Skip to main content

2019 | OriginalPaper | Buchkapitel

Functionalized Graphene/Polymer Nanofiber Composites and Their Functional Applications

verfasst von : Hanan Abdali, Abdellah Ajji

Erschienen in: Graphene Functionalization Strategies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofiber composites materials produced by electrospinning may have a very high specific surface area owing to their small diameters, and nanofiber mats can be highly porous with excellent pore interconnection. However, applications using nanofiber composites also require specific properties such as good electrical conductivity, are flame retardant, anti-static and anti-radiative as well. Over the past few decades, the carbon nanomaterial, graphene has been researched widely owing to its intrinsic properties such as large surface area, excellent thermal, electrical, and optical properties in addition to superior chemical and mechanical characteristics needed in specific applications. The chemical functionalization of graphene nanosheet improved its dispersibility in common organic solvents, which is important when developing novel graphene-based nanocomposites. Moreover, graphene may also be functionalized in order to modify its intrinsic characteristics, for example, its electronic properties can be modified to control the conductivity and band gap in nano-electronic devices. Functionalized graphene-based polymer nanofiber composites exhibit a variety of improved, or even new properties such as adsorption performance, anti-bacterial, hydrophobicity and conductivity valued across a wide range of applications in sensors, biosensors, transparent conductive films, high-frequency circuits, toxic material removal, capacitors, spintronic devices, fuel cells, touch screens, flexible electronics and batteries. This book chapter summarizes the recent progress in functionalized graphene-based polymer nanofibers composites, with an emphasis on their applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hassan, M.A., et al.: Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 427, 336–344 (2013)CrossRef Hassan, M.A., et al.: Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 427, 336–344 (2013)CrossRef
2.
Zurück zum Zitat Ma, P.X., Zhang, R.: Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46(1), 60–72 (1999)CrossRef Ma, P.X., Zhang, R.: Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46(1), 60–72 (1999)CrossRef
3.
Zurück zum Zitat Martin, C.R.: Membrane-based synthesis of nanomaterials. Chem. Mater. 8(8), 1739–1746 (1996)CrossRef Martin, C.R.: Membrane-based synthesis of nanomaterials. Chem. Mater. 8(8), 1739–1746 (1996)CrossRef
4.
Zurück zum Zitat Nakata, K., et al.: Poly (ethylene terephthalate) nanofibers made by Sea–Island-type conjugated melt spinning and laser-heated flow drawing. Macromol. Rapid Commun. 28(6), 792–795 (2007)CrossRef Nakata, K., et al.: Poly (ethylene terephthalate) nanofibers made by Sea–Island-type conjugated melt spinning and laser-heated flow drawing. Macromol. Rapid Commun. 28(6), 792–795 (2007)CrossRef
5.
Zurück zum Zitat Drosou, C., Krokida, M., Biliaderis, C.G.: Composite pullulan-whey protein nanofibers made by electrospinning: impact of process parameters on fiber morphology and physical properties. Food Hydrocoll. 77, 726–735 (2018)CrossRef Drosou, C., Krokida, M., Biliaderis, C.G.: Composite pullulan-whey protein nanofibers made by electrospinning: impact of process parameters on fiber morphology and physical properties. Food Hydrocoll. 77, 726–735 (2018)CrossRef
6.
Zurück zum Zitat Kamble, P., et al.: Nanofiber based drug delivery systems for skin: a promising therapeutic approach. J. Drug Deliv. Sci. Technol. 41, 124–133 (2017)CrossRef Kamble, P., et al.: Nanofiber based drug delivery systems for skin: a promising therapeutic approach. J. Drug Deliv. Sci. Technol. 41, 124–133 (2017)CrossRef
7.
Zurück zum Zitat Garg, K., Bowlin, G.L.: Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1), 013403 (2011)CrossRef Garg, K., Bowlin, G.L.: Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1), 013403 (2011)CrossRef
8.
