Skip to main content
Erschienen in: Soft Computing 20/2019

08.10.2018 | Methodologies and Application

Fuzzy clustering approach for brain tumor tissue segmentation in magnetic resonance images

verfasst von: Iván A. Rodríguez-Méndez, Raquel. Ureña, Enrique Herrera-Viedma

Erschienen in: Soft Computing | Ausgabe 20/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The early and accurate detection of brain tumors is key to improve the quality of life and the survival of cancer patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. Consequently, automatic and reliable segmentation methods are required. However, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this contribution, we present a new model of segmentation of brain magnetic resonance images. In order to obtain the region of interest, we propose a hybrid approach that carries out both fuzzy c-mean algorithm and multiobjective optimization taking into account both compactness and separation in the clusters with the purpose of improving the cluster center detection and speed up the convergence time. This new segmentation approach is a key component of the proposed magnetic resonance image-based classification system for brain tumors. Experimental results are presented to demonstrate the effectiveness and efficiency of the proposed approach using the DICOM MRI database.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agrawal S, Panda R, Dora L (2014) A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches. Appl Soft Comput 24(Supplement C):522–533CrossRef Agrawal S, Panda R, Dora L (2014) A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches. Appl Soft Comput 24(Supplement C):522–533CrossRef
Zurück zum Zitat Ananthi VP, Balasubramaniam P, Kalaiselvi T (2016) A new fuzzy clustering algorithm for the segmentation of brain tumor. Soft Comput 20(12):4859–4879CrossRef Ananthi VP, Balasubramaniam P, Kalaiselvi T (2016) A new fuzzy clustering algorithm for the segmentation of brain tumor. Soft Comput 20(12):4859–4879CrossRef
Zurück zum Zitat Bakhshali MA (2017) Segmentation and enhancement of brain mr images using fuzzy clustering based on information theory. Soft Comput 21(22):6633–6640CrossRef Bakhshali MA (2017) Segmentation and enhancement of brain mr images using fuzzy clustering based on information theory. Soft Comput 21(22):6633–6640CrossRef
Zurück zum Zitat Bauer S, Wiest R, Nolte1 L, Reyes M (2013) A survey of mri-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97–R129 Bauer S, Wiest R, Nolte1 L, Reyes M (2013) A survey of mri-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97–R129
Zurück zum Zitat Bezdek J, Ehrlich R, Full W (1984) Fcm: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203CrossRef Bezdek J, Ehrlich R, Full W (1984) Fcm: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203CrossRef
Zurück zum Zitat Bong C, Mandava R (2011) Multi-objective nature-inspired clustering and classification techniques for image segmentation. Appl Soft Comput 11(4):3271–3282CrossRef Bong C, Mandava R (2011) Multi-objective nature-inspired clustering and classification techniques for image segmentation. Appl Soft Comput 11(4):3271–3282CrossRef
Zurück zum Zitat Coello C (2000) Handling preferences in evolutionary multiobjective optimization: a survey. IEEE Evol Comput 1:30–37 Coello C (2000) Handling preferences in evolutionary multiobjective optimization: a survey. IEEE Evol Comput 1:30–37
Zurück zum Zitat De Oliveira J, Machado A, Chavez G, Lopes A, Deserno T, Arajo A (2010) Mammosys: a content-based image retrieval system using breast density patterns. Comput Med Imaging Graph 99:289–297 De Oliveira J, Machado A, Chavez G, Lopes A, Deserno T, Arajo A (2010) Mammosys: a content-based image retrieval system using breast density patterns. Comput Med Imaging Graph 99:289–297
Zurück zum Zitat Deb K, Beyer H (2001) Self-adaptive genetic algorithms with simulated binary crossover. Evol Comput 9(2):197–221CrossRef Deb K, Beyer H (2001) Self-adaptive genetic algorithms with simulated binary crossover. Evol Comput 9(2):197–221CrossRef
Zurück zum Zitat Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197CrossRef Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197CrossRef
Zurück zum Zitat Dou W, Wu Q, Chen Y, Ruan S, Constans J (2005) Fuzzy modelling of different tumorous cerebral tissues on mri images based on fusion of feature information. In: Engineering in Medicine and Biology Society, 2005, pp. 3104–3107 Dou W, Wu Q, Chen Y, Ruan S, Constans J (2005) Fuzzy modelling of different tumorous cerebral tissues on mri images based on fusion of feature information. In: Engineering in Medicine and Biology Society, 2005, pp. 3104–3107
