Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2013

Open Access 01.12.2013 | Research

Functional equations and inequalities in paranormed spaces

verfasst von: Choonkil Park, Jung Rye Lee

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2013

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of an additive functional equation, a quadratic functional equation, a cubic functional equation and a quartic functional equation in paranormed spaces.
Furthermore, we prove the Hyers-Ulam stability of functional inequalities in paranormed spaces by using the fixed point method and the direct method.
MSC:35A17, 47H10, 39B52, 39B72.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

1 Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers was introduced by Fast [1] and Steinhaus [2] independently, and since then several generalizations and applications of this notion have been investigated by various authors (see [37]). This notion was defined in normed spaces by Kolk [8].
We recall some basic facts concerning Fréchet spaces.
Definition 1.1 [9]
Let X be a vector space. A paranorm P : X [ 0 , ) is a function on X such that
(1)
P ( 0 ) = 0 ;
 
(2)
P ( x ) = P ( x ) ;
 
(3)
P ( x + y ) P ( x ) + P ( y ) (triangle inequality)
 
(4)
If { t n } is a sequence of scalars with t n t and { x n } X with P ( x n x ) 0 , then P ( t n x n t x ) 0 (continuity of multiplication).
 
The pair ( X , P ) is called a paranormed space if P is a paranorm on X.
The paranorm is called total if, in addition, we have
(5)
P ( x ) = 0 implies x = 0 .
 
A Fréchet space is a total and complete paranormed space.
The stability problem of functional equations originated from a question of Ulam [10] concerning the stability of group homomorphisms. Hyers [11] gave the first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [12] for additive mappings and by Rassias [13] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [14] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.
In 1990, Rassias [15] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for p 1 . In 1991, Gajda [16], following the same approach as in Rassias [13], gave an affirmative solution to this question for p > 1 . It was shown by Gajda [16], as well as by Rassias and Šemrl [17], that one cannot prove a Rassias-type theorem when p = 1 (cf. the books of Czerwik [18], Hyers, Isac and Rassias [19]).
The functional equation
f ( x + y ) + f ( x y ) = 2 f ( x ) + 2 f ( y )
(1.1)
is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [20] for mappings f : X Y , where X is a normed space and Y is a Banach space. Cholewa [21] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [22] proved the Hyers-Ulam stability of the quadratic functional equation. The stability problems of several functional equations have been extensively investigated by a number of authors, and there are many interesting results concerning this problem (see [2329]).
In [30], Jun and Kim considered the following cubic functional equation:
1 2 f ( 2 x + y ) + 1 2 f ( 2 x y ) = f ( x + y ) + f ( x y ) + 6 f ( x ) .
(1.2)
It is easy to show that the function f ( x ) = x 3 satisfies the functional equation (1.2), which is called a cubic functional equation, and every solution of the cubic functional equation is said to be a cubic mapping.
In [31], Lee et al. considered the following quartic functional equation:
1 2 f ( 2 x + y ) + 1 2 f ( 2 x y ) = 2 f ( x + y ) + 2 f ( x y ) + 12 f ( x ) 3 f ( y ) .
(1.3)
It is easy to show that the function f ( x ) = x 4 satisfies the functional equation (1.3), which is called a quartic functional equation, and every solution of the quartic functional equation is said to be a quartic mapping.
In [32], Gilányi showed that if f satisfies the functional inequality
2 f ( x ) + 2 f ( y ) f ( x y 1 ) f ( x y ) ,
(1.4)
then f satisfies the Jordan-von Neumann functional equation
2 f ( x ) + 2 f ( y ) = f ( x y ) + f ( x y 1 ) .
See also [33]. Fechner [34] and Gilányi [35] proved the Hyers-Ulam stability of the functional inequality (1.4).
Park, Cho and Han [36] proved the Hyers-Ulam stability of the following functional inequalities:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-198/MediaObjects/13660_2012_Article_647_Equ5_HTML.gif
(1.5)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-198/MediaObjects/13660_2012_Article_647_Equ6_HTML.gif
(1.6)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-198/MediaObjects/13660_2012_Article_647_Equ7_HTML.gif
(1.7)
Throughout this paper, assume that ( X , P ) is a Fréchet space and that ( Y , ) is a Banach space.
In this paper, we prove the Hyers-Ulam stability of the Cauchy additive functional equation, the quadratic functional equation (1.2), the cubic functional equation (1.2) and the quartic functional equation (1.3) in paranormed spaces by using the fixed point method and the direct method.
Furthermore, we prove the Hyers-Ulam stability of the functional inequalities (1.5), (1.6) and (1.7) in paranormed spaces by using the fixed point method and the direct method.

2 Hyers-Ulam stability of the Cauchy additive functional equation

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the Cauchy additive functional equation in paranormed spaces.
Let S be a set. A function m : S × S [ 0 , ] is called a generalized metric on S if m satisfies
(1)
m ( x , y ) = 0 if and only if x = y ;
 
(2)
m ( x , y ) = m ( y , x ) for all x , y S ;
 
(3)
m ( x , z ) m ( x , y ) + m ( y , z ) for all x , y , z S .
 
We recall a fundamental result in fixed point theory.
Theorem 2.1 [37, 38]
Let ( S , m ) be a complete generalized metric space, and let J : S S be a strictly contractive mapping with a Lipschitz constant α < 1 . Then, for each given element x S , either
m ( J n x , J n + 1 x ) =
for all nonnegative integers n or there exists a positive integer n 0 such that
(1)
m ( J n x , J n + 1 x ) < , n n 0 ;
 
(2)
the sequence { J n x } converges to a fixed point y of J;
 
(3)
y is the unique fixed point of J in the set W = { y S m ( J n 0 x , y ) < } ;
 
(4)
m ( y , y ) 1 1 α m ( y , J y ) for all y W .
 
