Skip to main content

2018 | OriginalPaper | Buchkapitel

46. Fundamental Equations for Two-Phase Flow in Tubes

verfasst von : Masahiro Kawaji

Erschienen in: Handbook of Thermal Science and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two-phase flow of gas and liquid is often encountered in the design and operation of heat exchangers, oil/gas transport lines, chemical and bioreactors, and mass transfer equipment. The two-phase pressure drop governs the pumping requirement in forced-circulation systems, while the pressure drop dictates the circulation rate and, hence, various system parameters in natural-circulation systems. All three components of pressure drop (gravitational, frictional, and accelerational) are dependent on void fraction or quality, so the design of energy systems and their performance are highly dependent on accurate predictions of both the two-phase pressure drop and void fraction. In this chapter, basic parameters are defined first, followed by descriptions of two-phase flow patterns, flow pattern maps and transition criteria, the conservation equations used in two-phase flow analyses, and the correlations and models available for predicting void fraction and pressure drop in simple flow channel geometries such as circular and noncircular tubes. In particular, advanced two-phase flow models including multidimensional two-fluid models and the constitutive relations for interfacial transfer terms are presented. Examples of two-dimensional and one-dimensional two-fluid models applied to predict radial void fraction distributions in bubbly flow and interfacial wave characteristics in inverted annular flow, respectively, are also described.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Antal SP, Lahey RT Jr, Flaherty JE (1991) Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiphase Flow 17(5):635–652CrossRef Antal SP, Lahey RT Jr, Flaherty JE (1991) Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiphase Flow 17(5):635–652CrossRef
Zurück zum Zitat Armand AA (1946) Resistance to two-phase flow in horizontal tubes. Izv VTI 15(1):16–23 Armand AA (1946) Resistance to two-phase flow in horizontal tubes. Izv VTI 15(1):16–23
Zurück zum Zitat Baker O (1954) Simultaneous flow of oil and gas. Oil Gas J 53:185–195 Baker O (1954) Simultaneous flow of oil and gas. Oil Gas J 53:185–195
Zurück zum Zitat Banerjee S, Chan AMC (1980) Separated flow models – I analysis of the averaged and local instantaneous formulations. Int J Multiphase Flow 6:1–24CrossRef Banerjee S, Chan AMC (1980) Separated flow models – I analysis of the averaged and local instantaneous formulations. Int J Multiphase Flow 6:1–24CrossRef
Zurück zum Zitat Bankoff SG (1960) A variable density single-fluid model for two-phase flow with particular reference to steam-water flow. J Heat Transf 82:265–272CrossRef Bankoff SG (1960) A variable density single-fluid model for two-phase flow with particular reference to steam-water flow. J Heat Transf 82:265–272CrossRef
Zurück zum Zitat Baroczy CJ (1965) A systematic correlation of for two-phase pressure drop. Chem Eng Prog Symp Ser 62(44):232–249 Baroczy CJ (1965) A systematic correlation of for two-phase pressure drop. Chem Eng Prog Symp Ser 62(44):232–249
Zurück zum Zitat Basset AB(1888) On the motion of a sphere in a viscous liquid. Philos Trans Royal Soc London, Ser A Math Phys Sci 179:43–63; also A treatise on hydrodynamics, 1961, Dover, New York, Chap. 22 Basset AB(1888) On the motion of a sphere in a viscous liquid. Philos Trans Royal Soc London, Ser A Math Phys Sci 179:43–63; also A treatise on hydrodynamics, 1961, Dover, New York, Chap. 22
