Skip to main content

2017 | OriginalPaper | Buchkapitel

7. Fundamentals of Thermal Compression Bonding Technology and Process Materials for 2.5/3D Packages

verfasst von : Sangil Lee, Ph.D.

Erschienen in: 3D Microelectronic Packaging

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reviews bonding technology, which would be most problematic among technical challenges, to provide engineering sciences and fundamentals of the bonding technology and process materials. The in situ bonding technology termed as Thermal Compression Bonding (TCB) typically controls force, temperature, and displacement, which are applied to packages when to reflow microbump solder interconnect of 3D TSV die. Consequently, this chapter would help to understand how to design assembly building blocks adequate to the configuration of packages.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Lee, Fundamental Study of Underfill Void Formation in Flip Chip Assembly (Georgia Institute of Technology, Atlanta, 2009) S. Lee, Fundamental Study of Underfill Void Formation in Flip Chip Assembly (Georgia Institute of Technology, Atlanta, 2009)
2.
Zurück zum Zitat S. Lee, R. Master, D.F. Baldwin, Assembly yields characterization of high I/O density, fine pitch flip chip in package using no-flow underfill. In Electronic Components and Technology Conference, Reno, 2007, p. 35 S. Lee, R. Master, D.F. Baldwin, Assembly yields characterization of high I/O density, fine pitch flip chip in package using no-flow underfill. In Electronic Components and Technology Conference, Reno, 2007, p. 35
3.
Zurück zum Zitat S. Lee, R. Master, D.F. Baldwin, Assembly yields characterization and failure analysis of Flip chip in package using no-flow underfill. In International Wafer Level Packaging Congress, 2007, pp. 169–175 S. Lee, R. Master, D.F. Baldwin, Assembly yields characterization and failure analysis of Flip chip in package using no-flow underfill. In International Wafer Level Packaging Congress, 2007, pp. 169–175
4.
Zurück zum Zitat S. Lee, R. Master, D.F. Baldwin, Void formation study of high I/O density, fine pitch flip chip in package using no-flow underfill. In Surface Mount Technology Association International, 2007, pp. 525–530 S. Lee, R. Master, D.F. Baldwin, Void formation study of high I/O density, fine pitch flip chip in package using no-flow underfill. In Surface Mount Technology Association International, 2007, pp. 525–530
5.
Zurück zum Zitat S. Lee et al., Void formation study of flip chip in package using no-flow underfill. IEEE Trans. Electron. Packag. Manuf. 31(4), 297–305 (2008)CrossRef S. Lee et al., Void formation study of flip chip in package using no-flow underfill. IEEE Trans. Electron. Packag. Manuf. 31(4), 297–305 (2008)CrossRef
6.
Zurück zum Zitat S. Lee et al., Assembly yield characterization and void formation study on high I/O density and fine pitch flip chip in package using no-flow underfill. In Surface Mount Technology Association International, 2008, p. 673 S. Lee et al., Assembly yield characterization and void formation study on high I/O density and fine pitch flip chip in package using no-flow underfill. In Surface Mount Technology Association International, 2008, p. 673
7.
Zurück zum Zitat S. Lee, M.J. Yim, D. Baldwin, Void formation mechanism of flip chip in package using no-flow underfill. J. Electron. Packag. 131, 0310141–0310145 (2009) S. Lee, M.J. Yim, D. Baldwin, Void formation mechanism of flip chip in package using no-flow underfill. J. Electron. Packag. 131, 0310141–0310145 (2009)
8.
Zurück zum Zitat S. Lee et al., Near void-free assembly development of flip chip using no-flow underfill. IEEE Trans. Electron. Packag. Manuf. 32(2), 106–114 (2009)MathSciNetCrossRef S. Lee et al., Near void-free assembly development of flip chip using no-flow underfill. IEEE Trans. Electron. Packag. Manuf. 32(2), 106–114 (2009)MathSciNetCrossRef
9.
Zurück zum Zitat S. Lee, D. Baldwin, Heterogeneous void nucleation study in flip chip assembly process using no-flow underfill. ASME J. Electron. Packag, 136(1), 011005-011010 (2014) S. Lee, D. Baldwin, Heterogeneous void nucleation study in flip chip assembly process using no-flow underfill. ASME J. Electron. Packag, 136(1), 011005-011010 (2014)
10.
Zurück zum Zitat S. Lee, H.-M. Zhou, D. Baldwin, A numerical study of void nucleation and growth in flip chip assembly process. Model. Simul. Mater. Sci. Eng. 18(6), 065005–065025 (2010)CrossRef S. Lee, H.-M. Zhou, D. Baldwin, A numerical study of void nucleation and growth in flip chip assembly process. Model. Simul. Mater. Sci. Eng. 18(6), 065005–065025 (2010)CrossRef