In 1996, Isac and Rassias [39] were the first to provide applications of stability theory of functional equations for the proof of new fixed point theorems with applications. By using fixed point methods, the stability problems of several functional equations have been extensively investigated by a number of authors (see [4044]).
Note that P ( 2 x ) 2 P ( x ) for all x Y .
Theorem 2.2 Let φ : X 2 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y ) 2 α φ ( x 2 , y 2 )
(2.1)
for all x , y X . Let f : X Y be a mapping such that
f ( x + y ) f ( x ) f ( y ) φ ( x , y )
(2.2)
for all x , y X . Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 1 2 2 α φ ( x , x )
(2.3)
for all x X .
Proof Letting y = x in (2.2), we get
f ( 2 x ) 2 f ( x ) φ ( x , x ) ,
and so
f ( x ) 1 2 f ( 2 x ) 1 2 φ ( x , x )
(2.4)
for all x X .
Consider the set
S : = { h : X Y }
and introduce the generalized metric on S:
m ( g , h ) = inf { μ R + : g ( x ) h ( x ) μ φ ( x , x ) , x X } ,
where, as usual, inf ϕ = + . It is easy to show that ( S , m ) is complete (see [[45], Lemma 2.1]).
Now we consider the linear mapping J : S S such that
J h ( x ) : = 1 2 h ( 2 x )
for all x X .
Let g , h S be given such that m ( g , h ) = ε . Since
J g ( x ) J h ( x ) = 1 2 g ( 2 x ) 1 2 h ( 2 x ) α φ ( x , x )
for all x X , m ( g , h ) = ε implies that m ( J g , J h ) α ε . This means that
m ( J g , J h ) α m ( g , h )
for all g , h S .
It follows from (2.4) that m ( f , J f ) 1 2 .
By Theorem 2.1, there exists a mapping A : X Y satisfying the following:
(1)
A is a fixed point of J, i.e.,
A ( 2 x ) = 2 A ( x )
(2.5)
 
for all x X . The mapping A is a unique fixed point of J in the set
M = { g S : m ( f , g ) < } .
This implies that A is a unique mapping satisfying (2.5) such that there exists a μ ( 0 , ) satisfying
f ( x ) A ( x ) μ φ ( x , x )
for all x X ;
(2)
m ( J n f , A ) 0 as n . This implies the equality
lim n 1 2 n f ( 2 n x ) = A ( x )
 
for all x X ;
(3)
m ( f , A ) 1 1 α m ( f , J f ) , which implies the inequality
m ( f , A ) 1 2 2 α .
 
This implies that the inequality (2.3) holds true.
It follows from (2.1) and (2.2) that
A ( x + y ) A ( x ) A ( y ) = lim n 1 2 n f ( 2 n ( x + y ) ) f ( 2 n x ) f ( 2 n y ) lim n 2 n α n 2 n φ ( x , y ) = 0
for all x , y X . So, A ( x + y ) A ( x ) A ( y ) = 0 for all x , y X . Thus A : X Y is an additive mapping, as desired. □
Corollary 2.3 Let r be a positive real number with r < 1 , and let f : X Y be a mapping such that
f ( x + y ) f ( x ) f ( y ) P ( x ) r + P ( y ) r
for all x , y X . Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 2 2 2 r P ( x ) r
(2.6)
for all x X .
Proof Taking φ ( x , y ) = P ( x ) r + P ( y ) r for all x , y X and choosing α = 2 r 1 in Theorem 2.2, we get the desired result. □
Theorem 2.4 Let φ : X 2 [ 0 , ) be a function such that
Φ ( x , y ) : = j = 0 1 2 j φ ( 2 j x , 2 j y ) <
for all x , y X . Let f : X Y be a mapping satisfying (2.2). Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 1 2 Φ ( x , x )
for all x X .
Proof The proof is similar to the proof of [[46], Theorem 2.2]. □
Remark 2.5 Let r < 1 . Letting φ ( x , y ) = P ( x ) r + P ( y ) r for all x , y X in Theorem 2.4, we obtain the inequality (2.6). The proof is given in [[46], Theorem 2.2].
Theorem 2.6 Let φ : Y 2 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y ) α 2 φ ( 2 x , 2 y )
(2.7)
for all x , y Y . Let f : Y X be a mapping such that
P ( f ( x + y ) f ( x ) f ( y ) ) φ ( x , y )
(2.8)
for all x , y Y . Then there exists a unique additive mapping A : Y X such that
P ( f ( x ) A ( x ) ) α 2 2 α φ ( x , x )
(2.9)
for all x Y .
Proof Letting y = x in (2.8), we get
P ( f ( 2 x ) 2 f ( x ) ) φ ( x , x ) ,
and so
P ( f ( x ) 2 f ( x 2 ) ) α 2 φ ( x , x )
(2.10)
for all x Y .
Consider the set
S : = { h : Y X }
and introduce the generalized metric on S:
m ( g , h ) = inf { μ R + : P ( g ( x ) h ( x ) ) μ φ ( x , x ) , x Y } ,
where, as usual, inf ϕ = + . It is easy to show that ( S , m ) is complete (see [[45], Lemma 2.1]).
Now we consider the linear mapping J : S S such that
J h ( x ) : = 2 h ( x 2 )
for all x Y .
Let g , h S be given such that m ( g , h ) = ε . Since
P ( J g ( x ) J h ( x ) ) = P ( 2 g ( x 2 ) 2 h ( x 2 ) ) α φ ( x , x )
for all x Y , m ( g , h ) = ε implies that m ( J g , J h ) α ε . This means that
m ( J g , J h ) α m ( g , h )
for all g , h S .
It follows from (2.10) that m ( f , J f ) α 2 .
By Theorem 2.1, there exists a mapping A : X Y satisfying the following:
(1)
A is a fixed point of J, i.e.,
A ( x 2 ) = 1 2 A ( x )
(2.11)
 
for all x X . The mapping A is a unique fixed point of J in the set
M = { g S : m ( f , g ) < } .
This implies that A is a unique mapping satisfying (2.11) such that there exists a μ ( 0 , ) satisfying
P ( f ( x ) A ( x ) ) μ φ ( x , x )
for all x Y ;
(2)
m ( J n f , A ) 0 as n . This implies the equality
lim n 2 n f ( x 2 n ) = A ( x )
 
for all x Y ;
(3)
m ( f , A ) 1 1 α m ( f , J f ) , which implies the inequality
m ( f , A ) α 2 2 α .
 