Zurück zum Zitat Drevelegas A, Papanikolaou N (2011) Imaging modalities in brain tumors. Springer, Berlin, pp 13–33 Drevelegas A, Papanikolaou N (2011) Imaging modalities in brain tumors. Springer, Berlin, pp 13–33
Zurück zum Zitat Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57MathSciNetMATHCrossRef Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57MathSciNetMATHCrossRef
Zurück zum Zitat El-Dahshan ESA, Mohsen HM, Revett K, Salem ABM (2014) Computer-aided diagnosis of human brain tumor through mri: A survey and a new algorithm. Expert Syst Appl 41(11):5526–5545CrossRef El-Dahshan ESA, Mohsen HM, Revett K, Salem ABM (2014) Computer-aided diagnosis of human brain tumor through mri: A survey and a new algorithm. Expert Syst Appl 41(11):5526–5545CrossRef
Zurück zum Zitat Emre C, Kingravi H, Vela P (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210CrossRef Emre C, Kingravi H, Vela P (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210CrossRef
Zurück zum Zitat Friston K, Chu C, Mourao-Miranda J, Hulme O, Rees G, Penny W, Ashburner J (2008) Bayesian decoding of brain images. Neuroimage 39(1):181–205CrossRef Friston K, Chu C, Mourao-Miranda J, Hulme O, Rees G, Penny W, Ashburner J (2008) Bayesian decoding of brain images. Neuroimage 39(1):181–205CrossRef
Zurück zum Zitat Georgiadis P, Cavouras D, Kalatzis I, Daskalakis A, Kagadis G, Sifaki K, Malamas M, Nikiforidis G, Solomou E (2008) Improving brain tumor characterization on mri by probabilistic neural networks and non-linear transformation of textural features. Comput Methods Programs Biomed 89(1):24–32CrossRef Georgiadis P, Cavouras D, Kalatzis I, Daskalakis A, Kagadis G, Sifaki K, Malamas M, Nikiforidis G, Solomou E (2008) Improving brain tumor characterization on mri by probabilistic neural networks and non-linear transformation of textural features. Comput Methods Programs Biomed 89(1):24–32CrossRef
Zurück zum Zitat Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on mri brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438CrossRef Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on mri brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438CrossRef
Zurück zum Zitat Huang CW, Lin KP, Wu MC, Hung KC, Liu GS, Jen CH (2015) Intuitionistic fuzzy c-means clustering algorithm with neighborhood attraction in segmenting medical image. Soft Comput 19(2):459–470CrossRef Huang CW, Lin KP, Wu MC, Hung KC, Liu GS, Jen CH (2015) Intuitionistic fuzzy c-means clustering algorithm with neighborhood attraction in segmenting medical image. Soft Comput 19(2):459–470CrossRef
Zurück zum Zitat Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331MATHCrossRef Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331MATHCrossRef
Zurück zum Zitat Kinani JMV, Rosales-Silva AJ, Gallegos-Funes FJ, Arellano A (2014) Fuzzy c-means applied to mri images for an automatic lesion detection using image enhancement and constrained clustering. In: 2014 4th International conference on image processing theory, tools and applications (IPTA), pp. 1–7 . https://doi.org/10.1109/IPTA.2014.7001987 Kinani JMV, Rosales-Silva AJ, Gallegos-Funes FJ, Arellano A (2014) Fuzzy c-means applied to mri images for an automatic lesion detection using image enhancement and constrained clustering. In: 2014 4th International conference on image processing theory, tools and applications (IPTA), pp. 1–7 . https://​doi.​org/​10.​1109/​IPTA.​2014.​7001987
Zurück zum Zitat Kumar D, Nguyen T, Gauthier S, Raj A (2012) Bayesian algorithm using spatial priors for multiexponential t(2) relaxometry from multiecho spin echo MRI. Magn Reson Med 12(4):1536–1543CrossRef Kumar D, Nguyen T, Gauthier S, Raj A (2012) Bayesian algorithm using spatial priors for multiexponential t(2) relaxometry from multiecho spin echo MRI. Magn Reson Med 12(4):1536–1543CrossRef
Zurück zum Zitat Maulik U (2009) Medical image segmentation using genetic algorithms. IEEE Trans Inf Technol Biomed 13(2):166–173CrossRef Maulik U (2009) Medical image segmentation using genetic algorithms. IEEE Trans Inf Technol Biomed 13(2):166–173CrossRef
Zurück zum Zitat Meschino G, Comas D, Vallarin V, Scandurra A, Passoni L (2014) Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps. Neurocomputing 147(5):47–59 Meschino G, Comas D, Vallarin V, Scandurra A, Passoni L (2014) Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps. Neurocomputing 147(5):47–59