Zurück zum Zitat Theron, S., Zussman, E., Yarin, A.: Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45(6), 2017–2030 (2004)CrossRef Theron, S., Zussman, E., Yarin, A.: Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45(6), 2017–2030 (2004)CrossRef
9.
Zurück zum Zitat Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010)CrossRef Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010)CrossRef
10.
Zurück zum Zitat Teo, W.E., Ramakrishna, S.: A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14), R89 (2006)CrossRef Teo, W.E., Ramakrishna, S.: A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14), R89 (2006)CrossRef
11.
Zurück zum Zitat Cavaliere, S., et al.: Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4(12), 4761–4785 (2011)CrossRef Cavaliere, S., et al.: Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4(12), 4761–4785 (2011)CrossRef
12.
Zurück zum Zitat Reneker, D.H., Chun, I.: Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3), 216 (1996)CrossRef Reneker, D.H., Chun, I.: Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3), 216 (1996)CrossRef
13.
Zurück zum Zitat Ji, X., et al.: Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos. A Appl. Sci. Manuf. 87, 29–45 (2016)CrossRef Ji, X., et al.: Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos. A Appl. Sci. Manuf. 87, 29–45 (2016)CrossRef
14.
Zurück zum Zitat Kuilla, T., et al.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)CrossRef Kuilla, T., et al.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)CrossRef
15.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. In: Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 11–19. World Scientific (2010) Geim, A.K., Novoselov, K.S.: The rise of graphene. In: Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 11–19. World Scientific (2010)
16.
Zurück zum Zitat Service, R.F.: Materials science. Carbon sheets an atom thick give rise to graphene dreams. Science (New York, NY) 324(5929), 875 (2009)CrossRef Service, R.F.: Materials science. Carbon sheets an atom thick give rise to graphene dreams. Science (New York, NY) 324(5929), 875 (2009)CrossRef
17.
Zurück zum Zitat Pan, Y., Sahoo, N.G., Li, L.: The application of graphene oxide in drug delivery. Expert Opin. Drug Deliv. 9(11), 1365–1376 (2012)CrossRef Pan, Y., Sahoo, N.G., Li, L.: The application of graphene oxide in drug delivery. Expert Opin. Drug Deliv. 9(11), 1365–1376 (2012)CrossRef
18.
Zurück zum Zitat Kuila, T., et al.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57(7), 1061–1105 (2012)CrossRef Kuila, T., et al.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57(7), 1061–1105 (2012)CrossRef
19.
Zurück zum Zitat Gao, W.: The chemistry of graphene oxide. In: Graphene Oxide, (pp. 61–95). Springer, Berlin (2015)CrossRef Gao, W.: The chemistry of graphene oxide. In: Graphene Oxide, (pp. 61–95). Springer, Berlin (2015)CrossRef
20.
Zurück zum Zitat Wong, C.H.A., Pumera, M.: Stripping voltammetry at chemically modified graphenes. RSC Adv. 2(14), 6068–6072 (2012)CrossRef Wong, C.H.A., Pumera, M.: Stripping voltammetry at chemically modified graphenes. RSC Adv. 2(14), 6068–6072 (2012)CrossRef
21.
Zurück zum Zitat Szabó, T., et al.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18(11), 2740–2749 (2006)CrossRef Szabó, T., et al.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18(11), 2740–2749 (2006)CrossRef
22.
Zurück zum Zitat Nethravathi, C., et al.: Graphite oxide-intercalated anionic clay and its decomposition to graphene–inorganic material nanocomposites. Langmuir 24(15), 8240–8244 (2008)CrossRef Nethravathi, C., et al.: Graphite oxide-intercalated anionic clay and its decomposition to graphene–inorganic material nanocomposites. Langmuir 24(15), 8240–8244 (2008)CrossRef
23.
Zurück zum Zitat Tung, V.C., et al.: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25 (2009)CrossRef Tung, V.C., et al.: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25 (2009)CrossRef
24.
Zurück zum Zitat Staudenmaier, L.: Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898)CrossRef Staudenmaier, L.: Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898)CrossRef
25.