This implies that the inequality (2.9) holds true.
It follows from (2.7) and (2.8) that
P ( A ( x + y ) A ( x ) A ( y ) ) = lim n P ( 2 n ( f ( x + y 2 n ) f ( x 2 n ) f ( y 2 n ) ) ) lim n 2 n P ( ( f ( x + y 2 n ) f ( x 2 n ) f ( y 2 n ) ) ) lim n 2 n α n 2 n φ ( x , y ) = 0
for all x , y Y . So, A ( x + y ) A ( x ) A ( y ) = 0 for all x , y Y . Thus A : Y X is an additive mapping, as desired. □
Corollary 2.7 Let r, θ be positive real numbers with r > 1 , and let f : Y X be a mapping such that
P ( f ( x + y ) f ( x ) f ( y ) ) θ ( x r + y r )
for all x , y Y . Then there exists a unique Cauchy additive mapping A : Y X such that
P ( f ( x ) A ( x ) ) 2 θ 2 r 2 x r
(2.12)
for all x Y .
Proof Taking φ ( x , y ) = θ ( x r + y r ) for all x , y X and choosing α = 2 1 r in Theorem 2.6, we get the desired result. □
Theorem 2.8 Let φ : Y 2 [ 0 , ) be a function such that
Φ ( x , y ) : = j = 1 2 j φ ( x 2 j , y 2 j ) <
for all x , y Y . Let f : Y X be a mapping satisfying (2.8). Then there exists a unique Cauchy additive mapping A : Y X such that
P ( f ( x ) A ( x ) ) 1 2 Φ ( x , x )
for all x Y .
Proof The proof is similar to the proof of [[46], Theorem 2.1]. □
Remark 2.9 Let r > 1 . Letting φ ( x , y ) = θ ( x r + y r ) for all x , y X in Theorem 2.8, we obtain the inequality (2.12). The proof is given in [[46], Theorem 2.1].

3 Hyers-Ulam stability of the quadratic functional equation (1.1)

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic functional equation (1.1) in paranormed spaces.
Theorem 3.1 Let φ : X 2 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y ) 4 α φ ( x 2 , y 2 )
for all x , y X . Let f : X Y be a mapping satisfying f ( 0 ) = 0 and
f ( x + y ) + f ( x y ) 2 f ( x ) 2 f ( y ) φ ( x , y )
(3.1)
for all x , y X . Then there exists a unique quadratic mapping Q 2 : X Y such that
f ( x ) Q 2 ( x ) 1 4 4 α φ ( x , x )
for all x X .
Proof Letting y = x in (3.1), we get
f ( 2 x ) 4 f ( x ) φ ( x , x ) ,
and so
f ( x ) 1 4 f ( 2 x ) 1 4 φ ( x , x )
for all x X .
The rest of the proof is similar to the proof of Theorem 2.2. □
Corollary 3.2 Let r be a positive real number with r < 2 , and let f : X Y be a mapping satisfying f ( 0 ) = 0 and
f ( x + y ) + f ( x y ) 2 f ( x ) 2 f ( y ) P ( x ) r + P ( y ) r
for all x , y X . Then there exists a unique quadratic mapping Q 2 : X Y such that
f ( x ) Q 2 ( x ) 2 4 2 r P ( x ) r
(3.2)
for all x X .
Proof Taking φ ( x , y ) = P ( x ) r + P ( y ) r for all x , y X and choosing α = 2 r 2 in Theorem 3.1, we get the desired result. □
Theorem 3.3 Let φ : X 2 [ 0 , ) be a function such that
Φ ( x , y ) : = j = 0 1 4 j φ ( 2 j x , 2 j y ) <
for all x , y X . Let f : X Y be a mapping satisfying f ( 0 ) = 0 and (3.1). Then there exists a unique quadratic mapping Q 2 : X Y such that
f ( x ) Q 2 ( x ) 1 4 Φ ( x , x )
for all x X .
Proof The proof is similar to the proof of [[46], Theorem 3.2]. □
Remark 3.4 Let r < 2 . Letting φ ( x , y ) = P ( x ) r + P ( y ) r for all x , y X in Theorem 3.3, we obtain the inequality (3.2). The proof is given in [[46], Theorem 3.2].
Theorem 3.5 Let φ : Y 2 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y ) α 4 φ ( 2 x , 2 y )
for all x , y Y . Let f : Y X be a mapping satisfying f ( 0 ) = 0 and
P ( f ( x + y ) + f ( x y ) 2 f ( x ) 2 f ( y ) ) φ ( x , y )
(3.3)
for all x , y Y . Then there exists a unique quadratic mapping Q 2 : Y X such that
P ( f ( x ) Q 2 ( x ) ) α 4 4 α φ ( x , x )
for all x Y .
Proof Letting y = x in (3.3), we get
P ( f ( 2 x ) 4 f ( x ) ) φ ( x , x ) ,
and so
P ( f ( x ) 4 f ( x 2 ) ) φ ( x 2 , x 2 ) α 4 φ ( x , x )
for all x Y .
The rest of the proof is similar to the proof of Theorem 2.6. □
Corollary 3.6 Let r, θ be positive real numbers with r > 2 , and let f : Y X be a mapping satisfying f ( 0 ) = 0 and
P ( f ( x + y ) + f ( x y ) 2 f ( x ) 2 f ( y ) ) θ ( x r + y r )
for all x , y Y . Then there exists a unique quadratic mapping Q 2 : Y X such that
P ( f ( x ) Q 2 ( x ) ) 2 θ 2 r 4 x r
(3.4)
for all x Y .
Proof Taking φ ( x , y ) = θ ( x r + y r ) for all x , y X and choosing α = 2 2 r in Theorem 3.5, we get the desired result. □
Theorem 3.7 Let φ : Y 2 [ 0 , ) be a function such that
Φ ( x , y ) : = j = 1 4 j φ ( x 2 j , y 2 j ) <
for all x , y Y . Let f : Y X be a mapping satisfying f ( 0 ) = 0 and (3.3). Then there exists a unique quadratic mapping Q 2 : Y X such that
P ( f ( x ) Q 2 ( x ) ) 1 4 Φ ( x , x )
for all x Y .
Proof The proof is similar to the proof of [[46], Theorem 3.1]. □
Remark 3.8 Let r > 2 . Letting φ ( x , y ) = θ ( x r + y r ) for all x , y X in Theorem 3.7, we obtain the inequality (3.4). The proof is given in [[46], Theorem 3.1].