11.
Zurück zum Zitat A. Eitan, K.Y. Hung, Thermo-compression bonding for fine-pitch copper-pillar flip-chip interconnect—tool features as enablers of unique technology. In Electronic Components and Technology Conference (ECTC), 2015 I.E. 65th, 2015 A. Eitan, K.Y. Hung, Thermo-compression bonding for fine-pitch copper-pillar flip-chip interconnect—tool features as enablers of unique technology. In Electronic Components and Technology Conference (ECTC), 2015 I.E. 65th, 2015
12.
Zurück zum Zitat J.H. Lau, The future of interposer for semiconductor IC packaging. Chip Scale Rev. 18(1), 32–36 (2014) J.H. Lau, The future of interposer for semiconductor IC packaging. Chip Scale Rev. 18(1), 32–36 (2014)
13.
Zurück zum Zitat Package Analysis of the SK-Hynix High Bandwidth Memory (HBM). 2015 Package Analysis of the SK-Hynix High Bandwidth Memory (HBM). 2015
14.
Zurück zum Zitat W.-S. Kwon et al. Enabling a manufacturable 3D technologies and ecosystem using 28 nm FPGA with stack silicon interconnect technology. In International Symposium on Microelectronics, International Microelectronics Assembly and Packaging Society, 2013 W.-S. Kwon et al. Enabling a manufacturable 3D technologies and ecosystem using 28 nm FPGA with stack silicon interconnect technology. In International Symposium on Microelectronics, International Microelectronics Assembly and Packaging Society, 2013
15.
Zurück zum Zitat K. Ichikawa, Key Technology Challenges in Computing Package and Assembly (Assembly Technology Development Japan, Intel Corporation, Chandle, 2014) K. Ichikawa, Key Technology Challenges in Computing Package and Assembly (Assembly Technology Development Japan, Intel Corporation, Chandle, 2014)
16.
Zurück zum Zitat S. Lau, Thermo-compression bonding for fine-pitch copper pillar flip chip interconnect. In SEMICON Advanced Packaging Symposium, 2014, ASMPT, Taiwan S. Lau, Thermo-compression bonding for fine-pitch copper pillar flip chip interconnect. In SEMICON Advanced Packaging Symposium, 2014, ASMPT, Taiwan
17.
Zurück zum Zitat Z. Li et al. Sensitivity analysis of Pb free reflow profile parameters toward flip chip on silicon assembly yield, reliability and intermetallic compound characteristics. In Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, Las Vegas, 2010 Z. Li et al. Sensitivity analysis of Pb free reflow profile parameters toward flip chip on silicon assembly yield, reliability and intermetallic compound characteristics. In Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, Las Vegas, 2010
18.
Zurück zum Zitat C.G. Woychik et al., in New approaches to develop a scalable 3D IC assembly method, San Diego, 2015 C.G. Woychik et al., in New approaches to develop a scalable 3D IC assembly method, San Diego, 2015
19.
Zurück zum Zitat D.S. Patterson, 2.5 D/3D Packaging enablement through copper pillar technology. Chip Scale Rev. 16(3), 20–26 (2012) D.S. Patterson, 2.5 D/3D Packaging enablement through copper pillar technology. Chip Scale Rev. 16(3), 20–26 (2012)
20.
Zurück zum Zitat C. Wong, S.H. Shi, G. Jefferson, High performance no-flow underfills for low-cost flip-chip applications: material characterization. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 21(3), 450–458 (1998)CrossRef C. Wong, S.H. Shi, G. Jefferson, High performance no-flow underfills for low-cost flip-chip applications: material characterization. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 21(3), 450–458 (1998)CrossRef
21.
Zurück zum Zitat C.P. Wong et al., Characterization of a no-flow underfill encapsulant during the solder reflow process. In Electronic Components and; Technology Conference, 48th IEEE, Seattle, 25–28 May 1998 C.P. Wong et al., Characterization of a no-flow underfill encapsulant during the solder reflow process. In Electronic Components and; Technology Conference, 48th IEEE, Seattle, 25–28 May 1998
22.
Zurück zum Zitat C.P. Wong, S.H. Shi, G. Jefferson, High performance no-flow underfills for low-cost flip-chip applications: materials characterization. IEEE Trans. Compon. Hybrids Manuf. Technol. 21(3), 450–458 (1998)CrossRef C.P. Wong, S.H. Shi, G. Jefferson, High performance no-flow underfills for low-cost flip-chip applications: materials characterization. IEEE Trans. Compon. Hybrids Manuf. Technol. 21(3), 450–458 (1998)CrossRef
23.