Zurück zum Zitat Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRef Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRef
26.
Zurück zum Zitat Gao, C., et al.: A green method to fast prepare single-layer graphene oxide. China patent CN104310385A, 28 Jan 2015 (in Chinese) Gao, C., et al.: A green method to fast prepare single-layer graphene oxide. China patent CN104310385A, 28 Jan 2015 (in Chinese)
27.
Zurück zum Zitat Yu, H., et al.: High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016)CrossRef Yu, H., et al.: High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016)CrossRef
28.
Zurück zum Zitat Stankovich, S., et al.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRef Stankovich, S., et al.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRef
29.
Zurück zum Zitat Wang, H., et al.: Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131(29), 9910–9911 (2009)CrossRef Wang, H., et al.: Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131(29), 9910–9911 (2009)CrossRef
30.
Zurück zum Zitat Si, Y., Samulski, E.T.: Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)CrossRef Si, Y., Samulski, E.T.: Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)CrossRef
31.
Zurück zum Zitat Wang, G., et al.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)CrossRef Wang, G., et al.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)CrossRef
32.
Zurück zum Zitat Stankovich, S., et al.: Graphene-based composite materials. Nature 442(7100), 282 (2006)CrossRef Stankovich, S., et al.: Graphene-based composite materials. Nature 442(7100), 282 (2006)CrossRef
33.
Zurück zum Zitat Zhang, J., et al.: Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010)CrossRef Zhang, J., et al.: Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010)CrossRef
34.
Zurück zum Zitat Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)CrossRef Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)CrossRef
35.
Zurück zum Zitat Schniepp, H.C., et al.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)CrossRef Schniepp, H.C., et al.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)CrossRef
36.
Zurück zum Zitat McAllister, M.J., et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRef McAllister, M.J., et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRef
37.
Zurück zum Zitat Steurer, P., et al.: Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30(4–5), 316–327 (2009)CrossRef Steurer, P., et al.: Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30(4–5), 316–327 (2009)CrossRef
38.
Zurück zum Zitat Shen, B., et al.: Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl. Mater. Interfaces 3(8), 3103–3109 (2011)CrossRef Shen, B., et al.: Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl. Mater. Interfaces 3(8), 3103–3109 (2011)CrossRef
39.
Zurück zum Zitat Stankovich, S., et al.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)CrossRef Stankovich, S., et al.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)CrossRef
40.
Zurück zum Zitat Huang, X., et al.: Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012)CrossRef Huang, X., et al.: Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012)CrossRef
41.
Zurück zum Zitat Karousis, N., Tagmatarchis, N., Tasis, D.: Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110(9), 5366–5397 (2010)CrossRef Karousis, N., Tagmatarchis, N., Tasis, D.: Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110(9), 5366–5397 (2010)CrossRef
42.
Zurück zum Zitat Tasis, D., et al.: Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)CrossRef Tasis, D., et al.: Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)CrossRef
43.
Zurück zum Zitat Choi, E.-Y., et al.: Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem. 20(10), 1907–1912 (2010)CrossRef Choi, E.-Y., et al.: Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem. 20(10), 1907–1912 (2010)CrossRef
44.
Zurück zum Zitat Liu, J., et al.: Synthesis, characterization, and multilayer assembly of pH sensitive graphene–polymer nanocomposites. Langmuir 26(12), 10068–10075 (2010)CrossRef Liu, J., et al.: Synthesis, characterization, and multilayer assembly of pH sensitive graphene–polymer nanocomposites. Langmuir 26(12), 10068–10075 (2010)CrossRef
45.
Zurück zum Zitat Liu, J., et al.: Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 20(5), 900–906 (2010)CrossRef Liu, J., et al.: Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 20(5), 900–906 (2010)CrossRef
46.
Zurück zum Zitat Choi, B.G., et al.: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5), 2910–2918 (2010)CrossRef Choi, B.G., et al.: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5), 2910–2918 (2010)CrossRef
47.