4 Hyers-Ulam stability of the cubic functional equation (1.2)

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the cubic functional equation (1.2) in paranormed spaces.
Theorem 4.1 Let φ : X 2 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y ) 8 α φ ( x 2 , y 2 )
for all x , y X . Let f : X Y be a mapping such that
1 2 f ( 2 x + y ) + 1 2 f ( 2 x y ) f ( x + y ) f ( x y ) 6 f ( x ) φ ( x , y )
(4.1)
for all x , y X . Then there exists a unique cubic mapping C : X Y such that
f ( x ) C ( x ) 1 8 8 α φ ( x , 0 )
for all x X .
Proof Letting y = 0 in (4.1), we get
f ( 2 x ) 8 f ( x ) φ ( x , 0 ) ,
and so
f ( x ) 1 8 f ( 2 x ) 1 8 φ ( x , 0 )
for all x X .
The rest of the proof is similar to the proof of Theorem 2.2. □
Corollary 4.2 Let r be a positive real number with r < 3 , and let f : Y X be a mapping such that
1 2 f ( 2 x + y ) + 1 2 f ( 2 x y ) f ( x + y ) f ( x y ) 6 f ( x ) P ( x ) r + P ( y ) r
for all x , y X . Then there exists a unique cubic mapping C : Y X such that
P ( f ( x ) C ( x ) ) 1 8 2 r P ( x ) r
(4.2)
for all x Y .
Proof Taking φ ( x , y ) = P ( x ) r + P ( y ) r for all x , y X and choosing α = 2 r 3 in Theorem 4.1, we get the desired result. □
Theorem 4.3 Let φ : X 2 [ 0 , ) be a function such that
Φ ( x , y ) : = j = 0 1 8 j φ ( 2 j x , 2 j y ) <
for all x , y X . Let f : X Y be a mapping satisfying (4.1). Then there exists a unique cubic mapping C : X Y such that
f ( x ) C ( x ) 1 8 Φ ( x , 0 )
for all x X .
Proof The proof is similar to the proof of [[46], Theorem 4.2]. □
Remark 4.4 Let r < 3 . Letting φ ( x , y ) = P ( x ) r + P ( y ) r for all x , y X in Theorem 4.3, we obtain the inequality (4.2). The proof is given in [[46], Theorem 4.2].
Theorem 4.5 Let φ : Y 2 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y ) α 8 φ ( 2 x , 2 y )
for all x , y Y . Let f : Y X be a mapping such that
P ( 1 2 f ( 2 x + y ) + 1 2 f ( 2 x y ) f ( x + y ) f ( x y ) 6 f ( x ) ) φ ( x , y )
(4.3)
for all x , y Y . Then there exists a unique cubic mapping C : Y X such that
P ( f ( x ) C ( x ) ) α 8 8 α φ ( x , 0 )
for all x Y .
Proof Letting y = 0 in (4.3), we get
P ( f ( 2 x ) 8 f ( x ) ) φ ( x , 0 ) ,
and so
P ( f ( x ) 8 f ( x 2 ) ) φ ( x 2 , x 2 ) α 8 φ ( x , 0 )
for all x Y .
The rest of the proof is similar to the proof of Theorem 2.6. □
Corollary 4.6 Let r, θ be positive real numbers with r > 3 , and let f : Y X be a mapping such that
P ( 1 2 f ( 2 x + y ) + 1 2 f ( 2 x y ) f ( x + y ) f ( x y ) 6 f ( x ) ) θ ( x r + y r )
for all x , y Y . Then there exists a unique cubic mapping C : Y X such that
P ( f ( x ) C ( x ) ) θ 2 r 8 x r
(4.4)
for all x Y .
Proof Taking φ ( x , y ) = θ ( x r + y r ) for all x , y X and choosing α = 2 3 r in Theorem 4.5, we get the desired result. □
Theorem 4.7 Let φ : Y 2 [ 0 , ) be a function such that
Φ ( x , y ) : = j = 1 8 j φ ( x 2 j , y 2 j ) <
for all x , y Y . Let f : Y X be a mapping satisfying (4.3). Then there exists a unique cubic mapping C : Y X such that
P ( f ( x ) C ( x ) ) 1 8 Φ ( x , 0 )
for all x Y .
Proof The proof is similar to the proof of [[46], Theorem 4.1]. □
Remark 4.8 Let r > 3 . Letting φ ( x , y ) = θ ( x r + y r ) for all x , y X in Theorem 4.7, we obtain the inequality (4.4). The proof is given in [[46], Theorem 4.1].

5 Hyers-Ulam stability of the quartic functional equation (1.3)

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quartic functional equation (1.3) in paranormed spaces.
Theorem 5.1 Let φ : X 2 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y ) 16 α φ ( x 2 , y 2 )
for all x , y X . Let f : X Y be a mapping satisfying f ( 0 ) = 0 and
1 2 f ( 2 x + y ) + 1 2 f ( 2 x y ) 2 f ( x + y ) 2 f ( x y ) 12 f ( x ) + 3 f ( y ) φ ( x , y )
(5.1)
for all x , y X . Then there exists a unique quartic mapping Q 4 : X Y such that
f ( x ) Q 4 ( x ) 1 16 16 α φ ( x , 0 )
for all x X .
Proof Letting y = 0 in (5.1), we get
f ( 2 x ) 16 f ( x ) φ ( x , 0 ) ,
and so
f ( x ) 1 16 f ( 2 x ) 1 16 φ ( x , 0 )
for all x X .
The rest of the proof is similar to the proof of Theorem 2.2. □
Corollary 5.2 Let r be a positive real number with r < 4 , and let f : Y X be a mapping satisfying f ( 0 ) = 0 and
1 2 f ( 2 x + y ) + 1 2 f ( 2 x y ) 2 f ( x + y ) 2 f ( x y ) 12 f ( x ) + 3 f ( y ) P ( x ) r + P ( y ) r
for all x , y X . Then there exists a unique quartic mapping Q 4 : Y X such that
P ( f ( x ) Q 4 ( x ) ) 1 16 2 r P ( x ) r
(5.2)
for all x Y .
Proof Taking φ ( x , y ) = P ( x ) r + P ( y ) r for all x , y X and choosing α = 2 r 4 in Theorem 5.1, we get the desired result. □
Theorem 5.3 Let φ : X 2 [ 0 , ) be a function such that
Φ ( x , y ) : = j = 0 1 16 j φ ( 2 j x , 2 j y ) <
for all x , y X . Let f : X Y be a mapping satisfying f ( 0 ) = 0 and (5.1). Then there exists a unique quartic mapping Q 4 : X Y such that
f ( x ) Q 4 ( x ) 1 16 Φ ( x , 0 )
for all x X .
Proof The proof is similar to the proof of [[46], Theorem 5.2]. □
Remark 5.4 Let r < 4 . Letting φ ( x , y ) = P ( x ) r + P ( y ) r for all x , y X in Theorem 5.3, we obtain the inequality (5.2). The proof is given in [[46], Theorem 5.2].
Theorem 5.5 Let φ : Y 2 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y ) α 16 φ ( 2 x , 2 y )
for all x , y Y . Let f : Y X be a mapping satisfying f ( 0 ) = 0 and
P ( 1 2 f ( 2 x + y ) + 1 2 f ( 2 x y ) 2 f ( x + y ) 2 f ( x y ) 12 f ( x ) + 3 f ( y ) ) φ ( x , y )
(5.3)
for all x , y Y . Then there exists a unique quartic mapping Q 4 : Y X such that
P ( f ( x ) Q 4 ( x ) ) α 16 16 α φ ( x , 0 )
for all x Y .
Proof Letting y = 0 in (5.3), we get
P ( f ( 2 x ) 16 f ( x ) ) φ ( x , 0 ) ,
and so
P ( f ( x ) 16 f ( x 2 ) ) φ ( x 2 , x 2 ) α 16 φ ( x , 0 )
for all x Y .
The rest of the proof is similar to the proof of Theorem 2.6. □
Corollary 5.6 Let r, θ be positive real numbers with r > 4 , and let f : Y X be a mapping satisfying f ( 0 ) = 0 and
P ( 1 2 f ( 2 x + y ) + 1 2 f ( 2 x y ) 2 f ( x + y ) 2 f ( x y ) 12 f ( x ) + 3 f ( y ) ) θ ( x r + y r )
for all x , y Y . Then there exists a unique quartic mapping Q 4 : Y X such that
P ( f ( x ) Q 4 ( x ) ) θ 2 r 16 x r
(5.4)
for all x Y .
Proof Taking φ ( x , y ) = θ ( x r + y r ) for all x , y X and choosing α = 2 4 r in Theorem 5.5, we get the desired result. □
Theorem 5.7 Let φ : Y 2 [ 0 , ) be a function such that
Φ ( x , y ) : = j = 1 16 j φ ( x 2 j , y 2 j ) <
for all x , y Y . Let f : Y X be a mapping satisfying f ( 0 ) = 0 and (5.3). Then there exists a unique quartic mapping Q 4 : Y X such that
P ( f ( x ) Q 4 ( x ) ) 1 16 Φ ( x , 0 )
for all x Y .
Proof The proof is similar to the proof of [[46], Theorem 5.1]. □
Remark 5.8 Let r > 4 . Letting φ ( x , y ) = θ ( x r + y r ) for all x , y X in Theorem 5.7, we obtain the inequality (5.4). The proof is given in [[46], Theorem 5.1].

