Skip to main content

2011 | OriginalPaper | Buchkapitel

2. Fundamentals of ISCO Using Hydrogen Peroxide

verfasst von : Benjamin G. Petri, Richard J. Watts, Amy L. Teel, Scott G. Huling, Richard A. Brown

Erschienen in: In Situ Chemical Oxidation for Groundwater Remediation

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Scope

Chemistry and use of hydrogen peroxide for in situ chemical oxidation (ISCO) of subsurface contaminants, including free radical and other reaction mechanisms, catalysts, and reactive transport.

Key Concepts

  • Hydrogen peroxide reaction chemistry is complex, but potentially capable of degrading a wide range of organic contaminants depending on conditions.
  • Ferrous [Fe(II)] and ferric [Fe(III)] iron, iron and manganese soil minerals, and other metals in solution may catalyze hydrogen peroxide to form free radicals. These catalysts may be naturally present in the matrix, or added during ISCO to augment the reaction.
  • pH has a strong effect on hydrogen peroxide chemistry and effectiveness. pH impacts catalyst solubility and reactivity towards hydrogen peroxide, as well as the radicals formed and the degradation of target contaminants. Some hydrogen peroxide applications include the injection of amendments (acids or alkalis) to modify pH to an optimal range.
  • Radicals known to play significant roles in hydrogen peroxide chemistry include the hydroxyl radical (OH⋅), superoxide radical (O2), and perhydroxyl radical (HO2⋅).
  • Different radicals dominate the reaction under different chemistry conditions, and are controlled by parameters such as concentration of the oxidant, catalyst, organic or inorganic solutes, and pH. This can affect performance as some contaminants may only degrade under specific chemistry conditions.
  • Carbonate, bicarbonate, chloride, other inorganic ions, and hydrogen peroxide itself are reactive with radicals and may affect reaction efficiency and effectiveness.
  • The lifetime of hydrogen peroxide in the subsurface is short, generally hours to days.
  • The reactive transport of hydrogen peroxide in the subsurface is limited, primarily because of its fast reaction rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ACC (American Chemistry Council). 2003. Phosgene: Robust Summaries. 201-14578B. Submitted by the Phosgene Panel, ACC, Arlington, VA, USA to the U.S. Environmental Protection Agency (USEPA) High Production Volume Challenge Program. 24 pp. ACC (American Chemistry Council). 2003. Phosgene: Robust Summaries. 201-14578B. Submitted by the Phosgene Panel, ACC, Arlington, VA, USA to the U.S. Environmental Protection Agency (USEPA) High Production Volume Challenge Program. 24 pp.
Zurück zum Zitat Afanas’ev IB. 1989. Superoxide Ion: Chemistry and Biological Implications. CRC Press, Boca Raton, FL. 296 pp. Afanas’ev IB. 1989. Superoxide Ion: Chemistry and Biological Implications. CRC Press, Boca Raton, FL. 296 pp.
Zurück zum Zitat Anipsitakis GP, Dionysiou DD. 2004. Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712.CrossRef Anipsitakis GP, Dionysiou DD. 2004. Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712.CrossRef
Zurück zum Zitat Baciocchi R, Boni MR, D’Aprile L. 2003. Hydrogen peroxide lifetime as an indicator of the efficiency of 3-chlorophenol Fenton’s and Fenton-like oxidation in soils. J Hazard Mater 96:305–329.CrossRef Baciocchi R, Boni MR, D’Aprile L. 2003. Hydrogen peroxide lifetime as an indicator of the efficiency of 3-chlorophenol Fenton’s and Fenton-like oxidation in soils. J Hazard Mater 96:305–329.CrossRef
Zurück zum Zitat Baciocchi R, Boni MR, D’Aprile LD. 2004. Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils. J Hazard Mater 107:97–102.CrossRef Baciocchi R, Boni MR, D’Aprile LD. 2004. Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils. J Hazard Mater 107:97–102.CrossRef
Zurück zum Zitat Barcelona MJ, Holm TR. 1991. Oxidation-reduction capacities of aquifer solids. Environ Sci Technol 25:1565–1572.CrossRef Barcelona MJ, Holm TR. 1991. Oxidation-reduction capacities of aquifer solids. Environ Sci Technol 25:1565–1572.CrossRef
Zurück zum Zitat Beltrán FJ, Gonzalez M, Rivas FJ, Alvarez P. 1998. Fenton reagent advanced oxidation of polynuclear aromatic hydrocarbons in water. Water Air Soil Pollut 105:685–700.CrossRef Beltrán FJ, Gonzalez M, Rivas FJ, Alvarez P. 1998. Fenton reagent advanced oxidation of polynuclear aromatic hydrocarbons in water. Water Air Soil Pollut 105:685–700.CrossRef
Zurück zum Zitat Bergendahl J, Hubbard S, Grasso D. 2003. Pilot-scale Fenton’s oxidation of organic contaminants in groundwater using autochthon iron. J Hazard Mater 99:43–56.CrossRef Bergendahl J, Hubbard S, Grasso D. 2003. Pilot-scale Fenton’s oxidation of organic contaminants in groundwater using autochthon iron. J Hazard Mater 99:43–56.CrossRef
Zurück zum Zitat Bier EL, Singh J, Zhengming L, Comfort SD, Shea PJ. 1999. Remediating hexahydro-1,3,5-trinitro-1,2,5-trazine-contaminated water and soil by Fenton oxidation. Environ Toxicol Chem 18:1078–1084.CrossRef Bier EL, Singh J, Zhengming L, Comfort SD, Shea PJ. 1999. Remediating hexahydro-1,3,5-trinitro-1,2,5-trazine-contaminated water and soil by Fenton oxidation. Environ Toxicol Chem 18:1078–1084.CrossRef
Zurück zum Zitat Bissey LL, Smith JL, Watts RJ. 2006. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton’s reagent). Water Res 40:2477–2484.CrossRef Bissey LL, Smith JL, Watts RJ. 2006. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton’s reagent). Water Res 40:2477–2484.CrossRef
Zurück zum Zitat Bogan BW, Trbovic V. 2003. Effect of sequestration on PAH degradability with Fenton’s reagent: Roles of total organic carbon, humin, and soil porosity. J Hazard Mater 100:285–300.CrossRef Bogan BW, Trbovic V. 2003. Effect of sequestration on PAH degradability with Fenton’s reagent: Roles of total organic carbon, humin, and soil porosity. J Hazard Mater 100:285–300.CrossRef
Zurück zum Zitat Bossmann SH, Oliveros E, Gob S, Siegwart S, Dahlen EP, Payawan L, Straub M, Worner M, Braun AM. 1998. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J Phys Chem A 102:5542–5550.CrossRef Bossmann SH, Oliveros E, Gob S, Siegwart S, Dahlen EP, Payawan L, Straub M, Worner M, Braun AM. 1998. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J Phys Chem A 102:5542–5550.CrossRef