Zurück zum Zitat Beattie DRH, Whalley PB (1982) A simple two-phase frictional pressure drop calculation method. Int J Multiphase Flow 8:83–87CrossRef Beattie DRH, Whalley PB (1982) A simple two-phase frictional pressure drop calculation method. Int J Multiphase Flow 8:83–87CrossRef
Zurück zum Zitat Bergles AE, Roos JP, Bourne JG (1968) Investigation of boiling flow regimes and critical heat flux. NYO-3304-13 Bergles AE, Roos JP, Bourne JG (1968) Investigation of boiling flow regimes and critical heat flux. NYO-3304-13
Zurück zum Zitat Chichitti A, Lombardi C, Silvestri M, Soldaini G, Zavattarelli R (1960) Two-phase cooling experiments – pressure drop, heat transfer and burnout measurement. Energ Nucl 7(6):407–425 Chichitti A, Lombardi C, Silvestri M, Soldaini G, Zavattarelli R (1960) Two-phase cooling experiments – pressure drop, heat transfer and burnout measurement. Energ Nucl 7(6):407–425
Zurück zum Zitat Chisholm D (1973) Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. Int J Heat Mass Transf 16:347–358CrossRef Chisholm D (1973) Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. Int J Heat Mass Transf 16:347–358CrossRef
Zurück zum Zitat Chisholm D, Laird ADK (1958) Two-phase flow in rough tubes. Trans ASME 80(2):276–286 Chisholm D, Laird ADK (1958) Two-phase flow in rough tubes. Trans ASME 80(2):276–286
Zurück zum Zitat Coddington P, Macian R (2002) A study of the performance of void fraction correlations used in the context of drift-flux two-phase flow models. Nucl Eng Design 215:199–216CrossRef Coddington P, Macian R (2002) A study of the performance of void fraction correlations used in the context of drift-flux two-phase flow models. Nucl Eng Design 215:199–216CrossRef
Zurück zum Zitat Collier JG (1972) Convective boiling and condensation. McGraw Hill, London Collier JG (1972) Convective boiling and condensation. McGraw Hill, London
Zurück zum Zitat Collier JG, Thome JR (1994) Convective boiling and condensation. Oxford University Press, New York Collier JG, Thome JR (1994) Convective boiling and condensation. Oxford University Press, New York
Zurück zum Zitat De Jarlais G (1983) An experimental study of inverted annular flow hydrodynamics utilizing an adiabatic simulation. NUREG/CR-3339, ANL-83-44 De Jarlais G (1983) An experimental study of inverted annular flow hydrodynamics utilizing an adiabatic simulation. NUREG/CR-3339, ANL-83-44
Zurück zum Zitat Drew DA, Lahey RT Jr (1987) The virtual mass and lift force on a sphere in rotating and straining inviscid flow. Int J Multiphase Flow 13:113–121CrossRef Drew DA, Lahey RT Jr (1987) The virtual mass and lift force on a sphere in rotating and straining inviscid flow. Int J Multiphase Flow 13:113–121CrossRef
Zurück zum Zitat Dukler AE, Taitel Y (1977) Flow regime transitions for vertical upward gas liquid flow: a preliminary approach through physical modeling. Progress Report No. 1, NUREG-0162 Dukler AE, Taitel Y (1977) Flow regime transitions for vertical upward gas liquid flow: a preliminary approach through physical modeling. Progress Report No. 1, NUREG-0162
Zurück zum Zitat Dukler AE, Wicks M, Cleveland RG (1964) Frictional pressure drop in two-phase flow: an approach through similarity analysis. AICHE J 10:44–51CrossRef Dukler AE, Wicks M, Cleveland RG (1964) Frictional pressure drop in two-phase flow: an approach through similarity analysis. AICHE J 10:44–51CrossRef
Zurück zum Zitat Faghri A, Zhang Y (2006) Transport phenomena in multiphase systems. Elsevier, Burlington Faghri A, Zhang Y (2006) Transport phenomena in multiphase systems. Elsevier, Burlington
Zurück zum Zitat Franca F, Lahey RT (1992) The use of drift-flux techniques for the analysis of horizontal two-phase flows. Int J Multiphase Flow 18(6):787–801CrossRef Franca F, Lahey RT (1992) The use of drift-flux techniques for the analysis of horizontal two-phase flows. Int J Multiphase Flow 18(6):787–801CrossRef