6 Stability of a functional inequality associated with a three-variable Jensen additive functional equation

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of a functional inequality associated with a Jordan-von Neumann type three-variable Jensen additive functional equation in paranormed spaces.
Proposition 6.1 [[36], Proposition 2.1]
Let f : X Y be a mapping such that
f ( x ) + f ( y ) + f ( z ) 2 f ( x + y + z 2 )
for all x , y , z X . Then f is Cauchy additive.
Theorem 6.2 Let φ : X 3 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y , z ) 2 α φ ( x 2 , y 2 , z 2 )
(6.1)
for all x , y , z X . Let f : X Y be an odd mapping such that
f ( x ) + f ( y ) + f ( z ) 2 f ( x + y + z 2 ) + φ ( x , y , z )
(6.2)
for all x , y , z X . Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 1 2 2 α φ ( x , x , 2 x )
(6.3)
for all x X .
Proof Letting y = x and z = 2 x in (6.2), we get
2 f ( x ) f ( 2 x ) = 2 f ( x ) + f ( 2 x ) φ ( x , x , 2 x ) ,
and so
f ( x ) 1 2 f ( 2 x ) 1 2 φ ( x , x , 2 x )
(6.4)
for all x X .
Consider the set
S : = { h : X Y }
and introduce the generalized metric on S
m ( g , h ) = inf { μ R + : g ( x ) h ( x ) μ φ ( x , x , 2 x ) , x X } ,
where, as usual, inf ϕ = + . It is easy to show that ( S , m ) is complete (see [[45], Lemma 2.1]).
Now we consider the linear mapping J : S S such that
J h ( x ) : = 1 2 h ( 2 x )
for all x X .
Let g , h S be given such that m ( g , h ) = ε . Since
J g ( x ) J h ( x ) = 1 2 g ( 2 x ) 1 2 h ( 2 x ) α φ ( x , x , 2 x )
for all x X , m ( g , h ) = ε implies that m ( J g , J h ) α ε . This means that
m ( J g , J h ) α m ( g , h )
for all g , h S .
It follows from (6.4) that m ( f , J f ) 1 2 .
By Theorem 2.1, there exists a mapping A : X Y satisfying the following:
(1)
A is a fixed point of J, i.e.,
A ( 2 x ) = 2 A ( x )
(6.5)
 
for all x X . The mapping A is a unique fixed point of J in the set
M = { g S : m ( f , g ) < } .
This implies that A is a unique mapping satisfying (6.5) such that there exists a μ ( 0 , ) satisfying
f ( x ) A ( x ) μ φ ( x , x , 2 x )
for all x X ;
(2)
m ( J n f , A ) 0 as n . This implies the equality
lim n 1 2 n f ( 2 n x ) = A ( x )
 
for all x X ;
(3)
m ( f , A ) 1 1 α m ( f , J f ) , which implies the inequality
m ( f , A ) 1 2 2 α .
 
This implies that the inequality (6.3) holds true.
It follows from (6.1) and (6.2) that
1 2 n f ( 2 n x ) + f ( 2 n y ) + f ( 2 n z ) 1 2 n 2 f ( 2 n ( x + y + z ) 2 ) + 1 2 n φ ( 2 n x , 2 n y , 2 n z ) 1 2 n 2 f ( 2 n ( x + y + z ) 2 ) + 2 n α n 2 n φ ( x , y , z )
(6.6)
for all x , y , z X . Letting n in (6.6), we get
A ( x ) + A ( y ) + A ( z ) 2 A ( x + y + z 2 )
for all x , y , z X . By Proposition 6.1, A : X Y is Cauchy additive, as desired. □
Corollary 6.3 [[47], Theorem 2.2]
Let r be a positive real number with r < 1 , and let f : X Y be an odd mapping such that
f ( x ) + f ( y ) + f ( z ) 2 f ( x + y + z 2 ) + P ( x ) r + P ( y ) r + P ( z ) r
for all x , y , z X . Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 2 + 2 r 2 2 r P ( x ) r
(6.7)
for all x X .
Proof Taking φ ( x , y , z ) = P ( x ) r + P ( y ) r + P ( z ) r for all x , y , z X and choosing α = 2 r 1 in Theorem 6.2, we get the desired result. □
Theorem 6.4 Let φ : X 3 [ 0 , ) be a function such that
Φ ( x , y , z ) : = j = 0 1 2 j φ ( 2 j x , 2 j y , 2 j z ) <
for all x , y , z X . Let f : X Y be an odd mapping satisfying (6.2). Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 1 2 Φ ( x , x , 2 x )
for all x X .
Proof The proof is similar to the proof of [[47], Theorem 2.2]. □
Remark 6.5 Let r < 1 . Letting φ ( x , y , z ) = P ( x ) r + P ( y ) r + P ( z ) r for all x , y X in Theorem 6.4, we obtain the inequality (6.7). The proof is given in [[47], Theorem 2.2].