Zurück zum Zitat Braun AM, Oliveros E. 1990. Applications of singlet oxygen reactions: Mechanistic and kinetic investigations. Pure Appl Chem 62:1467–1476.CrossRef Braun AM, Oliveros E. 1990. Applications of singlet oxygen reactions: Mechanistic and kinetic investigations. Pure Appl Chem 62:1467–1476.CrossRef
Zurück zum Zitat Bray WC, Gorin MH. 1932. Ferryl ion, a compound of tetravalent iron. J Am Chem Soc 54:2124–2125.CrossRef Bray WC, Gorin MH. 1932. Ferryl ion, a compound of tetravalent iron. J Am Chem Soc 54:2124–2125.CrossRef
Zurück zum Zitat Burbano AA, Dionysiou DD, Richardson TL, Suidan MT. 2002. Degradation of MTBE intermediates using Fenton’s reagent. J Environ Eng 128:799–805.CrossRef Burbano AA, Dionysiou DD, Richardson TL, Suidan MT. 2002. Degradation of MTBE intermediates using Fenton’s reagent. J Environ Eng 128:799–805.CrossRef
Zurück zum Zitat Burbano AA, Dionysiou DD, Suidan MT, Richardson TL. 2005. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Res 39:107–118.CrossRef Burbano AA, Dionysiou DD, Suidan MT, Richardson TL. 2005. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Res 39:107–118.CrossRef
Zurück zum Zitat Buxton GV, Greenstock CL, Helman WP, Ross AB. 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution. J Phys Chem Ref Data 17:513–886.CrossRef Buxton GV, Greenstock CL, Helman WP, Ross AB. 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17:513–886.CrossRef
Zurück zum Zitat Chen F, Ma W, He J, Zhao J. 2002. Fenton degradation of malachite green catalyzed by aromatic additives. J Phys Chem A 106:9485–9490.CrossRef Chen F, Ma W, He J, Zhao J. 2002. Fenton degradation of malachite green catalyzed by aromatic additives. J Phys Chem A 106:9485–9490.CrossRef
Zurück zum Zitat Chen G, Hoag GE, Chedda P, Nadim F, Woody BA, Dobbs GM. 2001. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. J Hazard Mater 87:171–186.CrossRef Chen G, Hoag GE, Chedda P, Nadim F, Woody BA, Dobbs GM. 2001. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. J Hazard Mater 87:171–186.CrossRef
Zurück zum Zitat Chen R, Pignatello JJ. 1997. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ Sci Technol 31:2399–2406.CrossRef Chen R, Pignatello JJ. 1997. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ Sci Technol 31:2399–2406.CrossRef
Zurück zum Zitat Chen ST, Stevens DK, Kang G. 1999. Pentachlorophenol and crystal violet degradation in water and soils using heme and hydrogen peroxide. Water Res 33:3657–2665.CrossRef Chen ST, Stevens DK, Kang G. 1999. Pentachlorophenol and crystal violet degradation in water and soils using heme and hydrogen peroxide. Water Res 33:3657–2665.CrossRef
Zurück zum Zitat Chu W, Kwan CY, Chan KH, Chong C. 2004. An unconventional approach to studying the reaction kinetics of the Fenton’s oxidation of 2,4-dichlorophenoxyacetic acid. Chemosphere 57:1165–1171.CrossRef Chu W, Kwan CY, Chan KH, Chong C. 2004. An unconventional approach to studying the reaction kinetics of the Fenton’s oxidation of 2,4-dichlorophenoxyacetic acid. Chemosphere 57:1165–1171.CrossRef
Zurück zum Zitat Corbin JF III, Teel AL, Allen-King RM, Watts RJ. 2007. Reactive oxygen species responsible for the enhanced desorption of dodecane in modified Fenton’s systems. Water Environ Res 79:37–42.CrossRef Corbin JF III, Teel AL, Allen-King RM, Watts RJ. 2007. Reactive oxygen species responsible for the enhanced desorption of dodecane in modified Fenton’s systems. Water Environ Res 79:37–42.CrossRef
Zurück zum Zitat Crimi ML, Siegrist RL. 2005. Factors affecting effectiveness and efficiency of DNAPL destruction using potassium permanganate and catalyzed hydrogen peroxide. J Environ Eng 131:1724–1732.CrossRef Crimi ML, Siegrist RL. 2005. Factors affecting effectiveness and efficiency of DNAPL destruction using potassium permanganate and catalyzed hydrogen peroxide. J Environ Eng 131:1724–1732.CrossRef
Zurück zum Zitat Cuypers C, Grotenhuis T, Joziasse J, Rulkens W. 2000. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ Sci Technol 34:2057–2063.CrossRef Cuypers C, Grotenhuis T, Joziasse J, Rulkens W. 2000. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ Sci Technol 34:2057–2063.CrossRef
Zurück zum Zitat De Laat J, Gallard H. 1999. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling. Environ Sci Technol 33:2726–2732.CrossRef De Laat J, Gallard H. 1999. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling. Environ Sci Technol 33:2726–2732.CrossRef
Zurück zum Zitat De Laat J, Le GT, Legube B. 2004. A comparative study of the effects of chloride, sulfate, and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2. Chemosphere 55:715–723.CrossRef De Laat J, Le GT, Legube B. 2004. A comparative study of the effects of chloride, sulfate, and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2. Chemosphere 55:715–723.CrossRef
Zurück zum Zitat Dean JA, ed. 1999. Lange’s Handbook of Chemistry, 15th ed. McGraw Hill, New York. Dean JA, ed. 1999. Lange’s Handbook of Chemistry, 15th ed. McGraw Hill, New York.
Zurück zum Zitat Dewil R, Baevens J, Appels L. 2007. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content. J Hazard Mater 144:703–707.CrossRef Dewil R, Baevens J, Appels L. 2007. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content. J Hazard Mater 144:703–707.CrossRef
Zurück zum Zitat Droste EX, Marley MC, Parikh JM, Lee AM, Dinardo PM, Woody BA, Hoag GE, Chedda P. 2002. Observed Enhanced Reductive Dechlorination After In Situ Chemical Oxidation Pilot Test. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, May 20–23, Paper 2C-01. Droste EX, Marley MC, Parikh JM, Lee AM, Dinardo PM, Woody BA, Hoag GE, Chedda P. 2002. Observed Enhanced Reductive Dechlorination After In Situ Chemical Oxidation Pilot Test. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, May 20–23, Paper 2C-01.
Zurück zum Zitat Fenton HJH. 1894. Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910.CrossRef Fenton HJH. 1894. Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910.CrossRef
Zurück zum Zitat Forsey SP. 2004. In Situ Chemical Oxidation of Creosote/Coal Tar Residuals: Experimental and Numerical Investigation. PhD Dissertation, University of Waterloo, Waterloo, ON. Forsey SP. 2004. In Situ Chemical Oxidation of Creosote/Coal Tar Residuals: Experimental and Numerical Investigation. PhD Dissertation, University of Waterloo, Waterloo, ON.