Zurück zum Zitat Salavagione, H.J., Gomez, M.A., Martinez, G.: Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42(17), 6331–6334 (2009)CrossRef Salavagione, H.J., Gomez, M.A., Martinez, G.: Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42(17), 6331–6334 (2009)CrossRef
48.
Zurück zum Zitat Liu, Z., et al.: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008)CrossRef Liu, Z., et al.: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008)CrossRef
49.
Zurück zum Zitat Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217 (2009)CrossRef Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217 (2009)CrossRef
50.
Zurück zum Zitat Shan, C., et al.: Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 25(20), 12030–12033 (2009)CrossRef Shan, C., et al.: Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 25(20), 12030–12033 (2009)CrossRef
51.
Zurück zum Zitat Lee, S.H., et al.: Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol. Rapid Commun. 31(3), 281–288 (2010)CrossRef Lee, S.H., et al.: Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol. Rapid Commun. 31(3), 281–288 (2010)CrossRef
52.
Zurück zum Zitat Niyogi, S., et al.: Spectroscopy of covalently functionalized graphene. Nano Lett. 10(10), 4061–4066 (2010)CrossRef Niyogi, S., et al.: Spectroscopy of covalently functionalized graphene. Nano Lett. 10(10), 4061–4066 (2010)CrossRef
53.
Zurück zum Zitat Liu, H., et al.: Photochemical reactivity of graphene. J. Am. Chem. Soc. 131(47), 17099–17101 (2009)CrossRef Liu, H., et al.: Photochemical reactivity of graphene. J. Am. Chem. Soc. 131(47), 17099–17101 (2009)CrossRef
54.
Zurück zum Zitat Vadukumpully, S., et al.: Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale 3(1), 303–308 (2011)CrossRef Vadukumpully, S., et al.: Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale 3(1), 303–308 (2011)CrossRef
55.
Zurück zum Zitat Liu, Y., et al.: Biocompatible graphene oxide-based glucose biosensors. Langmuir 26(9), 6158–6160 (2010)CrossRef Liu, Y., et al.: Biocompatible graphene oxide-based glucose biosensors. Langmuir 26(9), 6158–6160 (2010)CrossRef
56.
Zurück zum Zitat Du, J., Cheng, H.M.: The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 213(10–11), 1060–1077 (2012)CrossRef Du, J., Cheng, H.M.: The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 213(10–11), 1060–1077 (2012)CrossRef
57.
Zurück zum Zitat Abdali, H., Ajji, A.: Preparation of electrospun nanocomposite nanofibers of polyaniline/poly(methyl methacrylate) with amino-functionalized graphene. Polymers 9(9), 453 (2017)CrossRef Abdali, H., Ajji, A.: Preparation of electrospun nanocomposite nanofibers of polyaniline/poly(methyl methacrylate) with amino-functionalized graphene. Polymers 9(9), 453 (2017)CrossRef
58.
Zurück zum Zitat He, H., Gao, C.: General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem. Mater. 22(17), 5054–5064 (2010)CrossRef He, H., Gao, C.: General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem. Mater. 22(17), 5054–5064 (2010)CrossRef
59.
Zurück zum Zitat Jia, L., Liu, J., Wang, H.: Preparation of poly (diallyldimethylammonium chloride)-functionalized graphene and its applications for H2O2 and glucose sensing. Electrochim. Acta 111, 411–418 (2013)CrossRef Jia, L., Liu, J., Wang, H.: Preparation of poly (diallyldimethylammonium chloride)-functionalized graphene and its applications for H2O2 and glucose sensing. Electrochim. Acta 111, 411–418 (2013)CrossRef
60.
Zurück zum Zitat Moayeri, A., Ajji, A.: Fabrication of polyaniline/poly (ethylene oxide)/non-covalently functionalized graphene nanofibers via electrospinning. Synth. Met. 200, 7–15 (2015)CrossRef Moayeri, A., Ajji, A.: Fabrication of polyaniline/poly (ethylene oxide)/non-covalently functionalized graphene nanofibers via electrospinning. Synth. Met. 200, 7–15 (2015)CrossRef
61.