Zurück zum Zitat Friedel L (1977) Momentum exchange and pressure drop. In: Whalley PB (ed) Two-phase flows and heat transfer. Oxford University Press, Oxford Friedel L (1977) Momentum exchange and pressure drop. In: Whalley PB (ed) Two-phase flows and heat transfer. Oxford University Press, Oxford
Zurück zum Zitat Friedel L (1979) Improved friction drop correlations for horizontal and vertical two-phase pipe flow. Paper E2 presented at the European Two-phase Flow Group Meeting, Ispra Friedel L (1979) Improved friction drop correlations for horizontal and vertical two-phase pipe flow. Paper E2 presented at the European Two-phase Flow Group Meeting, Ispra
Zurück zum Zitat Friedel L, Diener R (1998) Reproductive accuracy of selected void fraction correlations for horizontal and vertical up flow. Forsch im Ingenieurwes 64:87–97CrossRef Friedel L, Diener R (1998) Reproductive accuracy of selected void fraction correlations for horizontal and vertical up flow. Forsch im Ingenieurwes 64:87–97CrossRef
Zurück zum Zitat Godbole PV, Tang CC, Ghajar AJ (2011) Comparison of void fraction correlations for different flow patterns in upward vertical two-phase flow. Heat Transf Eng 32(10):843–860CrossRef Godbole PV, Tang CC, Ghajar AJ (2011) Comparison of void fraction correlations for different flow patterns in upward vertical two-phase flow. Heat Transf Eng 32(10):843–860CrossRef
Zurück zum Zitat Govier GW, Aziz K (1972) The flow of complex mixtures in pipes. Van Nostrand Reinhold, New York Govier GW, Aziz K (1972) The flow of complex mixtures in pipes. Van Nostrand Reinhold, New York
Zurück zum Zitat Hasan AR, Kabir CS (1992) Two-phase flow in vertical and inclined annuli. Int J Multiphase Flow 18(2):279–293CrossRef Hasan AR, Kabir CS (1992) Two-phase flow in vertical and inclined annuli. Int J Multiphase Flow 18(2):279–293CrossRef
Zurück zum Zitat Hewitt GF (1982) Flow regimes. “Pressure drop” and “void fraction”, sections 2.1–2.3. In: Hetsroni G (ed) Handbook of multiphase systems. McGraw-Hill, New York Hewitt GF (1982) Flow regimes. “Pressure drop” and “void fraction”, sections 2.1–2.3. In: Hetsroni G (ed) Handbook of multiphase systems. McGraw-Hill, New York
Zurück zum Zitat Hewitt GF, Roberts DN (1969) Studies of two-phase flow patterns by simultaneous X-ray and flash photography. UKAEA Report AERE-M2159 Hewitt GF, Roberts DN (1969) Studies of two-phase flow patterns by simultaneous X-ray and flash photography. UKAEA Report AERE-M2159
Zurück zum Zitat Hubbard MG, Dukler AE (1966) The characterization of flow regimes for horizontal two-phase flow. In: Saad MA, Miller JA (eds) Proceedings of the 1966 heat transfer and fluid mechanics institute, Stanford University Press, Palo Alto, pp 100–121 Hubbard MG, Dukler AE (1966) The characterization of flow regimes for horizontal two-phase flow. In: Saad MA, Miller JA (eds) Proceedings of the 1966 heat transfer and fluid mechanics institute, Stanford University Press, Palo Alto, pp 100–121
Zurück zum Zitat Idzinga W, Todreas N, Bowring R (1977) An assessment of two-phase pressure drop correlations for steam-water systems. Int J Multiphase Flow 3:401–413CrossRef Idzinga W, Todreas N, Bowring R (1977) An assessment of two-phase pressure drop correlations for steam-water systems. Int J Multiphase Flow 3:401–413CrossRef
Zurück zum Zitat Ishii M (1975) Thermo-fluid dynamic theory of two-phase flow. Eyrolles, ParisMATH Ishii M (1975) Thermo-fluid dynamic theory of two-phase flow. Eyrolles, ParisMATH