Zurück zum Zitat Furman O, Laine DF, Blumenfeld A, Teel AL, Shimizu K, Cheng IF, Watts RJ. 2009. Enhanced reactivity of superoxide in water-solid matrices. Environ Sci Technol 43:1528–1533.CrossRef Furman O, Laine DF, Blumenfeld A, Teel AL, Shimizu K, Cheng IF, Watts RJ. 2009. Enhanced reactivity of superoxide in water-solid matrices. Environ Sci Technol 43:1528–1533.CrossRef
Zurück zum Zitat Gates DD, Siegrist RL. 1995. In-situ chemical oxidation of trichloroethylene using hydrogen peroxide. J Environ Eng 121:639–644.CrossRef Gates DD, Siegrist RL. 1995. In-situ chemical oxidation of trichloroethylene using hydrogen peroxide. J Environ Eng 121:639–644.CrossRef
Zurück zum Zitat Gates-Anderson DD, Siegrist RL, Cline SR. 2001. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. J Environ Eng 127:337–347.CrossRef Gates-Anderson DD, Siegrist RL, Cline SR. 2001. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. J Environ Eng 127:337–347.CrossRef
Zurück zum Zitat Goldstone JV, Pullin MJ, Bertilsson S, Voelker BM. 2002. Reactions of hydroxyl radical with humic substances: Bleaching, mineralization, and production of bioavailable carbon substrates. Environ Sci Technol 36:364–372.CrossRef Goldstone JV, Pullin MJ, Bertilsson S, Voelker BM. 2002. Reactions of hydroxyl radical with humic substances: Bleaching, mineralization, and production of bioavailable carbon substrates. Environ Sci Technol 36:364–372.CrossRef
Zurück zum Zitat Haag WR, Yao D. 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013.CrossRef Haag WR, Yao D. 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013.CrossRef
Zurück zum Zitat Haber F, Weiss J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc Royal Soc London 147:332–351.CrossRef Haber F, Weiss J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc Royal Soc London 147:332–351.CrossRef
Zurück zum Zitat Hasan MA, Zaki MI, Pasupulety L, Kumari K. 1999. Promotion of the hydrogen peroxide decomposition activity of manganese oxide catalysts. J Appl Catal A Gen 181:171–179.CrossRef Hasan MA, Zaki MI, Pasupulety L, Kumari K. 1999. Promotion of the hydrogen peroxide decomposition activity of manganese oxide catalysts. J Appl Catal A Gen 181:171–179.CrossRef
Zurück zum Zitat Huang HH, Lu MC, Chen JN. 2001. Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Res 35:2291–2299.CrossRef Huang HH, Lu MC, Chen JN. 2001. Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Res 35:2291–2299.CrossRef
Zurück zum Zitat Huling SG, Pivetz BE. 2006. Engineering Issue: In-Situ Chemical Oxidation. EPA/600/R-06/072. USEPA Agency Office of Research and Development, Washington, DC. 58 pp. Huling SG, Pivetz BE. 2006. Engineering Issue: In-Situ Chemical Oxidation. EPA/600/R-06/072. USEPA Agency Office of Research and Development, Washington, DC. 58 pp.
Zurück zum Zitat Huling SG, Arnold RG, Sierka RA, Miller MR. 1998. Measurement of hydroxyl radical activity in a soil slurry using the spin trap a-(4-Pyridyl-1-oxide)-N-tert-butylnitrone. Environ Sci Technol 32:3436–3441.CrossRef Huling SG, Arnold RG, Sierka RA, Miller MR. 1998. Measurement of hydroxyl radical activity in a soil slurry using the spin trap a-(4-Pyridyl-1-oxide)-N-tert-butylnitrone. Environ Sci Technol 32:3436–3441.CrossRef
Zurück zum Zitat Huling SG, Arnold RG, Jones PK, Sierka RA. 2000a. Predicting Fenton-driven degradation using contaminant analog. J Environ Eng 126:348–353.CrossRef Huling SG, Arnold RG, Jones PK, Sierka RA. 2000a. Predicting Fenton-driven degradation using contaminant analog. J Environ Eng 126:348–353.CrossRef
Zurück zum Zitat Huling SG, Arnold RG, Sierka RA, Jones PK, Fine DD. 2000b. Contaminant adsorption and oxidation via Fenton reaction. J Environ Eng 126:595–600.CrossRef Huling SG, Arnold RG, Sierka RA, Jones PK, Fine DD. 2000b. Contaminant adsorption and oxidation via Fenton reaction. J Environ Eng 126:595–600.CrossRef
Zurück zum Zitat Huling SG, Arnold RG, Sierka RA, Miller MA. 2001. Influence of peat on Fenton oxidation. Water Res 35:1687–1694.CrossRef Huling SG, Arnold RG, Sierka RA, Miller MA. 2001. Influence of peat on Fenton oxidation. Water Res 35:1687–1694.CrossRef
Zurück zum Zitat Huling SG, Jones PK, Lee TR. 2007. Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon. Environ Sci Technol 41:4090–4096.CrossRef Huling SG, Jones PK, Lee TR. 2007. Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon. Environ Sci Technol 41:4090–4096.CrossRef
Zurück zum Zitat Huling SG, Kan E, Wingo C. 2009. Fenton-driven regeneration of MTBE-spent granular activation carbon: Effects of particle size and iron amendment properties. J Appl Catal B 89:651–657.CrossRef Huling SG, Kan E, Wingo C. 2009. Fenton-driven regeneration of MTBE-spent granular activation carbon: Effects of particle size and iron amendment properties. J Appl Catal B 89:651–657.CrossRef
Zurück zum Zitat Jazdanian AD, Fieber LL, Tisoncik D, Huang KC, Mao F, Dahmani A. 2004. Chemical Oxidation of Chloroethanes and Chloroethenes in a Rock/Groundwater System. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 2F-01. Jazdanian AD, Fieber LL, Tisoncik D, Huang KC, Mao F, Dahmani A. 2004. Chemical Oxidation of Chloroethanes and Chloroethenes in a Rock/Groundwater System. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 2F-01.
Zurück zum Zitat Kan E, Huling SG. 2009. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon. Environ Sci Technol 43:1493–1499.CrossRef Kan E, Huling SG. 2009. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon. Environ Sci Technol 43:1493–1499.CrossRef
Zurück zum Zitat Kanel SR, Neppolian B, Choi H, Yang JW. 2003. Heterogeneous catalytic oxidation of phenanthrene by hydrogen peroxide in soil slurry: Kinetics, mechanism, and implication. Soil Sediment Contam 12:101–117.CrossRef Kanel SR, Neppolian B, Choi H, Yang JW. 2003. Heterogeneous catalytic oxidation of phenanthrene by hydrogen peroxide in soil slurry: Kinetics, mechanism, and implication. Soil Sediment Contam 12:101–117.CrossRef
Zurück zum Zitat Kang N, Hua I. 2005. Enhanced chemical oxidation of aromatic hydrocarbons in soil systems. Chemosphere 61:909–922.CrossRef Kang N, Hua I. 2005. Enhanced chemical oxidation of aromatic hydrocarbons in soil systems. Chemosphere 61:909–922.CrossRef
Zurück zum Zitat Kelley R, Koenigsberg SS, Sutherland M. 2006. Field Results with an Alkaline In Situ Chemical Oxidation Process. Proceedings, Fifth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Abstract D-32. Kelley R, Koenigsberg SS, Sutherland M. 2006. Field Results with an Alkaline In Situ Chemical Oxidation Process. Proceedings, Fifth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Abstract D-32.