Zurück zum Zitat Rafiee, M.A., et al.: Fracture and fatigue in graphene nanocomposites. Small 6(2), 179–183 (2010)CrossRef Rafiee, M.A., et al.: Fracture and fatigue in graphene nanocomposites. Small 6(2), 179–183 (2010)CrossRef
62.
Zurück zum Zitat Dasari, A., Yu, Z.-Z., Mai, Y.-W.: Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16), 4112–4121 (2009)CrossRef Dasari, A., Yu, Z.-Z., Mai, Y.-W.: Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16), 4112–4121 (2009)CrossRef
63.
Zurück zum Zitat Chatterjee, S., Nüesch, F., Chu, B.: Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers. Chem. Phys. Lett. 557, 92–96 (2013)CrossRef Chatterjee, S., Nüesch, F., Chu, B.: Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers. Chem. Phys. Lett. 557, 92–96 (2013)CrossRef
64.
Zurück zum Zitat Zheng, W., Lu, X., Wong, S.C.: Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 91(5), 2781–2788 (2004)CrossRef Zheng, W., Lu, X., Wong, S.C.: Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 91(5), 2781–2788 (2004)CrossRef
65.
Zurück zum Zitat Hou, W., et al.: Preparation and physico-mechanical properties of amine-functionalized graphene/polyamide 6 nanocomposite fiber as a high performance material. RSC Adv. 4(10), 4848–4855 (2014)CrossRef Hou, W., et al.: Preparation and physico-mechanical properties of amine-functionalized graphene/polyamide 6 nanocomposite fiber as a high performance material. RSC Adv. 4(10), 4848–4855 (2014)CrossRef
66.
Zurück zum Zitat Jiang, L., et al.: Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. J. Appl. Polym. Sci. 118(1), 275–279 (2010)CrossRef Jiang, L., et al.: Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. J. Appl. Polym. Sci. 118(1), 275–279 (2010)CrossRef
67.
Zurück zum Zitat Liang, J., et al.: Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Func. Mater. 19(14), 2297–2302 (2009)CrossRef Liang, J., et al.: Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Func. Mater. 19(14), 2297–2302 (2009)CrossRef
68.
Zurück zum Zitat Chailek, N., et al.: Crosslinking assisted fabrication of ultrafine poly (vinyl alcohol)/functionalized graphene electrospun nanofibers for crystal violet adsorption. J. Appl. Polym. Sci. 135(22), 46318 (2018)CrossRef Chailek, N., et al.: Crosslinking assisted fabrication of ultrafine poly (vinyl alcohol)/functionalized graphene electrospun nanofibers for crystal violet adsorption. J. Appl. Polym. Sci. 135(22), 46318 (2018)CrossRef
69.
Zurück zum Zitat Chen, Y., et al.: Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Eur. Polymer J. 48(6), 1026–1033 (2012)CrossRef Chen, Y., et al.: Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Eur. Polymer J. 48(6), 1026–1033 (2012)CrossRef
70.
Zurück zum Zitat Yu, J., et al.: Permittivity, thermal conductivity and thermal stability of poly (vinylidene fluoride)/graphene nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 18(2), 478–484 (2011)CrossRef Yu, J., et al.: Permittivity, thermal conductivity and thermal stability of poly (vinylidene fluoride)/graphene nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 18(2), 478–484 (2011)CrossRef
71.
Zurück zum Zitat Zhang, H.-B., et al.: The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50(14), 5117–5125 (2012)CrossRef Zhang, H.-B., et al.: The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50(14), 5117–5125 (2012)CrossRef
72.
Zurück zum Zitat Leyva-Porras, C., et al.: EELS analysis of Nylon 6 nanofibers reinforced with nitroxide-functionalized graphene oxide. Carbon 70, 164–172 (2014)CrossRef Leyva-Porras, C., et al.: EELS analysis of Nylon 6 nanofibers reinforced with nitroxide-functionalized graphene oxide. Carbon 70, 164–172 (2014)CrossRef
73.