Zurück zum Zitat Ishii M (1977) One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. ANL Report ANL-77-47 Ishii M (1977) One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. ANL Report ANL-77-47
Zurück zum Zitat Ishii M, Chawla TC (1979) Local drag laws in dispersed two-phase flow. ANL-79-105, NUREG/CR-1230 Ishii M, Chawla TC (1979) Local drag laws in dispersed two-phase flow. ANL-79-105, NUREG/CR-1230
Zurück zum Zitat Ishii M, De Jarlais G (1986) Flow regime transition and interfacial characteristics of inverted annular flow. Nucl Eng Des 95:171–184CrossRef Ishii M, De Jarlais G (1986) Flow regime transition and interfacial characteristics of inverted annular flow. Nucl Eng Des 95:171–184CrossRef
Zurück zum Zitat Ishii M, Mishima K (1980) Study of two-fluid model and interfacial area. Argonne National Laboratory Report, ANL-80-111, NUREG/CR-1873 Ishii M, Mishima K (1980) Study of two-fluid model and interfacial area. Argonne National Laboratory Report, ANL-80-111, NUREG/CR-1873
Zurück zum Zitat Ishii M, Mishima K (1984) Two-fluid model and hydrodynamic constitutive relations. Nucl Eng Des 82:107–126CrossRef Ishii M, Mishima K (1984) Two-fluid model and hydrodynamic constitutive relations. Nucl Eng Des 82:107–126CrossRef
Zurück zum Zitat Ishii M, Zuber N (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AICHE J 25:843–855CrossRef Ishii M, Zuber N (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AICHE J 25:843–855CrossRef
Zurück zum Zitat Ishii M, Kim S, Uhle J (2002) Interfacial area transport equation: model development and benchmark experiments. Int J Heat Mass Transf 45(15):3111–3123CrossRef Ishii M, Kim S, Uhle J (2002) Interfacial area transport equation: model development and benchmark experiments. Int J Heat Mass Transf 45(15):3111–3123CrossRef
Zurück zum Zitat Ishii M, Kim S, Kelly J (2005) Development of interfacial area transport equation. Nucl Eng Technol 37(6):525–536 Ishii M, Kim S, Kelly J (2005) Development of interfacial area transport equation. Nucl Eng Technol 37(6):525–536
Zurück zum Zitat Jones OC, Zuber N (1975) The interrelation between void fraction fluctuations and flow patterns in two-phase flow. Int J Multiphase Flow 2:273–306CrossRef Jones OC, Zuber N (1975) The interrelation between void fraction fluctuations and flow patterns in two-phase flow. Int J Multiphase Flow 2:273–306CrossRef
Zurück zum Zitat Kawaji M, Banerjee S (1987) Application of a multifield model to reflooding of a hot vertical tube, part 1. Model structure and interfacial phenomena. J Heat Transf 109(1):204–211CrossRef Kawaji M, Banerjee S (1987) Application of a multifield model to reflooding of a hot vertical tube, part 1. Model structure and interfacial phenomena. J Heat Transf 109(1):204–211CrossRef
Zurück zum Zitat Kawaji M, Anoda Y, Nakamura H, Tasaka T (1987) Phase and velocity distributions and holdup in high-pressure steam/water stratified flow in a large diameter horizontal pipe. Int J Multiphase Flow 13(2):145–159CrossRef Kawaji M, Anoda Y, Nakamura H, Tasaka T (1987) Phase and velocity distributions and holdup in high-pressure steam/water stratified flow in a large diameter horizontal pipe. Int J Multiphase Flow 13(2):145–159CrossRef
Zurück zum Zitat Kim S, Ishii M, Sun X, Beus SG (2002) Interfacial area transport and evaluation of source terms for confined air water bubbly flow. Nucl Eng Des 219(1):61–65CrossRef Kim S, Ishii M, Sun X, Beus SG (2002) Interfacial area transport and evaluation of source terms for confined air water bubbly flow. Nucl Eng Des 219(1):61–65CrossRef
Zurück zum Zitat Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area transport equation and its closure relation. Int J Heat Mass Transf 38(3):481–493CrossRef Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area transport equation and its closure relation. Int J Heat Mass Transf 38(3):481–493CrossRef