Zurück zum Zitat Kelley RL, Gauger WK, Srivastava VJ. 1990. Application of Fenton’s Reagent as a Pretreatment Step in Biological Degradation of Polyaromatic Hydrocarbons. Institute of Gas Technology Report CONF-901212-5. Presented at Gas, Oil, Coal, and Environmental Biotechnology III, New Orleans, LA, USA, December 3–5. Kelley RL, Gauger WK, Srivastava VJ. 1990. Application of Fenton’s Reagent as a Pretreatment Step in Biological Degradation of Polyaromatic Hydrocarbons. Institute of Gas Technology Report CONF-901212-5. Presented at Gas, Oil, Coal, and Environmental Biotechnology III, New Orleans, LA, USA, December 3–5.
Zurück zum Zitat Kiwi J, Lopez A, Nadtochenko V. 2000. Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl−). Environ Sci Technol 34:2162–2168.CrossRef Kiwi J, Lopez A, Nadtochenko V. 2000. Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl). Environ Sci Technol 34:2162–2168.CrossRef
Zurück zum Zitat Kong SH, Watts RJ, Choi JH. 1998. Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37:1473–1482.CrossRef Kong SH, Watts RJ, Choi JH. 1998. Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37:1473–1482.CrossRef
Zurück zum Zitat Koyama O, Kamagata Y, Nakamura K. 1994. Degradation of chlorinated aromatics by Fenton oxidation and methanogenic digester sludge. Water Res 28:895–899.CrossRef Koyama O, Kamagata Y, Nakamura K. 1994. Degradation of chlorinated aromatics by Fenton oxidation and methanogenic digester sludge. Water Res 28:895–899.CrossRef
Zurück zum Zitat Krembs FJ. 2008. Critical Analysis of the Field-Scale Application of In Situ Chemical Oxidation for the Remediation of Contaminated Groundwater. MS Thesis, Colorado School of Mines, Golden, CO. Krembs FJ. 2008. Critical Analysis of the Field-Scale Application of In Situ Chemical Oxidation for the Remediation of Contaminated Groundwater. MS Thesis, Colorado School of Mines, Golden, CO.
Zurück zum Zitat Kwan WP, Voelker BM. 2002. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ Sci Technol 36:1467–1476.CrossRef Kwan WP, Voelker BM. 2002. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ Sci Technol 36:1467–1476.CrossRef
Zurück zum Zitat Kwan WP, Voelker BM. 2003. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 37:1150–1158.CrossRef Kwan WP, Voelker BM. 2003. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 37:1150–1158.CrossRef
Zurück zum Zitat Kwon BG, Lee DS, Kang N, Yoon J. 1999. Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Water Res 33: 2110–2118.CrossRef Kwon BG, Lee DS, Kang N, Yoon J. 1999. Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Water Res 33: 2110–2118.CrossRef
Zurück zum Zitat Leung SW, Watts RJ, Miller GC. 1992. Degradation of perchloroethylene by Fenton’s reagent: Speciation and pathway. J Environ Qual 21:377–381.CrossRef Leung SW, Watts RJ, Miller GC. 1992. Degradation of perchloroethylene by Fenton’s reagent: Speciation and pathway. J Environ Qual 21:377–381.CrossRef
Zurück zum Zitat Li ZM, Peterson MM, Comfort SD, Horst GL, Shea PJ, Oh BT. 1997a. Remediating TNT-contaminated soil by soil washing and Fenton oxidation. Sci Total Environ 204:107–115.CrossRef Li ZM, Peterson MM, Comfort SD, Horst GL, Shea PJ, Oh BT. 1997a. Remediating TNT-contaminated soil by soil washing and Fenton oxidation. Sci Total Environ 204:107–115.CrossRef
Zurück zum Zitat Li ZM, Shea PJ, Comfort SD. 1997b. Fenton oxidation of 2,4,6-trinitrotoluene in contaminated soil slurries. Environ Eng Sci 14:55–66.CrossRef Li ZM, Shea PJ, Comfort SD. 1997b. Fenton oxidation of 2,4,6-trinitrotoluene in contaminated soil slurries. Environ Eng Sci 14:55–66.CrossRef
Zurück zum Zitat Liang C, Bruell CJ, Marley MC, Sperry KL. 2003. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam 12:207–228.CrossRef Liang C, Bruell CJ, Marley MC, Sperry KL. 2003. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam 12:207–228.CrossRef
Zurück zum Zitat Lide DR. 2006. CRC Handbook of Chemistry and Physics. CRC Press, Taylor and Francis Group, Boca Raton, FL. Lide DR. 2006. CRC Handbook of Chemistry and Physics. CRC Press, Taylor and Francis Group, Boca Raton, FL.
Zurück zum Zitat Lindsey ME, Tarr MA. 2000a. Inhibited hydroxyl radical degradation of aromatic hydrocarbons in the presence of dissolved fulvic acid. Water Res 34:2385–2389.CrossRef Lindsey ME, Tarr MA. 2000a. Inhibited hydroxyl radical degradation of aromatic hydrocarbons in the presence of dissolved fulvic acid. Water Res 34:2385–2389.CrossRef
Zurück zum Zitat Lindsey ME, Tarr MA. 2000b. Inhibition of hydroxyl radical reactions with aromatics by dissolved organic matter. Environ Sci Technol 34:444–449.CrossRef Lindsey ME, Tarr MA. 2000b. Inhibition of hydroxyl radical reactions with aromatics by dissolved organic matter. Environ Sci Technol 34:444–449.CrossRef
Zurück zum Zitat Lindsey ME, Xu G, Lu J, Tarr MA. 2003. Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins. Sci Total Environ 307:215–229.CrossRef Lindsey ME, Xu G, Lu J, Tarr MA. 2003. Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins. Sci Total Environ 307:215–229.CrossRef
Zurück zum Zitat Lipczynska-Kochany E, Sprah G, Harms S. 1995. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 30:9–20.CrossRef Lipczynska-Kochany E, Sprah G, Harms S. 1995. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 30:9–20.CrossRef
Zurück zum Zitat Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382:445–448.CrossRef Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382:445–448.CrossRef
Zurück zum Zitat Lu MC. 2000. Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite. Chemosphere 40:125–130.CrossRef Lu MC. 2000. Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite. Chemosphere 40:125–130.CrossRef
Zurück zum Zitat Lu MC, Chen JN, Huang HH. 2002. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide. Chemosphere 46:131–136.CrossRef Lu MC, Chen JN, Huang HH. 2002. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide. Chemosphere 46:131–136.CrossRef
Zurück zum Zitat Lundstedt S, Persson Y, Oberg L. 2006. Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks’ soil. Chemosphere 65:1288–1294.CrossRef Lundstedt S, Persson Y, Oberg L. 2006. Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks’ soil. Chemosphere 65:1288–1294.CrossRef
Zurück zum Zitat Manzano MA, Perales JA, Sales D, Quiroga JM. 2004. Catalyzed hydrogen peroxide treatment of polychlorinated biphenyl contaminated sandy soils. Water Air Soil Pollut 154:57–69.CrossRef Manzano MA, Perales JA, Sales D, Quiroga JM. 2004. Catalyzed hydrogen peroxide treatment of polychlorinated biphenyl contaminated sandy soils. Water Air Soil Pollut 154:57–69.CrossRef
Zurück zum Zitat Mecozzi R, Di Palma L, Merli C. 2006. Experimental in situ chemical peroxidation of atrazine in contaminated soil. Chemosphere 62:1481–1489.CrossRef Mecozzi R, Di Palma L, Merli C. 2006. Experimental in situ chemical peroxidation of atrazine in contaminated soil. Chemosphere 62:1481–1489.CrossRef
Zurück zum Zitat Miller CM, Valentine RL. 1995a. Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material. Water Res 29:2353–2359.CrossRef Miller CM, Valentine RL. 1995a. Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material. Water Res 29:2353–2359.CrossRef
