 524–525
31.
Zurück zum Zitat McCorquodale M, Carichner G, O’Day J, Pernia S, Kubba S, Marsman E, Kuhn J, Brown R (2009) A 25-MHz self-referenced solid-state frequency source suitable for XO-replacement. IEEE Trans Circ Syst I 56(5):943–956. DOI 10.1109/TCSI.2009. 2016133MathSciNetCrossRef McCorquodale M, Carichner G, O’Day J, Pernia S, Kubba S, Marsman E, Kuhn J, Brown R (2009) A 25-MHz self-referenced solid-state frequency source suitable for XO-replacement. IEEE Trans Circ Syst I 56(5):943–956. DOI 10.1109/TCSI.2009. 2016133MathSciNetCrossRef
32.
Zurück zum Zitat McCorquodale M, Gupta B, Armstrong W, Beaudouin R, Carichner G, Chaudhari P, Fayyaz N, Gaskin N, Kuhn J, Linebarger D, Marsman E, O’Day J, Pernia S, Senderowicz D (2010) A silicon die as a frequency source. In: IEEE International Frequency Control Symp., pp 103–108. DOI 10.1109/FREQ.2010.5556366 McCorquodale M, Gupta B, Armstrong W, Beaudouin R, Carichner G, Chaudhari P, Fayyaz N, Gaskin N, Kuhn J, Linebarger D, Marsman E, O’Day J, Pernia S, Senderowicz D (2010) A silicon die as a frequency source. In: IEEE International Frequency Control Symp., pp 103–108. DOI 10.1109/FREQ.2010.5556366
33.
Zurück zum Zitat Groszkowski J (1964) Frequency of self-oscillations. Pergamon Press, Oxford Groszkowski J (1964) Frequency of self-oscillations. Pergamon Press, Oxford
34.
Zurück zum Zitat Groves R, Harame DL, Jadus D (1997) Temperature dependence of Q and inductance in spiral inductors fabricated in a silicon-germanium/BiCMOS technology. IEEE J Solid State Circ 32(9):1455–1459CrossRef Groves R, Harame DL, Jadus D (1997) Temperature dependence of Q and inductance in spiral inductors fabricated in a silicon-germanium/BiCMOS technology. IEEE J Solid State Circ 32(9):1455–1459CrossRef
35.
Zurück zum Zitat Pouydebasque A, Charbuillet C, Gwoziecki R, Skotnicki T (2007) Refinement of the subthreshold slope modelling for advanced bulk CMOS devices. IEEE Trans Electron Dev 54(10):2723–2729CrossRef Pouydebasque A, Charbuillet C, Gwoziecki R, Skotnicki T (2007) Refinement of the subthreshold slope modelling for advanced bulk CMOS devices. IEEE Trans Electron Dev 54(10):2723–2729CrossRef
36.
Zurück zum Zitat Lee TH (2004) The design of CMOS Radio-frequency integrated circuits, 2nd edn. Cambridge University Press, Cambridge Lee TH (2004) The design of CMOS Radio-frequency integrated circuits, 2nd edn. Cambridge University Press, Cambridge
37.
Zurück zum Zitat Makinwa K, Snoeij M (2006) A CMOS temperature-to-frequency converter with inaccuracy of less than 0.5 ∘ C (3σ) from − 40 ∘ C to 105 ∘ C. IEEE J Solid State Circ 41(12):2992–2997 Makinwa K, Snoeij M (2006) A CMOS temperature-to-frequency converter with inaccuracy of less than 0.5 ∘ C (3σ) from − 40 ∘ C to 105 ∘ C. IEEE J Solid State Circ 41(12):2992–2997
38.
Zurück zum Zitat Kashmiri SM, Pertijs MAP, Makinwa KAA (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ± 0. 1% from − 55 ∘ C to 125 ∘ C. IEEE J Solid State Circ 45(12):2510–2520 Kashmiri SM, Pertijs MAP, Makinwa KAA (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ± 0. 1% from − 55 ∘ C to 125 ∘ C. IEEE J Solid State Circ 45(12):2510–2520
39.
Zurück zum Zitat Makinwa KAA (2010) Smart temperature sensors in standard CMOS. In: Proc. Eurosensors XXIV, pp 930–939 Makinwa KAA (2010) Smart temperature sensors in standard CMOS. In: Proc. Eurosensors XXIV, pp 930–939
40.
Zurück zum Zitat van Vroonhoven C, d’Aquino D, Makinwa K (2010) A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ± 0.2 ∘ C (3σ) from − 55 ∘ C to 125 ∘ C. In: ISSCC Dig. of Tech. Papers, pp 314–315. DOI 10.1109/ISSCC.2010.5433900 van Vroonhoven C, d’Aquino D, Makinwa K (2010) A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ± 0.2 ∘ C (3σ) from − 55 ∘ C to 125 ∘ C. In: ISSCC Dig. of Tech. Papers, pp 314–315. DOI 10.1109/ISSCC.2010.5433900
41.
Zurück zum Zitat Kashmiri S, Xia S, Makinwa K (2009) A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid State Circ 44(7):2026–2035. DOI 10.1109/JSSC.2009.2020248CrossRef Kashmiri S, Xia S, Makinwa K (2009) A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid State Circ 44(7):2026–2035. DOI 10.1109/JSSC.2009.2020248CrossRef
42.
