Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

07.02.2018 | Focus | Ausgabe 11/2018

Soft Computing 11/2018

Fuzziness-based online sequential extreme learning machine for classification problems

Zeitschrift:
Soft Computing > Ausgabe 11/2018
Autoren:
Weipeng Cao, Jinzhu Gao, Zhong Ming, Shubin Cai, Zhiguang Shan
Wichtige Hinweise
Communicated by X. Wang, A. K. Sangaiah and M. Pelillo.

Abstract

The qualities of new data used in the sequential learning phase of the online sequential extreme learning machine algorithm (OS-ELM) have a significant impact on the performance of OS-ELM. This paper proposes a novel data filter mechanism for OS-ELM from the perspective of fuzziness and a fuzziness-based online sequential extreme learning machine algorithm (FOS-ELM). In FOS-ELM, when new data arrive, a fuzzy classifier first picks out the meaningful data according to the fuzziness of each sample. Specifically, the new samples with high-output fuzziness are selected and then used in sequential learning. The experimental results on eight binary classification problems and three multiclass classification problems have shown that FOS-ELM updated by the new samples with high-output fuzziness has better generalization performance than OS-ELM. Since the unimportant data are discarded before sequential learning, FOS-ELM can save more memory and have higher computational efficiency. In addition, FOS-ELM can handle data one-by-one or chunk-by-chunk with fixed or varying sizes. The relationship between the fuzziness of new samples and the model performance is also studied in this paper, which is expected to provide some useful guidelines for improving the generalization ability of online sequential learning algorithms.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2018

Soft Computing 11/2018 Zur Ausgabe

Premium Partner

    Bildnachweise