Zurück zum Zitat Miller CM, Valentine RL. 1995b. Oxidation behavior of aqueous contaminants in the presence of hydrogen peroxide and filter media. J Hazard Mater 41:105–116.CrossRef Miller CM, Valentine RL. 1995b. Oxidation behavior of aqueous contaminants in the presence of hydrogen peroxide and filter media. J Hazard Mater 41:105–116.CrossRef
Zurück zum Zitat Miller CM, Valentine RL. 1999. Mechanistic studies of surface catalyzed H2O2 decomposition and contaminant degradation in the presence of sand. Water Res 12:2805–2816.CrossRef Miller CM, Valentine RL. 1999. Mechanistic studies of surface catalyzed H2O2 decomposition and contaminant degradation in the presence of sand. Water Res 12:2805–2816.CrossRef
Zurück zum Zitat Millioli V, Freire DDC, Cammarota MC. 2003. Petroleum oxidation using Fenton’s reagent over beach sand following a spill. J Hazard Mater 103:79–91.CrossRef Millioli V, Freire DDC, Cammarota MC. 2003. Petroleum oxidation using Fenton’s reagent over beach sand following a spill. J Hazard Mater 103:79–91.CrossRef
Zurück zum Zitat Mino Y, Moriyama Y, Nakatake Y. 2004. Degradation of 2,7-dichlorodibenzo-p-dioxin by Fe3+-H2O2 mixed reagent. Chemosphere 57:365–372.CrossRef Mino Y, Moriyama Y, Nakatake Y. 2004. Degradation of 2,7-dichlorodibenzo-p-dioxin by Fe3+-H2O2 mixed reagent. Chemosphere 57:365–372.CrossRef
Zurück zum Zitat Monahan MJ, Teel AL, Watts RJ. 2005. Displacement of five metals sorbed on kaolinite during treatment with modified Fenton’s reagent. Water Res 39:2955–2963.CrossRef Monahan MJ, Teel AL, Watts RJ. 2005. Displacement of five metals sorbed on kaolinite during treatment with modified Fenton’s reagent. Water Res 39:2955–2963.CrossRef
Zurück zum Zitat Ndjou’ou A-C, Cassidy D. 2006. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil. Chemosphere 65:1610–1615CrossRef Ndjou’ou A-C, Cassidy D. 2006. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil. Chemosphere 65:1610–1615CrossRef
Zurück zum Zitat Neaman A, Mouélé F, Trolard F, Bourrié G. 2004. Improved methods for selective dissolution of Mn oxides: Applications for studying trace element associations. Appl Geochem 19:973–979.CrossRef Neaman A, Mouélé F, Trolard F, Bourrié G. 2004. Improved methods for selective dissolution of Mn oxides: Applications for studying trace element associations. Appl Geochem 19:973–979.CrossRef
Zurück zum Zitat Neppolian B, Jung H, Choi H, Lee JH, Kang JW. 2002. Sonolytic degradation of methyl-tert-butyl ether: The role of coupled Fenton process and persulfate ion. Water Res 36:4699–4708.CrossRef Neppolian B, Jung H, Choi H, Lee JH, Kang JW. 2002. Sonolytic degradation of methyl-tert-butyl ether: The role of coupled Fenton process and persulfate ion. Water Res 36:4699–4708.CrossRef
Zurück zum Zitat Osgerby IT, Takemoto HY, Watts RJ. 2004. Fenton-Type Reactions Applied to Pacific Soils at Low, Near-Neutral, and High pH, with and without Catalyst Metals. Proceedings, Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 2A-02. Osgerby IT, Takemoto HY, Watts RJ. 2004. Fenton-Type Reactions Applied to Pacific Soils at Low, Near-Neutral, and High pH, with and without Catalyst Metals. Proceedings, Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 2A-02.
Zurück zum Zitat Petigara BR, Blough NV, Mignerey AC. 2002. Mechanisms of hydrogen peroxide decomposition in soils. Environ Sci Technol 36:639–645.CrossRef Petigara BR, Blough NV, Mignerey AC. 2002. Mechanisms of hydrogen peroxide decomposition in soils. Environ Sci Technol 36:639–645.CrossRef
Zurück zum Zitat Petri BG, Siegrist RL, Crimi ML. 2008. Effects of groundwater velocity and permanganate concentration of DNAPL mass depletion rates during in situ oxidation. J Environ Eng 134:1–13.CrossRef Petri BG, Siegrist RL, Crimi ML. 2008. Effects of groundwater velocity and permanganate concentration of DNAPL mass depletion rates during in situ oxidation. J Environ Eng 134:1–13.CrossRef
Zurück zum Zitat Pignatello JJ. 1992. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol 26:944–951.CrossRef Pignatello JJ. 1992. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol 26:944–951.CrossRef
Zurück zum Zitat Pignatello JJ, Baehr K. 1994. Ferric complexes as catalysts for "Fenton" degradation of 2,4-D and metolachlor in soil. J Environ Qual 23:365–370.CrossRef Pignatello JJ, Baehr K. 1994. Ferric complexes as catalysts for "Fenton" degradation of 2,4-D and metolachlor in soil. J Environ Qual 23:365–370.CrossRef
Zurück zum Zitat Pittman CU, He J. 2002. Dechlorination of PCBs, CAHs, herbicides and pesticides neat and in soils at 25°C using Na/NH3. J Hazard Mater 92:51–62.CrossRef Pittman CU, He J. 2002. Dechlorination of PCBs, CAHs, herbicides and pesticides neat and in soils at 25°C using Na/NH3. J Hazard Mater 92:51–62.CrossRef
Zurück zum Zitat Quan HN, Teel AL, Watts RJ. 2003. Effect of contaminant hydrophobicity on hydrogen peroxide dosage requirements in Fenton-like treatment of soils. J Hazard Mater 102:277–289.CrossRef Quan HN, Teel AL, Watts RJ. 2003. Effect of contaminant hydrophobicity on hydrogen peroxide dosage requirements in Fenton-like treatment of soils. J Hazard Mater 102:277–289.CrossRef
Zurück zum Zitat Ray AB, Selvakumar A, Tafuri AN. 2002. Treatment of MTBE-contaminated waters with Fenton’s reagent. Remediat J 12:81–93.CrossRef Ray AB, Selvakumar A, Tafuri AN. 2002. Treatment of MTBE-contaminated waters with Fenton’s reagent. Remediat J 12:81–93.CrossRef
Zurück zum Zitat Reitsma S, Dai QL. 2001. Reaction-enhanced mass transfer and transport from non-aqueous phase liquid source zones. J Contam Hydrol 49:49–66.CrossRef Reitsma S, Dai QL. 2001. Reaction-enhanced mass transfer and transport from non-aqueous phase liquid source zones. J Contam Hydrol 49:49–66.CrossRef
Zurück zum Zitat Rivas FJ. 2006. Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments. J Hazard Mater 138:234–251.CrossRef Rivas FJ. 2006. Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments. J Hazard Mater 138:234–251.CrossRef
Zurück zum Zitat Rock ML, James BR, Helz GR. 2001. Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Environ Sci Technol 35:4054–4059.CrossRef Rock ML, James BR, Helz GR. 2001. Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Environ Sci Technol 35:4054–4059.CrossRef
Zurück zum Zitat Rodriguez ML, Timokhin VI, Contreras S, Chamarro E, Esplugas S. 2003. Rate equation for the degradation of nitrobenzene by ‘Fenton-like’ reagent. Adv Environ Res 7:583–595.CrossRef Rodriguez ML, Timokhin VI, Contreras S, Chamarro E, Esplugas S. 2003. Rate equation for the degradation of nitrobenzene by ‘Fenton-like’ reagent. Adv Environ Res 7:583–595.CrossRef
Zurück zum Zitat Rush JD, Bielski BHJ. 1986. Pulse radiolysis studies of alkaline Fe(III) and Fe(VI) solutions. Observation of transient iron complexes with intermediate oxidation states. J Am Chem Soc 108:523–525.CrossRef Rush JD, Bielski BHJ. 1986. Pulse radiolysis studies of alkaline Fe(III) and Fe(VI) solutions. Observation of transient iron complexes with intermediate oxidation states. J Am Chem Soc 108:523–525.CrossRef
Zurück zum Zitat Schumb W, Satterfield C, Wentworth R. 1955. Hydrogen Peroxide. Rheinhold Publishing Corporation, New York. 749 pp. Schumb W, Satterfield C, Wentworth R. 1955. Hydrogen Peroxide. Rheinhold Publishing Corporation, New York. 749 pp.