Zurück zum Zitat Cao, L., et al.: Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering. Mater. Sci. Eng. C 79, 697–701 (2017)CrossRef Cao, L., et al.: Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering. Mater. Sci. Eng. C 79, 697–701 (2017)CrossRef
74.
Zurück zum Zitat Hong-Pei, L., et al.: Electrospinning gelatin/chitosan/hydroxyapatite/graphene oxide composite nanofibers with antibacterial properties. J. Inorg. Mater. 30(5), 516–522 (2015)CrossRef Hong-Pei, L., et al.: Electrospinning gelatin/chitosan/hydroxyapatite/graphene oxide composite nanofibers with antibacterial properties. J. Inorg. Mater. 30(5), 516–522 (2015)CrossRef
75.
Zurück zum Zitat Ardeshirzadeh, B., et al.: Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mater. Sci. Eng. C 48, 384–390 (2015)CrossRef Ardeshirzadeh, B., et al.: Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mater. Sci. Eng. C 48, 384–390 (2015)CrossRef
76.
Zurück zum Zitat Bao, Q., et al.: Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Func. Mater. 20(5), 782–791 (2010)CrossRef Bao, Q., et al.: Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Func. Mater. 20(5), 782–791 (2010)CrossRef
77.
Zurück zum Zitat Ding, B., et al.: Gas sensors based on electrospun nanofibers. Sensors 9(3), 1609–1624 (2009)CrossRef Ding, B., et al.: Gas sensors based on electrospun nanofibers. Sensors 9(3), 1609–1624 (2009)CrossRef
78.
Zurück zum Zitat Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrostat. 35(2–3), 151–160 (1995)CrossRef Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrostat. 35(2–3), 151–160 (1995)CrossRef
79.
Zurück zum Zitat Feng, L., Xie, N., Zhong, J.: Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5), 3919–3945 (2014)CrossRef Feng, L., Xie, N., Zhong, J.: Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5), 3919–3945 (2014)CrossRef
80.
Zurück zum Zitat Zong, X., et al.: Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16), 4403–4412 (2002)CrossRef Zong, X., et al.: Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16), 4403–4412 (2002)CrossRef
81.
Zurück zum Zitat Ramazani, S., Karimi, M.: Electrospinning of poly (ε-caprolactone) solutions containing graphene oxide: effects of graphene oxide content and oxidation level. Polym. Compos. 37(1), 131–140 (2016)CrossRef Ramazani, S., Karimi, M.: Electrospinning of poly (ε-caprolactone) solutions containing graphene oxide: effects of graphene oxide content and oxidation level. Polym. Compos. 37(1), 131–140 (2016)CrossRef
82.
Zurück zum Zitat Zhang, C., et al.: The surface grafting of graphene oxide with poly (ethylene glycol) as a reinforcement for poly (lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J. Mech. Behav. Biomed. Mater. 53, 403–413 (2016)CrossRef Zhang, C., et al.: The surface grafting of graphene oxide with poly (ethylene glycol) as a reinforcement for poly (lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J. Mech. Behav. Biomed. Mater. 53, 403–413 (2016)CrossRef
83.
Zurück zum Zitat Das, S., et al.: Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. J. Appl. Polym. Sci. 128(6), 4040–4046 (2013)CrossRef Das, S., et al.: Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. J. Appl. Polym. Sci. 128(6), 4040–4046 (2013)CrossRef
84.
Zurück zum Zitat Georgakilas, V., et al.: Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016)CrossRef Georgakilas, V., et al.: Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016)CrossRef
85.