7 Stability of a functional inequality associated with a three-variable Cauchy additive functional equation

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of a functional inequality associated with a Jordan-von Neumann type three-variable Cauchy additive functional equation in paranormed spaces.
Proposition 7.1 [[36], Proposition 2.2]
Let f : X Y be a mapping such that
f ( x ) + f ( y ) + f ( z ) f ( x + y + z )
for all x , y , z X . Then f is Cauchy additive.
Theorem 7.2 Let φ : X 3 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y , z ) 2 α φ ( x 2 , y 2 , z 2 )
for all x , y , z X . Let f : X Y be an odd mapping such that
f ( x ) + f ( y ) + f ( z ) f ( x + y + z ) + φ ( x , y , z )
(7.1)
for all x , y , z X . Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 1 2 2 α φ ( x , x , 2 x )
for all x X .
Proof Letting y = x and z = 2 x in (7.1), we get
2 f ( x ) f ( 2 x ) = 2 f ( x ) + f ( 2 x ) φ ( x , x , 2 x ) ,
and so
f ( x ) 1 2 f ( 2 x ) 1 2 φ ( x , x , 2 x )
(7.2)
for all x X .
The rest of the proof is similar to the proof of Theorem 6.2. □
Corollary 7.3 [[47], Theorem 3.2]
Let r be a positive real number with r < 1 , and let f : X Y be an odd mapping such that
f ( x ) + f ( y ) + f ( z ) f ( x + y + z ) + P ( x ) r + P ( y ) r + P ( z ) r
for all x , y , z X . Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 2 + 2 r 2 2 r P ( x ) r
(7.3)
for all x X .
Proof Taking φ ( x , y , z ) = P ( x ) r + P ( y ) r + P ( z ) r for all x , y , z X and choosing α = 2 r 1 in Theorem 7.2, we get the desired result. □
Theorem 7.4 Let φ : X 3 [ 0 , ) be a function such that
Φ ( x , y , z ) : = j = 0 1 2 j φ ( 2 j x , 2 j y , 2 j z ) <
for all x , y , z X . Let f : X Y be an odd mapping satisfying (7.1). Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 1 2 Φ ( x , x , 2 x )
for all x X .
Proof The proof is similar to the proof of [[47], Theorem 3.2]. □
Remark 7.5 Let r < 1 . Letting φ ( x , y , z ) = P ( x ) r + P ( y ) r + P ( z ) r for all x , y X in Theorem 7.4, we obtain the inequality (7.3). The proof is given in [[47], Theorem 3.2].

8 Stability of a functional inequality associated with the Cauchy-Jensen functional equation

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of a functional inequality associated with a Jordan-von Neumann type Cauchy-Jensen additive functional equation in paranormed spaces.
Proposition 8.1 [[36], Proposition 2.3]
Let f : X Y be a mapping such that
f ( x ) + f ( y ) + 2 f ( z ) 2 f ( x + y 2 + z )
for all x , y , z X . Then f is Cauchy additive.
Theorem 8.2 Let φ : X 3 [ 0 , ) be a function such that there exists an α < 1 with
φ ( x , y , z ) 2 α φ ( x 2 , y 2 , z 2 )
for all x , y , z X . Let f : X Y be an odd mapping such that
f ( x ) + f ( y ) + 2 f ( z ) 2 f ( x + y 2 + z ) + φ ( x , y , z )
(8.1)
for all x , y , z X . Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 1 2 2 α φ ( 2 x , 0 , x )
for all x X .
Proof Replacing x by 2x and letting y = 0 and z = x in (8.1), we get
2 f ( x ) f ( 2 x ) = 2 f ( x ) + f ( 2 x ) φ ( 2 x , 0 , x )
for all x X .
The rest of the proof is the same as in the proof of Theorem 6.2. □
Corollary 8.3 [[47], Theorem 4.2]
Let r be a positive real number with r < 1 , and let f : X Y be an odd mapping such that
f ( x ) + f ( y ) + 2 f ( z ) 2 f ( x + y 2 + z ) + P ( x ) r + P ( y ) r + P ( z ) r
for all x , y , z X . Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 1 + 2 r 2 2 r P ( x ) r
(8.2)
for all x X .
Proof Taking φ ( x , y , z ) = P ( x ) r + P ( y ) r + P ( z ) r for all x , y , z X and choosing α = 2 r 1 in Theorem 8.2, we get the desired result. □
Theorem 8.4 Let φ : X 3 [ 0 , ) be a function such that
Φ ( x , y , z ) : = j = 0 1 2 j φ ( 2 j x , 2 j y , 2 j z ) <
for all x , y , z X . Let f : X Y be an odd mapping satisfying (8.1). Then there exists a unique Cauchy additive mapping A : X Y such that
f ( x ) A ( x ) 1 2 Φ ( 2 x , 0 , x )
(8.3)
for all x X .
Proof The proof is similar to the proof of [[47], Theorem 4.2]. □
Remark 8.5 Let r < 1 . Letting φ ( x , y , z ) = P ( x ) r + P ( y ) r + P ( z ) r for all x , y X in Theorem 8.4, we obtain the inequality (8.3). The proof is given in [[47], Theorem 4.2].