Zurück zum Zitat Scott DT, McNight DM, Blunt-Harris EL, Kolesar SE, Lovley DR. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989.CrossRef Scott DT, McNight DM, Blunt-Harris EL, Kolesar SE, Lovley DR. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989.CrossRef
Zurück zum Zitat Sedlak DL, Andren AW. 1991a. Aqueous-phase oxidation of polychlorinated biphenyls by hydroxyl radicals. Environ Sci Technol 25:1419–1427.CrossRef Sedlak DL, Andren AW. 1991a. Aqueous-phase oxidation of polychlorinated biphenyls by hydroxyl radicals. Environ Sci Technol 25:1419–1427.CrossRef
Zurück zum Zitat Sedlak DL, Andren AW. 1991b. Oxidation of chlorobenzene with Fenton’s reagent. Environ Sci Technol 25:777–782.CrossRef Sedlak DL, Andren AW. 1991b. Oxidation of chlorobenzene with Fenton’s reagent. Environ Sci Technol 25:777–782.CrossRef
Zurück zum Zitat Seitz SJ. 2004. Experimental Evaluation of Mass Transfer and Matrix Interactions during In Situ Chemical Oxidation Relying on Diffusive Transport. MS Thesis, Colorado School of Mines, Golden, CO. Seitz SJ. 2004. Experimental Evaluation of Mass Transfer and Matrix Interactions during In Situ Chemical Oxidation Relying on Diffusive Transport. MS Thesis, Colorado School of Mines, Golden, CO.
Zurück zum Zitat Siegrist RL, Crimi ML, Munakata-Marr J, Illangasekare TH, Lowe KS, van Cuyk S, Dugan PJ, Heiderscheidt JL, Jackson SF, Petri BG, Sahl J, Seitz SJ. 2006. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs. ER-1290 Final Report. Submitted to the Strategic Environmental Research and Development Program (SERDP), Arlington, VA, USA. http://docs.serdp-estcp.org/. Accessed July 5, 2010. Siegrist RL, Crimi ML, Munakata-Marr J, Illangasekare TH, Lowe KS, van Cuyk S, Dugan PJ, Heiderscheidt JL, Jackson SF, Petri BG, Sahl J, Seitz SJ. 2006. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs. ER-1290 Final Report. Submitted to the Strategic Environmental Research and Development Program (SERDP), Arlington, VA, USA. http://​docs.​serdp-estcp.​org/​. Accessed July 5, 2010.
Zurück zum Zitat Siegrist RL, Crimi ML, Petri B, Simpkin T, Palaia T, Krembs FJ, Munakata-Marr J, Illangasekare T, Ng G, Singletary M, Ruiz N. 2010. In Situ Chemical Oxidation for Groundwater Remediation: Site Specific Engineering and Technology Application. ER-0623 Final Report (CD-ROM, Version PRv1.01, October 29, 2010). Prepared for the ESTCP, Arlington, VA, USA. http://docs.serdp-estcp.org/. Siegrist RL, Crimi ML, Petri B, Simpkin T, Palaia T, Krembs FJ, Munakata-Marr J, Illangasekare T, Ng G, Singletary M, Ruiz N. 2010. In Situ Chemical Oxidation for Groundwater Remediation: Site Specific Engineering and Technology Application. ER-0623 Final Report (CD-ROM, Version PRv1.01, October 29, 2010). Prepared for the ESTCP, Arlington, VA, USA. http://​docs.​serdp-estcp.​org/​.
Zurück zum Zitat Sirguey C, de Souza e Silva PT, Schwartz C, Simonnot M. 2008. Impact of chemical oxidation on soil quality. Chemosphere 72:282–289.CrossRef Sirguey C, de Souza e Silva PT, Schwartz C, Simonnot M. 2008. Impact of chemical oxidation on soil quality. Chemosphere 72:282–289.CrossRef
Zurück zum Zitat Smith BA, Teel AL, Watts RJ. 2004. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s systems. Environ Sci Technol 38:5465–5469.CrossRef Smith BA, Teel AL, Watts RJ. 2004. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s systems. Environ Sci Technol 38:5465–5469.CrossRef
Zurück zum Zitat Smith BA, Teel AL, Watts RJ. 2006. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton’s reagent. J Contam Hydrol 85:229–246.CrossRef Smith BA, Teel AL, Watts RJ. 2006. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton’s reagent. J Contam Hydrol 85:229–246.CrossRef
Zurück zum Zitat Struse AM, Marvin BK, Harris ST, Clayton WS. 2002. Push-Pull Tests: Field Evaluation of In Situ Chemical Oxidation of High Explosives at the Pantex Plant. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2G-06. Struse AM, Marvin BK, Harris ST, Clayton WS. 2002. Push-Pull Tests: Field Evaluation of In Situ Chemical Oxidation of High Explosives at the Pantex Plant. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2G-06.