Zurück zum Zitat Hsiao, S.-T., et al.: Preparation and characterization of silver nanoparticle-reduced graphene oxide decorated electrospun polyurethane fiber composites with an improved electrical property. Compos. Sci. Technol. 118, 171–177 (2015)CrossRef Hsiao, S.-T., et al.: Preparation and characterization of silver nanoparticle-reduced graphene oxide decorated electrospun polyurethane fiber composites with an improved electrical property. Compos. Sci. Technol. 118, 171–177 (2015)CrossRef
86.
Zurück zum Zitat Chee, W., et al.: Functionalized graphene oxide-reinforced electrospun carbon nanofibers as ultrathin supercapacitor electrode. J. Energy Chem. 26(4), 790–798 (2017)CrossRef Chee, W., et al.: Functionalized graphene oxide-reinforced electrospun carbon nanofibers as ultrathin supercapacitor electrode. J. Energy Chem. 26(4), 790–798 (2017)CrossRef
87.
Zurück zum Zitat Moayeri, A., Ajji, A.: High capacitance carbon nanofibers from poly (acrylonitrile) and poly (vinylpyrrolidone)-functionalized graphene by electrospinning. J. Nanosci. Nanotechnol. 17(3), 1820–1829 (2017)CrossRef Moayeri, A., Ajji, A.: High capacitance carbon nanofibers from poly (acrylonitrile) and poly (vinylpyrrolidone)-functionalized graphene by electrospinning. J. Nanosci. Nanotechnol. 17(3), 1820–1829 (2017)CrossRef
88.
Zurück zum Zitat Scaffaro, R., et al.: Electrospun PCL/GO-g-PEG structures: processing-morphology-properties relationships. Compos. A Appl. Sci. Manuf. 92, 97–107 (2017)CrossRef Scaffaro, R., et al.: Electrospun PCL/GO-g-PEG structures: processing-morphology-properties relationships. Compos. A Appl. Sci. Manuf. 92, 97–107 (2017)CrossRef
89.
Zurück zum Zitat Latif, U., Dickert, F.L.: Graphene hybrid materials in gas sensing applications. Sensors 15(12), 30504–30524 (2015)CrossRef Latif, U., Dickert, F.L.: Graphene hybrid materials in gas sensing applications. Sensors 15(12), 30504–30524 (2015)CrossRef
90.
Zurück zum Zitat Llobet, E.: Gas sensors using carbon nanomaterials: a review. Sens. Actuators B Chem. 179, 32–45 (2013)CrossRef Llobet, E.: Gas sensors using carbon nanomaterials: a review. Sens. Actuators B Chem. 179, 32–45 (2013)CrossRef
91.
Zurück zum Zitat Abideen, Z.U., et al.: Sensing behavior to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers. Sens. Actuators B Chem. 255, 1884–1896 (2018)CrossRef Abideen, Z.U., et al.: Sensing behavior to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers. Sens. Actuators B Chem. 255, 1884–1896 (2018)CrossRef
92.
Zurück zum Zitat Li, L., et al.: Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sens. Actuators B Chem. 252, 17–23 (2017)CrossRef Li, L., et al.: Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sens. Actuators B Chem. 252, 17–23 (2017)CrossRef
93.
Zurück zum Zitat Ali, M.A., et al.: Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl. Mater. Interfaces 8(32), 20570–20582 (2016)CrossRef Ali, M.A., et al.: Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl. Mater. Interfaces 8(32), 20570–20582 (2016)CrossRef
94.
Zurück zum Zitat Sun, Q., et al.: Characteristics of a pentacene thin film transistor with periodic groove patterned poly (methylmethacrylate) dielectrics. Appl. Phys. Lett. 96(10), 41 (2010)CrossRef Sun, Q., et al.: Characteristics of a pentacene thin film transistor with periodic groove patterned poly (methylmethacrylate) dielectrics. Appl. Phys. Lett. 96(10), 41 (2010)CrossRef
95.