Zurück zum Zitat Koizumi Y, Yamamoto N, Tasaka K (1990) Air/water two-phase flow in a horizontal large-diameter pipe (1st Report, Flow regime). Trans. JSME 56(532, B):3745–3749CrossRef Koizumi Y, Yamamoto N, Tasaka K (1990) Air/water two-phase flow in a horizontal large-diameter pipe (1st Report, Flow regime). Trans. JSME 56(532, B):3745–3749CrossRef
Zurück zum Zitat Lahey RT Jr, Lopez de Bertodano M, Jones OC Jr (1993) Phase distribution incomplex geometry conduits. Nucl Eng Des 141:117–201 Lahey RT Jr, Lopez de Bertodano M, Jones OC Jr (1993) Phase distribution incomplex geometry conduits. Nucl Eng Des 141:117–201
Zurück zum Zitat Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge, UKMATH Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge, UKMATH
Zurück zum Zitat Liu TJ, Bankoff SG (1993) Structure of air-water bubbly flow in a vertical pipe – II. Void fraction, bubble velocity and bubble size distribution. Int J Heat Mass Transf 36:1061–1072CrossRef Liu TJ, Bankoff SG (1993) Structure of air-water bubbly flow in a vertical pipe – II. Void fraction, bubble velocity and bubble size distribution. Int J Heat Mass Transf 36:1061–1072CrossRef
Zurück zum Zitat Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog 45:39–48 Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog 45:39–48
Zurück zum Zitat Mandhane JM, Gregory GA, Aziz K (1974) Critical evaluation of holdup prediction methods for gas–liquid flow in horizontal pipes. J Pet Technol 27:1017–1026CrossRef Mandhane JM, Gregory GA, Aziz K (1974) Critical evaluation of holdup prediction methods for gas–liquid flow in horizontal pipes. J Pet Technol 27:1017–1026CrossRef
Zurück zum Zitat Martinelli RC, Nelson DB (1948) Prediction of pressure drop during forced-circulation boiling of water. Trans ASME 70:695–702 Martinelli RC, Nelson DB (1948) Prediction of pressure drop during forced-circulation boiling of water. Trans ASME 70:695–702
Zurück zum Zitat McAdams WH, Wood WK, Bryan RL (1942) Vaporization inside horizontal tubes: II, benzene-oil mixtures. Trans ASME 64:193–200 McAdams WH, Wood WK, Bryan RL (1942) Vaporization inside horizontal tubes: II, benzene-oil mixtures. Trans ASME 64:193–200
Zurück zum Zitat Mei R, Adrian RJ, Hanratty J (1991) Particle dispersion in isotropic turbulence under stokes drag and Basset force with gravitational settling. J Fluid Mech 225:481–495CrossRef Mei R, Adrian RJ, Hanratty J (1991) Particle dispersion in isotropic turbulence under stokes drag and Basset force with gravitational settling. J Fluid Mech 225:481–495CrossRef
Zurück zum Zitat Michaelides EE (1997) Review-the transient equation of motion for particles, bubbles and droplets. J Fluids Eng 119:233–247CrossRef Michaelides EE (1997) Review-the transient equation of motion for particles, bubbles and droplets. J Fluids Eng 119:233–247CrossRef
Zurück zum Zitat Mishima K, Ishii M (1984) Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transf 27(5):723–737CrossRef Mishima K, Ishii M (1984) Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transf 27(5):723–737CrossRef
Zurück zum Zitat Müller-Steinhagen H, Heck K (1986) A simple friction pressure correlation for two-phase flow in pipes. Chem Eng Process 20:297–308CrossRef Müller-Steinhagen H, Heck K (1986) A simple friction pressure correlation for two-phase flow in pipes. Chem Eng Process 20:297–308CrossRef
Zurück zum Zitat Nakoryakov VE, Kashinskii ON, Koz’myenko BK, Goryelik RS (1986) Study of upward bubbly flow at low liquid velocities. Izv Sib otdel Akad nauk SSSR 16:15–20 Nakoryakov VE, Kashinskii ON, Koz’myenko BK, Goryelik RS (1986) Study of upward bubbly flow at low liquid velocities. Izv Sib otdel Akad nauk SSSR 16:15–20