Zurück zum Zitat Sun H, Yan Q. 2007. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene. J Hazard Mater 144:164–170.CrossRef Sun H, Yan Q. 2007. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene. J Hazard Mater 144:164–170.CrossRef
Zurück zum Zitat Sun Y, Pignatello JJ. 1992. Chemical treatment of pesticide wastes: Evaluation of Fe(III) chelates for catalyzed hydrogen peroxide oxidation of 2,4-D at circumneutral pH. J Agric Food Chem 40:322–327.CrossRef Sun Y, Pignatello JJ. 1992. Chemical treatment of pesticide wastes: Evaluation of Fe(III) chelates for catalyzed hydrogen peroxide oxidation of 2,4-D at circumneutral pH. J Agric Food Chem 40:322–327.CrossRef
Zurück zum Zitat Tai C, Jiang G. 2005. Dechlorination and destruction of 2,4,6-trichlorophenol and pentachlorophenol using hydrogen peroxide as the oxidant catalyzed by molybdate ions under basic condition. Chemosphere 59:321–326.CrossRef Tai C, Jiang G. 2005. Dechlorination and destruction of 2,4,6-trichlorophenol and pentachlorophenol using hydrogen peroxide as the oxidant catalyzed by molybdate ions under basic condition. Chemosphere 59:321–326.CrossRef
Zurück zum Zitat Tang WZ, Huang CP. 1995. The effect of chlorine position of chlorinated phenols on their dechlorination kinetics by Fenton’s reagent. Waste Manag 15:615–622.CrossRef Tang WZ, Huang CP. 1995. The effect of chlorine position of chlorinated phenols on their dechlorination kinetics by Fenton’s reagent. Waste Manag 15:615–622.CrossRef
Zurück zum Zitat Tarr MA, Lindsey ME, Lu J, Xu G. 2000. Fenton Oxidation: Bringing Pollutants and Hydroxyl Radicals Together. In Wickramanayake GB, Gavaskar AR, Chen ASC, eds, Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, pp. 181–186. Tarr MA, Lindsey ME, Lu J, Xu G. 2000. Fenton Oxidation: Bringing Pollutants and Hydroxyl Radicals Together. In Wickramanayake GB, Gavaskar AR, Chen ASC, eds, Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, pp. 181–186.
Zurück zum Zitat Tarr MA, Wei B, Zheng W, Xu G. 2002. Cyclodextrin-Modified Fenton Oxidation for In Situ Remediation. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2C-17. Tarr MA, Wei B, Zheng W, Xu G. 2002. Cyclodextrin-Modified Fenton Oxidation for In Situ Remediation. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2C-17.
Zurück zum Zitat Teel AL, Watts RJ. 2002. Degradation of carbon tetrachloride by modified Fenton’s reagent. J Hazard Mater 94:179–189.CrossRef Teel AL, Watts RJ. 2002. Degradation of carbon tetrachloride by modified Fenton’s reagent. J Hazard Mater 94:179–189.CrossRef
Zurück zum Zitat Teel AL, Warberg CR, Atkinson DA, Watts RJ. 2001. Comparison of mineral and soluble iron Fenton’s catalysts for the treatment of trichloroethylene. Water Res 35:977–984.CrossRef Teel AL, Warberg CR, Atkinson DA, Watts RJ. 2001. Comparison of mineral and soluble iron Fenton’s catalysts for the treatment of trichloroethylene. Water Res 35:977–984.CrossRef
Zurück zum Zitat Teel AL, Finn DD, Schmidt JT, Cutler LM, Watts RJ. 2007. Rates of trace mineral-catalyzed decomposition of hydrogen peroxide. J Environ Eng 133:853–858.CrossRef Teel AL, Finn DD, Schmidt JT, Cutler LM, Watts RJ. 2007. Rates of trace mineral-catalyzed decomposition of hydrogen peroxide. J Environ Eng 133:853–858.CrossRef
Zurück zum Zitat Tomlinson DW, Thomson NR, Johnson RL, Redman JD. 2003. Air distribution in the Bordon aquifer during in situ air sparging. J Contam Hydrol 67:113–132.CrossRef Tomlinson DW, Thomson NR, Johnson RL, Redman JD. 2003. Air distribution in the Bordon aquifer during in situ air sparging. J Contam Hydrol 67:113–132.CrossRef
Zurück zum Zitat Tyre BW, Watts RJ, Miller GC. 1991. Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide. J Environ Qual 20:832–838.CrossRef Tyre BW, Watts RJ, Miller GC. 1991. Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide. J Environ Qual 20:832–838.CrossRef
Zurück zum Zitat Umschlag T, Herrmann H. 1999. The carbonate radical (HCO3⋅/CO3⋅−) as a reactive intermediate in water chemistry: Kinetics and modeling. Acta Hydrochim Hydrobiol 27:214–222.CrossRef Umschlag T, Herrmann H. 1999. The carbonate radical (HCO3⋅/CO3) as a reactive intermediate in water chemistry: Kinetics and modeling. Acta Hydrochim Hydrobiol 27:214–222.CrossRef
Zurück zum Zitat Valentine RL, Wang HC. 1998. Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide. J Environ Eng 124:31–38.CrossRef Valentine RL, Wang HC. 1998. Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide. J Environ Eng 124:31–38.CrossRef
Zurück zum Zitat Villa RD, Trovo AG, Pupo Nogueira RF. 2008. Environmental implication of soil remediation using the Fenton process. Chemosphere 71:43–50.CrossRef Villa RD, Trovo AG, Pupo Nogueira RF. 2008. Environmental implication of soil remediation using the Fenton process. Chemosphere 71:43–50.CrossRef
Zurück zum Zitat Vione D, Merlo F, Valter M, Minero C. 2004. Effect of humic acids on the Fenton degradation of phenol. Environ Chem Lett 2:129–133.CrossRef Vione D, Merlo F, Valter M, Minero C. 2004. Effect of humic acids on the Fenton degradation of phenol. Environ Chem Lett 2:129–133.CrossRef
Zurück zum Zitat Voelker BM, Sulzberger B. 1996. Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ Sci Technol 30:1106–1114.CrossRef Voelker BM, Sulzberger B. 1996. Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ Sci Technol 30:1106–1114.CrossRef
Zurück zum Zitat Wang Q, Lemley AT. 2004. Kinetic effect of humic acid on Alachlor degradation by anodic Fenton treatment. J Environ Qual 33:2343–2352.CrossRef Wang Q, Lemley AT. 2004. Kinetic effect of humic acid on Alachlor degradation by anodic Fenton treatment. J Environ Qual 33:2343–2352.CrossRef
Zurück zum Zitat Watts RJ. 1992. Hydrogen peroxide for physicochemically degrading petroleum-contaminated soils. Remediation 2:413–425.CrossRef Watts RJ. 1992. Hydrogen peroxide for physicochemically degrading petroleum-contaminated soils. Remediation 2:413–425.CrossRef
Zurück zum Zitat Watts RJ, Dilly SE. 1996. Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils. J Hazard Mater 51:209–224.CrossRef Watts RJ, Dilly SE. 1996. Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils. J Hazard Mater 51:209–224.CrossRef
Zurück zum Zitat Watts RJ, Teel AL. 2005. Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation. J Environ Eng 131:612–622.CrossRef Watts RJ, Teel AL. 2005. Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation. J Environ Eng 131:612–622.CrossRef
Zurück zum Zitat Watts RJ, Udell MD, Rauch PA, Leung SW. 1990. Treatment of pentachlorophenol-contaminated soils using Fenton's reagent. Hazard Waste Hazard Mater 2:335–345.CrossRef Watts RJ, Udell MD, Rauch PA, Leung SW. 1990. Treatment of pentachlorophenol-contaminated soils using Fenton's reagent. Hazard Waste Hazard Mater 2:335–345.CrossRef
Zurück zum Zitat Watts RJ, Smith BR, Miller GC. 1991a. Catalyzed hydrogen peroxide treatment of octachlorodibenzo-p-dioxin (OCDD) in surface soils. Chemosphere 23:949–955.CrossRef Watts RJ, Smith BR, Miller GC. 1991a. Catalyzed hydrogen peroxide treatment of octachlorodibenzo-p-dioxin (OCDD) in surface soils. Chemosphere 23:949–955.CrossRef
Zurück zum Zitat Watts RJ, Udell MD, Leung SW. 1991b. Treatment of Contaminated Soils Using Catalyzed Hydrogen Peroxide. Proceedings, First International Symposium: Chemical Oxidation: Technology for the Nineties, Nashville, TN, USA, February 20–22. Technomic Publishing, Lancaster, PA, USA, pp 37–50. Watts RJ, Udell MD, Leung SW. 1991b. Treatment of Contaminated Soils Using Catalyzed Hydrogen Peroxide. Proceedings, First International Symposium: Chemical Oxidation: Technology for the Nineties, Nashville, TN, USA, February 20–22. Technomic Publishing, Lancaster, PA, USA, pp 37–50.