Zurück zum Zitat Ratcliff, E.L., Lee, P.A., Armstrong, N.R.: Work function control of hole-selective polymer/ITO anode contacts: an electrochemical doping study. J. Mater. Chem. 20(13), 2672–2679 (2010)CrossRef Ratcliff, E.L., Lee, P.A., Armstrong, N.R.: Work function control of hole-selective polymer/ITO anode contacts: an electrochemical doping study. J. Mater. Chem. 20(13), 2672–2679 (2010)CrossRef
96.
Zurück zum Zitat Yoon, B.-J., et al.: Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate. J. Am. Chem. Soc. 127(23), 8234–8235 (2005)CrossRef Yoon, B.-J., et al.: Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate. J. Am. Chem. Soc. 127(23), 8234–8235 (2005)CrossRef
97.
Zurück zum Zitat Huang, Y.-L., et al.: Self-assembly of silver–graphene hybrid on electrospun polyurethane nanofibers as flexible transparent conductive thin films. Carbon 50(10), 3473–3481 (2012)CrossRef Huang, Y.-L., et al.: Self-assembly of silver–graphene hybrid on electrospun polyurethane nanofibers as flexible transparent conductive thin films. Carbon 50(10), 3473–3481 (2012)CrossRef
98.
Zurück zum Zitat Zhang, L., et al.: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl. Catal. B 201, 470–478 (2017)CrossRef Zhang, L., et al.: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl. Catal. B 201, 470–478 (2017)CrossRef
99.
Zurück zum Zitat Zhang, H., et al.: P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010)CrossRef Zhang, H., et al.: P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010)CrossRef
100.
Zurück zum Zitat Wu, M.-C., et al.: Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res. 4(4), 360–369 (2011)CrossRef Wu, M.-C., et al.: Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res. 4(4), 360–369 (2011)CrossRef
101.
Zurück zum Zitat Lee, H.-G., et al.: Facile synthesis of functionalized graphene-palladium nanoparticle incorporated multicomponent TiO2 composite nanofibers. Mater. Chem. Phys. 154, 125–136 (2015)CrossRef Lee, H.-G., et al.: Facile synthesis of functionalized graphene-palladium nanoparticle incorporated multicomponent TiO2 composite nanofibers. Mater. Chem. Phys. 154, 125–136 (2015)CrossRef
102.
Zurück zum Zitat Abidin, S.N.J.S.Z., et al.: Electropolymerization of poly (3, 4-ethylenedioxythiophene) onto polyvinyl alcohol-graphene quantum dot-cobalt oxide nanofiber composite for high-performance supercapacitor. Electrochim. Acta (2017) Abidin, S.N.J.S.Z., et al.: Electropolymerization of poly (3, 4-ethylenedioxythiophene) onto polyvinyl alcohol-graphene quantum dot-cobalt oxide nanofiber composite for high-performance supercapacitor. Electrochim. Acta (2017)
103.
Zurück zum Zitat Mondal, S., Rana, U., Malik, S.: Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem. Commun. 51(62), 12365–12368 (2015)CrossRef Mondal, S., Rana, U., Malik, S.: Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem. Commun. 51(62), 12365–12368 (2015)CrossRef
104.
Zurück zum Zitat De Faria, A.F., et al.: Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl. Mater. Interfaces 7(23), 12751–12759 (2015)CrossRef De Faria, A.F., et al.: Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl. Mater. Interfaces 7(23), 12751–12759 (2015)CrossRef
105.
Zurück zum Zitat Ding, X., et al.: Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. J. Mater. Chem. A 2(31), 12355–12360 (2014)CrossRef Ding, X., et al.: Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. J. Mater. Chem. A 2(31), 12355–12360 (2014)CrossRef
106.
Zurück zum Zitat Li, S., et al.: One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery. ACS Appl. Mater. Interfaces 6(19), 16679–16686 (2014)CrossRef Li, S., et al.: One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery. ACS Appl. Mater. Interfaces 6(19), 16679–16686 (2014)CrossRef
Metadaten
Titel
Functionalized Graphene/Polymer Nanofiber Composites and Their Functional Applications
verfasst von
Hanan Abdali
Abdellah Ajji
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9057-0_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.