Zurück zum Zitat S. Shi, D. Lu, C.P. Wong, Study on the relationship between the surface composition of copper pads and no-flow underfill fluxing capability. IEEE Trans. Electron. Packag. Manuf. 22(4), 268–273 (1999)CrossRef S. Shi, D. Lu, C.P. Wong, Study on the relationship between the surface composition of copper pads and no-flow underfill fluxing capability. IEEE Trans. Electron. Packag. Manuf. 22(4), 268–273 (1999)CrossRef
24.
Zurück zum Zitat C.P. Wong, S.H. Shi, No-flow underfill of epoxy resin, anhydride, fluxing agent and surfactant US 6180696 B1, G.T.R. Corporation, 2001 C.P. Wong, S.H. Shi, No-flow underfill of epoxy resin, anhydride, fluxing agent and surfactant US 6180696 B1, G.T.R. Corporation, 2001
25.
Zurück zum Zitat H. Li et al., Syntheses and characterizations of thermally degradable epoxy resins. III. J. Polym. Sci. A Polym. Chem. 40(11), 1796–1807 (2002)CrossRef H. Li et al., Syntheses and characterizations of thermally degradable epoxy resins. III. J. Polym. Sci. A Polym. Chem. 40(11), 1796–1807 (2002)CrossRef
26.
Zurück zum Zitat Y. Shi, X. Wei, B. Tolla, Smart chemistry towards highly efficient soldering material formulation. In Proceedings of SMTA International, Rosemont, 2014, pp. 436–443 Y. Shi, X. Wei, B. Tolla, Smart chemistry towards highly efficient soldering material formulation. In Proceedings of SMTA International, Rosemont, 2014, pp. 436–443
27.
Zurück zum Zitat Z. Zhang, E. Beatty, C. Wong, Study on the curing process and the gelation of epoxy/anhydride system for no‐flow underfill for flip‐chip applications. Macromol. Mater. Eng. 288(4), 365–371 (2003)CrossRef Z. Zhang, E. Beatty, C. Wong, Study on the curing process and the gelation of epoxy/anhydride system for no‐flow underfill for flip‐chip applications. Macromol. Mater. Eng. 288(4), 365–371 (2003)CrossRef
28.
Zurück zum Zitat H. O'Neal et al., Comparison of Tg values for a graphite epoxy composite by differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic mechanical analysis (DMA). J. Adv. Mater. 26(3), 49–54 (1995) H. O'Neal et al., Comparison of Tg values for a graphite epoxy composite by differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic mechanical analysis (DMA). J. Adv. Mater. 26(3), 49–54 (1995)
29.
Zurück zum Zitat B. Schmaltz, Packaging materials for 2.5/3D technology. Int. Symp. Microelectron. 2013(1), 000276–000284 (2013)CrossRef B. Schmaltz, Packaging materials for 2.5/3D technology. Int. Symp. Microelectron. 2013(1), 000276–000284 (2013)CrossRef
30.
Zurück zum Zitat A. Lucero, G. Xu, D. Huitink, Low-к-package integration challenges and options for reliability qualification. In Reliability Physics Symposium (IRPS), 2012 I.E. International, Anaheim, 2012 A. Lucero, G. Xu, D. Huitink, Low-к-package integration challenges and options for reliability qualification. In Reliability Physics Symposium (IRPS), 2012 I.E. International, Anaheim, 2012
31.
Zurück zum Zitat J.L. Aw et al., Thermal compression bonding with non-conductive adhesive of 30 μm pitch Cu pillar micro bumps on organic substrate with bare Cu bondpads. In Electronics Packaging Technology Conference (EPTC), 2014 I.E. 16th, Singapore, Dec 2014 J.L. Aw et al., Thermal compression bonding with non-conductive adhesive of 30 μm pitch Cu pillar micro bumps on organic substrate with bare Cu bondpads. In Electronics Packaging Technology Conference (EPTC), 2014 I.E. 16th, Singapore, Dec 2014
32.
Zurück zum Zitat J. Jing-Ye et al., The development of high through-put micro-bump-bonded process with non-conductive paste (NCP). In Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012 7th International, Taipei, Oct 2012 J. Jing-Ye et al., The development of high through-put micro-bump-bonded process with non-conductive paste (NCP). In Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012 7th International, Taipei, Oct 2012
33.
Zurück zum Zitat D. Hiner et al., Multi-die chip on wafer thermo-compression bonding using non-conductive film. In 2015 I.E. 65th Electronic Components and Technology Conference (ECTC), San Diego, 2015 D. Hiner et al., Multi-die chip on wafer thermo-compression bonding using non-conductive film. In 2015 I.E. 65th Electronic Components and Technology Conference (ECTC), San Diego, 2015
Metadaten
Titel
Fundamentals of Thermal Compression Bonding Technology and Process Materials for 2.5/3D Packages
verfasst von
Sangil Lee, Ph.D.
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-44586-1_7

Neuer Inhalt