Zurück zum Zitat Nigmatulin RI (1979) Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int J Multiphase Flow 4:353–385CrossRef Nigmatulin RI (1979) Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int J Multiphase Flow 4:353–385CrossRef
Zurück zum Zitat Noghrehkar GR, Kawaji M, Chan AMC (1999) Investigation of two-phase flow regimes in tube bundles under cross-flow conditions. Int J Multiphase Flow 25:857–874CrossRef Noghrehkar GR, Kawaji M, Chan AMC (1999) Investigation of two-phase flow regimes in tube bundles under cross-flow conditions. Int J Multiphase Flow 25:857–874CrossRef
Zurück zum Zitat Oshinowo T, Charles ME (1974) Vertical two-phase flow: part 11. Holdup and pressure drop. Can J Chem Eng 56:438–448CrossRef Oshinowo T, Charles ME (1974) Vertical two-phase flow: part 11. Holdup and pressure drop. Can J Chem Eng 56:438–448CrossRef
Zurück zum Zitat Owens WL (1961) Two-phase pressure gradient. ASME Int Develop Heat Transf Part II 363–368 Owens WL (1961) Two-phase pressure gradient. ASME Int Develop Heat Transf Part II 363–368
Zurück zum Zitat Rouhani SZ, Axelsson E (1970) Calculation of void volume fraction in the sub cooled and quality boiling regions. Int J Heat Mass Transf 13:383–393CrossRef Rouhani SZ, Axelsson E (1970) Calculation of void volume fraction in the sub cooled and quality boiling regions. Int J Heat Mass Transf 13:383–393CrossRef
Zurück zum Zitat Rouhani SZ, Sohal MS (1983) Two-phase flow patterns: a review of research results. Prog Nucl Energy 11(3):219–259CrossRef Rouhani SZ, Sohal MS (1983) Two-phase flow patterns: a review of research results. Prog Nucl Energy 11(3):219–259CrossRef
Zurück zum Zitat Saadatomi M, Sato Y, Saruwatari S (1982) Two-phase flow in vertical non-circular channels. Int J Multiphase Flow 8(6):641–655CrossRef Saadatomi M, Sato Y, Saruwatari S (1982) Two-phase flow in vertical non-circular channels. Int J Multiphase Flow 8(6):641–655CrossRef
Zurück zum Zitat Sadatomi M, Kawaji M, Lorencez CM, Chang T (1993) Prediction of liquid level distribution in horizontal gas-liquid stratified flows with interfacial level gradient. Int J Multiphase Flow 19(6):987–997CrossRef Sadatomi M, Kawaji M, Lorencez CM, Chang T (1993) Prediction of liquid level distribution in horizontal gas-liquid stratified flows with interfacial level gradient. Int J Multiphase Flow 19(6):987–997CrossRef
Zurück zum Zitat Sato Y, Sadatomi M (1986) Two-phase flow in vertical non-circular channels. In: Cheremisinoff NP (ed) Encyclopedia of fluid mechanics, vol 3. Gulf Publishing, Houston, pp 651–664 Sato Y, Sadatomi M (1986) Two-phase flow in vertical non-circular channels. In: Cheremisinoff NP (ed) Encyclopedia of fluid mechanics, vol 3. Gulf Publishing, Houston, pp 651–664
Zurück zum Zitat Serizawa A, Kataoka I, Michiyoshi I (1975) Turbulence structure of air-water bubbly flow, part II: local properties. Int J Multiphase Flow 2:235–246CrossRef Serizawa A, Kataoka I, Michiyoshi I (1975) Turbulence structure of air-water bubbly flow, part II: local properties. Int J Multiphase Flow 2:235–246CrossRef
Zurück zum Zitat Stuhmiller JH (1977) The influence of interfacial pressure on the character of two-phase flow model equations. Int J Multiphase Flow 3:551–560CrossRef Stuhmiller JH (1977) The influence of interfacial pressure on the character of two-phase flow model equations. Int J Multiphase Flow 3:551–560CrossRef
Zurück zum Zitat Taitel Y, Dukler AE (1976a) A model for predicting flow regime transition in horizontal and near horizontal gas-liquid flow. AICHE J 22:47–55CrossRef Taitel Y, Dukler AE (1976a) A model for predicting flow regime transition in horizontal and near horizontal gas-liquid flow. AICHE J 22:47–55CrossRef