Acknowledgements

This work was supported by the Daejin University Research Grant in 2013.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.
Literatur
1.
2.
Zurück zum Zitat Steinhaus H: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 1951, 2: 73–74.MathSciNet Steinhaus H: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 1951, 2: 73–74.MathSciNet
4.
Zurück zum Zitat Karakus S: Statistical convergence on probabilistic normed spaces. Math. Commun. 2007, 12: 11–23.MathSciNet Karakus S: Statistical convergence on probabilistic normed spaces. Math. Commun. 2007, 12: 11–23.MathSciNet
5.
6.
Zurück zum Zitat Mursaleen M, Mohiuddine SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math. 2009, 233: 142–149. 10.1016/j.cam.2009.07.005MathSciNetCrossRef Mursaleen M, Mohiuddine SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math. 2009, 233: 142–149. 10.1016/j.cam.2009.07.005MathSciNetCrossRef
7.
Zurück zum Zitat Šalát T: On the statistically convergent sequences of real numbers. Math. Slovaca 1980, 30: 139–150.MathSciNet Šalát T: On the statistically convergent sequences of real numbers. Math. Slovaca 1980, 30: 139–150.MathSciNet
8.
Zurück zum Zitat Kolk E: The statistical convergence in Banach spaces. Tartu ülik. Toim. 1991, 928: 41–52.MathSciNet Kolk E: The statistical convergence in Banach spaces. Tartu ülik. Toim. 1991, 928: 41–52.MathSciNet
9.
Zurück zum Zitat Wilansky A: Modern Methods in Topological Vector Space. McGraw-Hill, New York; 1978. Wilansky A: Modern Methods in Topological Vector Space. McGraw-Hill, New York; 1978.
10.
Zurück zum Zitat Ulam SM: A Collection of the Mathematical Problems. Interscience, New York; 1960. Ulam SM: A Collection of the Mathematical Problems. Interscience, New York; 1960.
11.
Zurück zum Zitat Hyers DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27: 222–224. 10.1073/pnas.27.4.222MathSciNetCrossRef Hyers DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27: 222–224. 10.1073/pnas.27.4.222MathSciNetCrossRef
12.
Zurück zum Zitat Aoki T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2: 64–66. 10.2969/jmsj/00210064CrossRef Aoki T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2: 64–66. 10.2969/jmsj/00210064CrossRef
13.
Zurück zum Zitat Rassias TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72: 297–300. 10.1090/S0002-9939-1978-0507327-1CrossRef Rassias TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72: 297–300. 10.1090/S0002-9939-1978-0507327-1CrossRef
14.
Zurück zum Zitat Gǎvruta P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184: 431–436. 10.1006/jmaa.1994.1211MathSciNetCrossRef Gǎvruta P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184: 431–436. 10.1006/jmaa.1994.1211MathSciNetCrossRef
15.
Zurück zum Zitat Rassias, TM: Problem 16; 2. Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39, 292–293; 309 (1990) Rassias, TM: Problem 16; 2. Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39, 292–293; 309 (1990)
16.
Zurück zum Zitat Gajda Z: On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14: 431–434. 10.1155/S016117129100056XMathSciNetCrossRef Gajda Z: On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14: 431–434. 10.1155/S016117129100056XMathSciNetCrossRef
17.
Zurück zum Zitat Rassias TM, Šemrl P: On the behaviour of mappings which do not satisfy Hyers-Ulam stability. Proc. Am. Math. Soc. 1992, 114: 989–993. 10.1090/S0002-9939-1992-1059634-1CrossRef Rassias TM, Šemrl P: On the behaviour of mappings which do not satisfy Hyers-Ulam stability. Proc. Am. Math. Soc. 1992, 114: 989–993. 10.1090/S0002-9939-1992-1059634-1CrossRef
18.
Zurück zum Zitat Czerwik P: Functional Equations and Inequalities in Several Variables. World Scientific, Singapore; 2002.CrossRef Czerwik P: Functional Equations and Inequalities in Several Variables. World Scientific, Singapore; 2002.CrossRef
19.
Zurück zum Zitat Hyers DH, Isac G, Rassias TM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel; 1998.CrossRef Hyers DH, Isac G, Rassias TM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel; 1998.CrossRef
20.
Zurück zum Zitat Skof F: Proprietà locali e approssimazione di operatori. Rend. Semin. Mat. Fis. Milano 1983, 53: 113–129. 10.1007/BF02924890MathSciNetCrossRef Skof F: Proprietà locali e approssimazione di operatori. Rend. Semin. Mat. Fis. Milano 1983, 53: 113–129. 10.1007/BF02924890MathSciNetCrossRef
21.
Zurück zum Zitat Cholewa PW: Remarks on the stability of functional equations. Aequ. Math. 1984, 27: 76–86. 10.1007/BF02192660MathSciNetCrossRef Cholewa PW: Remarks on the stability of functional equations. Aequ. Math. 1984, 27: 76–86. 10.1007/BF02192660MathSciNetCrossRef
22.
Zurück zum Zitat Czerwik S: On the stability of the quadratic mapping in normed spaces. Abh. Math. Semin. Univ. Hamb. 1992, 62: 59–64. 10.1007/BF02941618MathSciNetCrossRef Czerwik S: On the stability of the quadratic mapping in normed spaces. Abh. Math. Semin. Univ. Hamb. 1992, 62: 59–64. 10.1007/BF02941618MathSciNetCrossRef
23.
Zurück zum Zitat Aczel J, Dhombres J: Functional Equations in Several Variables. Cambridge University Press, Cambridge; 1989.CrossRef Aczel J, Dhombres J: Functional Equations in Several Variables. Cambridge University Press, Cambridge; 1989.CrossRef
24.
Zurück zum Zitat Czerwik S: Stability of Functional Equations of Ulam-Hyers-Rassias Type. Hadronic Press, Palm Harbor; 2003. Czerwik S: Stability of Functional Equations of Ulam-Hyers-Rassias Type. Hadronic Press, Palm Harbor; 2003.
25.
Zurück zum Zitat Eshaghi Gordji M, Savadkouhi MB: Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces. Appl. Math. Lett. 2010, 23: 1198–1202. 10.1016/j.aml.2010.05.011MathSciNetCrossRef Eshaghi Gordji M, Savadkouhi MB: Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces. Appl. Math. Lett. 2010, 23: 1198–1202. 10.1016/j.aml.2010.05.011MathSciNetCrossRef
26.
Zurück zum Zitat Isac G, Rassias TM: On the Hyers-Ulam stability of ψ -additive mappings. J. Approx. Theory 1993, 72: 131–137. 10.1006/jath.1993.1010MathSciNetCrossRef Isac G, Rassias TM: On the Hyers-Ulam stability of ψ -additive mappings. J. Approx. Theory 1993, 72: 131–137. 10.1006/jath.1993.1010MathSciNetCrossRef