Zurück zum Zitat Kashmiri SM, Souri K, Makinwa KAA (2011) A scaled thermal-diffusivity-based frequency reference in 0.16μm CMOS. In: Proc. ESSCIRC, pp 503–506 Kashmiri SM, Souri K, Makinwa KAA (2011) A scaled thermal-diffusivity-based frequency reference in 0.16μm CMOS. In: Proc. ESSCIRC, pp 503–506
43.
Zurück zum Zitat Kashmiri SM, Pertijs MAP, Makinwa KAA (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ± 0. 1% from − 55 ∘ C to 125 ∘ C. In: ISSCC Dig. of Tech. Papers, pp 74–75 Kashmiri SM, Pertijs MAP, Makinwa KAA (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ± 0. 1% from − 55 ∘ C to 125 ∘ C. In: ISSCC Dig. of Tech. Papers, pp 74–75
44.
Zurück zum Zitat Sundaresan K, Allen P, Ayazi F (2006) Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J Solid State Circ 41(2):433–442CrossRef Sundaresan K, Allen P, Ayazi F (2006) Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J Solid State Circ 41(2):433–442CrossRef
45.
Zurück zum Zitat Paavola M, Laiho M, Saukoski M, Halonen K (2006) A 3 μW, 2 MHz CMOS frequency reference for capacitive sensor applications. In: Proc. ISCAS, pp 4391–4394 Paavola M, Laiho M, Saukoski M, Halonen K (2006) A 3 μW, 2 MHz CMOS frequency reference for capacitive sensor applications. In: Proc. ISCAS, pp 4391–4394
46.
Zurück zum Zitat Ge G, Zhang C, Hoogzaad G, Makinwa K (2010) A single-trim CMOS bandgap reference with a 3σ inaccuracy of ± 0.15% from − 40 ∘ C to 125 ∘ C. In: ISSCC Dig. of Tech. Papers, pp 78–79. DOI 10.1109/ISSCC.2010.5434040 Ge G, Zhang C, Hoogzaad G, Makinwa K (2010) A single-trim CMOS bandgap reference with a 3σ inaccuracy of ± 0.15% from − 40 ∘ C to 125 ∘ C. In: ISSCC Dig. of Tech. Papers, pp 78–79. DOI 10.1109/ISSCC.2010.5434040
47.
Zurück zum Zitat Blauschild R (1994) An integrated time reference. ISSCC Dig. of Tech. Papers, pp 56–57 Blauschild R (1994) An integrated time reference. ISSCC Dig. of Tech. Papers, pp 56–57
48.
Zurück zum Zitat Jiang CL (1988) Temperature compensated monolithic delay circuit, US Patent 4843265 Jiang CL (1988) Temperature compensated monolithic delay circuit, US Patent 4843265
49.
Zurück zum Zitat Tsividis Y (2003) Operation and modeling of the MOS transistor, 2nd edn. Oxford University Press, New York Tsividis Y (2003) Operation and modeling of the MOS transistor, 2nd edn. Oxford University Press, New York
50.
Zurück zum Zitat Nguyen CC (2007) MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelect Freq Contr 54(2):251–270. DOI 10.1109/TUFFC.2007.240CrossRef Nguyen CC (2007) MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelect Freq Contr 54(2):251–270. DOI 10.1109/TUFFC.2007.240CrossRef
51.
Zurück zum Zitat Ruffieux D, Krummenacher F, Pezous A, Spinola-Durante G (2010) Silicon resonator based 3.2 μW real time clock with 10 ppm frequency accuracy. IEEE J Solid State Circ 45(1):224–234. DOI 10.1109/JSSC.2009.2034434 Ruffieux D, Krummenacher F, Pezous A, Spinola-Durante G (2010) Silicon resonator based 3.2 μW real time clock with 10 ppm frequency accuracy. IEEE J Solid State Circ 45(1):224–234. DOI 10.1109/JSSC.2009.2034434
52.
Zurück zum Zitat Perrott M, Pamarti S, Hoffman E, Lee F, Mukherjee S, Lee C, Tsinker V, Perumal S, Soto B, Arumugam N, Garlepp B (2010) A low area, switched-resistor based fractional-n synthesizer applied to a MEMS-based programmable oscillator. IEEE J Solid State Circ 45(12):2566–2581. DOI 10.1109/JSSC.2010.2076570CrossRef Perrott M, Pamarti S, Hoffman E, Lee F, Mukherjee S, Lee C, Tsinker V, Perumal S, Soto B, Arumugam N, Garlepp B (2010) A low area, switched-resistor based fractional-n synthesizer applied to a MEMS-based programmable oscillator. IEEE J Solid State Circ 45(12):2566–2581. DOI 10.1109/JSSC.2010.2076570CrossRef
55.
Zurück zum Zitat Shyu YS, Wu JC (1999) A process and temperature compensated ring oscillator. In: Proc. Asia-Pacific Conference on ASICs, pp 283–286 Shyu YS, Wu JC (1999) A process and temperature compensated ring oscillator. In: Proc. Asia-Pacific Conference on ASICs, pp 283–286
Metadaten
Titel
Fully Integrated Time References
verfasst von
Fabio Sebastiano
Lucien J. Breems
Kofi A. A. Makinwa
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3483-2_3

Neuer Inhalt