Zurück zum Zitat Taitel Y, Dukler AE (1976b) A theoretical approach to the Lockhart-Martinelli correlation for stratified flow. Int J Multiphase Flow 2:591–595CrossRef Taitel Y, Dukler AE (1976b) A theoretical approach to the Lockhart-Martinelli correlation for stratified flow. Int J Multiphase Flow 2:591–595CrossRef
Zurück zum Zitat Taitel Y, Bornea D, Dukler AE (1980) Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AICHE J 26(3):345–354CrossRef Taitel Y, Bornea D, Dukler AE (1980) Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AICHE J 26(3):345–354CrossRef
Zurück zum Zitat Thom JRS (1964) Prediction of pressure drop during forced circulation boiling of water. Int J Heat Mass Transf 7:709–724CrossRef Thom JRS (1964) Prediction of pressure drop during forced circulation boiling of water. Int J Heat Mass Transf 7:709–724CrossRef
Zurück zum Zitat Tomiyama A, Kataoka I, Zun I, Sakaguchi T (1998) Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Int J, Ser B 41(2):472–479CrossRef Tomiyama A, Kataoka I, Zun I, Sakaguchi T (1998) Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Int J, Ser B 41(2):472–479CrossRef
Zurück zum Zitat Tomiyama A, Tamai H, Zun I, Hosokawa S (2002) Transverse migration of single bubbles in simple shear flows. Chem Eng Sci 57:1849–1858CrossRef Tomiyama A, Tamai H, Zun I, Hosokawa S (2002) Transverse migration of single bubbles in simple shear flows. Chem Eng Sci 57:1849–1858CrossRef
Zurück zum Zitat Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York
Zurück zum Zitat Wang X, Sun X (2010) Three-dimensional simulations of air–water bubbly flows. Int J Multiphase Flow 36:882–890CrossRef Wang X, Sun X (2010) Three-dimensional simulations of air–water bubbly flows. Int J Multiphase Flow 36:882–890CrossRef
Zurück zum Zitat Weisman J, Duncan D, Gibson J, Crawford T (1979) Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines. Int J Multiphase Flow 5:437–462CrossRef Weisman J, Duncan D, Gibson J, Crawford T (1979) Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines. Int J Multiphase Flow 5:437–462CrossRef
Zurück zum Zitat Woldesemayat MA, Ghajar AJ (2007) Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int J Multiphase Flow 33:347–370CrossRef Woldesemayat MA, Ghajar AJ (2007) Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int J Multiphase Flow 33:347–370CrossRef
Zurück zum Zitat Wu Q, Kim S, Ishii M, Beus SG (1998) One-group interfacial area transport in vertical bubbly flow. Int J Heat Mass Transf 41(8–9):1103–1112CrossRef Wu Q, Kim S, Ishii M, Beus SG (1998) One-group interfacial area transport in vertical bubbly flow. Int J Heat Mass Transf 41(8–9):1103–1112CrossRef
Zurück zum Zitat Zuber N (1964) On the dispersed flow in the laminar flow regime. Chem Eng Sci 19:897–917CrossRef Zuber N (1964) On the dispersed flow in the laminar flow regime. Chem Eng Sci 19:897–917CrossRef
Zurück zum Zitat Zuber N, Findlay JA (1965) Average volumetric concentration in two-phase flow systems. J Heat Transf 87:453–468CrossRef Zuber N, Findlay JA (1965) Average volumetric concentration in two-phase flow systems. J Heat Transf 87:453–468CrossRef
Zurück zum Zitat Zun I (1980) The transverse migration of bubbles influenced by walls in vertical bubbly flow. Int J Multiphase Flow 6:583–588CrossRef Zun I (1980) The transverse migration of bubbles influenced by walls in vertical bubbly flow. Int J Multiphase Flow 6:583–588CrossRef
Metadaten
Titel
Fundamental Equations for Two-Phase Flow in Tubes
verfasst von
Masahiro Kawaji
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_46

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.