27.
Zurück zum Zitat Jun K, Lee Y: A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations. J. Math. Anal. Appl. 2004, 297: 70–86. 10.1016/j.jmaa.2004.04.009MathSciNetCrossRef Jun K, Lee Y: A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations. J. Math. Anal. Appl. 2004, 297: 70–86. 10.1016/j.jmaa.2004.04.009MathSciNetCrossRef
28.
Zurück zum Zitat Jung S: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor; 2001. Jung S: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor; 2001.
29.
Zurück zum Zitat Park C:Homomorphisms between Poisson J C ∗ -algebras. Bull. Braz. Math. Soc. 2005, 36: 79–97. 10.1007/s00574-005-0029-zMathSciNetCrossRef Park C:Homomorphisms between Poisson J C -algebras. Bull. Braz. Math. Soc. 2005, 36: 79–97. 10.1007/s00574-005-0029-zMathSciNetCrossRef
30.
Zurück zum Zitat Jun K, Kim H: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 2002, 274: 867–878. 10.1016/S0022-247X(02)00415-8MathSciNetCrossRef Jun K, Kim H: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 2002, 274: 867–878. 10.1016/S0022-247X(02)00415-8MathSciNetCrossRef
31.
Zurück zum Zitat Lee S, Im S, Hwang I: Quartic functional equations. J. Math. Anal. Appl. 2005, 307: 387–394. 10.1016/j.jmaa.2004.12.062MathSciNetCrossRef Lee S, Im S, Hwang I: Quartic functional equations. J. Math. Anal. Appl. 2005, 307: 387–394. 10.1016/j.jmaa.2004.12.062MathSciNetCrossRef
32.
Zurück zum Zitat Gilányi A: Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequ. Math. 2001, 62: 303–309. 10.1007/PL00000156CrossRef Gilányi A: Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequ. Math. 2001, 62: 303–309. 10.1007/PL00000156CrossRef
33.
Zurück zum Zitat Rätz J: On inequalities associated with the Jordan-von Neumann functional equation. Aequ. Math. 2003, 66: 191–200. 10.1007/s00010-003-2684-8CrossRef Rätz J: On inequalities associated with the Jordan-von Neumann functional equation. Aequ. Math. 2003, 66: 191–200. 10.1007/s00010-003-2684-8CrossRef
34.
Zurück zum Zitat Fechner W: Stability of a functional inequalities associated with the Jordan-von Neumann functional equation. Aequ. Math. 2006, 71: 149–161. 10.1007/s00010-005-2775-9MathSciNetCrossRef Fechner W: Stability of a functional inequalities associated with the Jordan-von Neumann functional equation. Aequ. Math. 2006, 71: 149–161. 10.1007/s00010-005-2775-9MathSciNetCrossRef
35.
Zurück zum Zitat Gilányi A: On a problem by K. Nikodem. Math. Inequal. Appl. 2002, 5: 707–710.MathSciNet Gilányi A: On a problem by K. Nikodem. Math. Inequal. Appl. 2002, 5: 707–710.MathSciNet
36.
Zurück zum Zitat Park C, Cho Y, Han H: Functional inequalities associated with Jordan-von Neumann-type additive functional equations. J. Inequal. Appl. 2007., 2007: Article ID 41820 Park C, Cho Y, Han H: Functional inequalities associated with Jordan-von Neumann-type additive functional equations. J. Inequal. Appl. 2007., 2007: Article ID 41820
37.
Zurück zum Zitat Cădariu L, Radu V: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 2003., 4(1): Article ID 4 Cădariu L, Radu V: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 2003., 4(1): Article ID 4
38.
Zurück zum Zitat Diaz J, Margolis B: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74: 305–309. 10.1090/S0002-9904-1968-11933-0MathSciNetCrossRef Diaz J, Margolis B: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74: 305–309. 10.1090/S0002-9904-1968-11933-0MathSciNetCrossRef
39.
Zurück zum Zitat Isac G, Rassias TM: Stability of ψ -additive mappings: applications to nonlinear analysis. Int. J. Math. Math. Sci. 1996, 19: 219–228. 10.1155/S0161171296000324MathSciNetCrossRef Isac G, Rassias TM: Stability of ψ -additive mappings: applications to nonlinear analysis. Int. J. Math. Math. Sci. 1996, 19: 219–228. 10.1155/S0161171296000324MathSciNetCrossRef
40.
Zurück zum Zitat Cădariu L, Radu V: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 2004, 346: 43–52. Cădariu L, Radu V: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 2004, 346: 43–52.
41.
Zurück zum Zitat Cădariu L, Radu V: Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory Appl. 2008., 2008: Article ID 749392 Cădariu L, Radu V: Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory Appl. 2008., 2008: Article ID 749392
42.
Zurück zum Zitat Park C: Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory Appl. 2007., 2007: Article ID 50175 Park C: Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory Appl. 2007., 2007: Article ID 50175
43.
Zurück zum Zitat Park C: Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach. Fixed Point Theory Appl. 2008., 2008: Article ID 493751 Park C: Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach. Fixed Point Theory Appl. 2008., 2008: Article ID 493751
44.
Zurück zum Zitat Radu V: The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4: 91–96.MathSciNet Radu V: The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4: 91–96.MathSciNet
45.
Zurück zum Zitat Miheţ D, Radu V: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343: 567–572. 10.1016/j.jmaa.2008.01.100MathSciNetCrossRef Miheţ D, Radu V: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343: 567–572. 10.1016/j.jmaa.2008.01.100MathSciNetCrossRef
46.
Zurück zum Zitat Park C, Shin D: Functional equations in paranormed spaces. Adv. Differ. Equ. 2012., 2012: Article ID 123 Park C, Shin D: Functional equations in paranormed spaces. Adv. Differ. Equ. 2012., 2012: Article ID 123
47.
Zurück zum Zitat Lee S, Park C, Lee J: Functional inequalities in paranormed spaces. J. Chungcheong Math. Soc. 2013, 26: 287–296.CrossRef Lee S, Park C, Lee J: Functional inequalities in paranormed spaces. J. Chungcheong Math. Soc. 2013, 26: 287–296.CrossRef
Metadaten
Titel
Functional equations and inequalities in paranormed spaces
verfasst von
Choonkil Park
Jung Rye Lee
Publikationsdatum
01.12.2013
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2013
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2013-198

Weitere Artikel der Ausgabe 1/2013

Journal of Inequalities and Applications 1/2013 Zur Ausgabe

Premium Partner