Zurück zum Zitat Watts RJ, Kong S, Dippre M, Barnes WT. 1994. Oxidation of sorbed hexachlorobenzene in soils using catalyzed hydrogen peroxide. J Hazard Mater 39:33–47.CrossRef Watts RJ, Kong S, Dippre M, Barnes WT. 1994. Oxidation of sorbed hexachlorobenzene in soils using catalyzed hydrogen peroxide. J Hazard Mater 39:33–47.CrossRef
Zurück zum Zitat Watts RJ, Bottenberg BC, Hess TF, Jensen MD, Teel AL. 1999a. Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environ Sci Technol 33:3432–3437.CrossRef Watts RJ, Bottenberg BC, Hess TF, Jensen MD, Teel AL. 1999a. Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environ Sci Technol 33:3432–3437.CrossRef
Zurück zum Zitat Watts RJ, Foget MK, Kong SH, Teel AL. 1999b. Hydrogen peroxide decomposition in model subsurface systems. J Hazard Mater 69:229–243.CrossRef Watts RJ, Foget MK, Kong SH, Teel AL. 1999b. Hydrogen peroxide decomposition in model subsurface systems. J Hazard Mater 69:229–243.CrossRef
Zurück zum Zitat Watts RJ, Haller DR, Jones AP, Teel AL. 2000. A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton’s reactions. J Hazard Mater 76:73–89.CrossRef Watts RJ, Haller DR, Jones AP, Teel AL. 2000. A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton’s reactions. J Hazard Mater 76:73–89.CrossRef
Zurück zum Zitat Watts RJ, Stanton PC, Howsawkeng J, Teel AL. 2002. Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water Res 36:4283–4292.CrossRef Watts RJ, Stanton PC, Howsawkeng J, Teel AL. 2002. Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water Res 36:4283–4292.CrossRef
Zurück zum Zitat Watts RJ, Howsawkeng J, Teel AL. 2005a. Destruction of a carbon tetrachloride dense nonaqueous phase liquid by modified Fenton’s reagent. J Environ Eng 131:1114–1119.CrossRef Watts RJ, Howsawkeng J, Teel AL. 2005a. Destruction of a carbon tetrachloride dense nonaqueous phase liquid by modified Fenton’s reagent. J Environ Eng 131:1114–1119.CrossRef
Zurück zum Zitat Watts RJ, Sarasa J, Loge FJ, Teel AL. 2005b. Oxidative and reductive pathways in manganese-catalyzed Fenton’s reactions. J Environ Eng 131:158–164.CrossRef Watts RJ, Sarasa J, Loge FJ, Teel AL. 2005b. Oxidative and reductive pathways in manganese-catalyzed Fenton’s reactions. J Environ Eng 131:158–164.CrossRef
Zurück zum Zitat Watts RJ, Finn DD, Cutler LM, Schmidt JT, Teel AL. 2007. Enhanced stability of hydrogen peroxide in the presence of subsurface solids. J Contam Hydrol 91:312–326.CrossRef Watts RJ, Finn DD, Cutler LM, Schmidt JT, Teel AL. 2007. Enhanced stability of hydrogen peroxide in the presence of subsurface solids. J Contam Hydrol 91:312–326.CrossRef
Zurück zum Zitat Watts RJ, Haeri-McCarrol TM, Teel AL. 2008. Effect of contaminant hydrophobicity in the treatment of contaminated soils by catalyzed H2O2 propagations (modified Fenton’s reagent). J Adv Oxid Technol 11:354–361. Watts RJ, Haeri-McCarrol TM, Teel AL. 2008. Effect of contaminant hydrophobicity in the treatment of contaminated soils by catalyzed H2O2 propagations (modified Fenton’s reagent). J Adv Oxid Technol 11:354–361.
Zurück zum Zitat Xu P, Achari G, Mahmoud M, Joshi RC. 2006. Application of Fenton’s reagent to remediate diesel contaminated soils. Pract Period Hazard Toxic Radioact Waste Manag 10:19–27.CrossRef Xu P, Achari G, Mahmoud M, Joshi RC. 2006. Application of Fenton’s reagent to remediate diesel contaminated soils. Pract Period Hazard Toxic Radioact Waste Manag 10:19–27.CrossRef
Zurück zum Zitat Yeh CKJ, Wu HM, Chen TC. 2003. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems. J Hazard Mater 96:29–51.CrossRef Yeh CKJ, Wu HM, Chen TC. 2003. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems. J Hazard Mater 96:29–51.CrossRef
Zurück zum Zitat Yeh CKJ, Chen WS, Chen WY. 2004. Production of hydroxyl radicals from the decomposition of hydrogen peroxide catalyzed by various iron oxides at pH 7. Pract Period Hazard Toxic Radioact Waste Manag 8:161–165.CrossRef Yeh CKJ, Chen WS, Chen WY. 2004. Production of hydroxyl radicals from the decomposition of hydrogen peroxide catalyzed by various iron oxides at pH 7. Pract Period Hazard Toxic Radioact Waste Manag 8:161–165.CrossRef
Zurück zum Zitat Yu X-Y, Barker JR. 2003. Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism. J Phys Chem A 107:1313–1324.CrossRef Yu X-Y, Barker JR. 2003. Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism. J Phys Chem A 107:1313–1324.CrossRef
Zurück zum Zitat Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodríguez JJ. 2005. Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39:9295–9302.CrossRef Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodríguez JJ. 2005. Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39:9295–9302.CrossRef
Zurück zum Zitat Zuo Z, Cai Z, Katsumura Y, Chitose N, Muroya Y. 1999. Reinvestigation of the acid-base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants. Radiat Phys Chem 55:15–23.CrossRef Zuo Z, Cai Z, Katsumura Y, Chitose N, Muroya Y. 1999. Reinvestigation of the acid-base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants. Radiat Phys Chem 55:15–23.CrossRef
Metadaten
Titel
Fundamentals of ISCO Using Hydrogen Peroxide
verfasst von
Benjamin G. Petri
Richard J. Watts
Amy L. Teel
Scott G. Huling
Richard A. Brown
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7826-4_2