Zurück zum Zitat Mukhopadhyay A, Maulik U, Bandyopadhyay S (2011) Gene expression data analysis using multiobjective clustering improved with svm based ensemble. Silico Biol 11(1–2):19–27 Mukhopadhyay A, Maulik U, Bandyopadhyay S (2011) Gene expression data analysis using multiobjective clustering improved with svm based ensemble. Silico Biol 11(1–2):19–27
Zurück zum Zitat Pham D, Prince J (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18(9):737–752CrossRef Pham D, Prince J (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18(9):737–752CrossRef
Zurück zum Zitat Phillips W, Velthuizen R, Phuphanich S, Hall L, Clarke L, Silbiger M (1995) Application of fuzzy c-means segmentation technique for tissue differentiation in mr images of a hemorrhagic glioblastoma multiforme. Magn Reson Imaging 13(2):277–290CrossRef Phillips W, Velthuizen R, Phuphanich S, Hall L, Clarke L, Silbiger M (1995) Application of fuzzy c-means segmentation technique for tissue differentiation in mr images of a hemorrhagic glioblastoma multiforme. Magn Reson Imaging 13(2):277–290CrossRef
Zurück zum Zitat Rosas-Romero R, Rodriguez-Asomoza J (2003) 4-d active contour snake model for object representation from medical images. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society (IEEE Cat. No.03CH37439), vol. 1, pp. 717–719 Vol 1 Rosas-Romero R, Rodriguez-Asomoza J (2003) 4-d active contour snake model for object representation from medical images. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society (IEEE Cat. No.03CH37439), vol. 1, pp. 717–719 Vol 1
Zurück zum Zitat Schad LR, Blml S, Zuna I (1993) Ix. mr tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging 11(6):889–896CrossRef Schad LR, Blml S, Zuna I (1993) Ix. mr tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging 11(6):889–896CrossRef
Zurück zum Zitat Shattuck D, Leahy R (2002) Brainsuite: an automated cortical surface identification tool. Med Image Anal 6(2):129–142CrossRef Shattuck D, Leahy R (2002) Brainsuite: an automated cortical surface identification tool. Med Image Anal 6(2):129–142CrossRef
Zurück zum Zitat Somasundaram K, Kalaiselvi T (2011) Automatic brain extraction methods for t1 magnetic resonance images using region labeling and morphological operations. Comput Biol Med 41(8):716–725CrossRef Somasundaram K, Kalaiselvi T (2011) Automatic brain extraction methods for t1 magnetic resonance images using region labeling and morphological operations. Comput Biol Med 41(8):716–725CrossRef
Zurück zum Zitat Stephen T, Wong C, Huang H (1996) Design methods and architectural issue and integrated medical image data base systems. Comput Med Imaging Graph 20(4):285–299CrossRef Stephen T, Wong C, Huang H (1996) Design methods and architectural issue and integrated medical image data base systems. Comput Med Imaging Graph 20(4):285–299CrossRef
Zurück zum Zitat Ureña R, Chiclana F, Fujita H, Herrera-Viedma E (2015) Confidence-consistency driven group decision making approach with incomplete reciprocal intuitionistic preference relations. Knowl Based Syst 89:86–96CrossRef Ureña R, Chiclana F, Fujita H, Herrera-Viedma E (2015) Confidence-consistency driven group decision making approach with incomplete reciprocal intuitionistic preference relations. Knowl Based Syst 89:86–96CrossRef
Zurück zum Zitat Ureña R, Martínez-Cañada P, Gómez-López JM, Morillas C, Pelayo F (2012) Real-time tone mapping on gpu and fpga. EURASIP Journal on Image and Video Processing (1) Ureña R, Martínez-Cañada P, Gómez-López JM, Morillas C, Pelayo F (2012) Real-time tone mapping on gpu and fpga. EURASIP Journal on Image and Video Processing (1)
Zurück zum Zitat Ureña R, Morillas C, Pelayo FJ (2013) Real-time bio-inspired contrast enhancement on gpu. Neurocomputing 121(Supplement C):40–52CrossRef Ureña R, Morillas C, Pelayo FJ (2013) Real-time bio-inspired contrast enhancement on gpu. Neurocomputing 121(Supplement C):40–52CrossRef
Zurück zum Zitat Vaidyanathan M, Clarke L, Velthuizen R, Phuphanich S, Bensaid A, Hall L, Bezdek J, Greenberg H, Trotti A, Silbiger M (1995) Comparison of supervised mri segmentation methods for tumor volume determination during therapy. Magn Reson Imaging 13(5):719–728CrossRef Vaidyanathan M, Clarke L, Velthuizen R, Phuphanich S, Bensaid A, Hall L, Bezdek J, Greenberg H, Trotti A, Silbiger M (1995) Comparison of supervised mri segmentation methods for tumor volume determination during therapy. Magn Reson Imaging 13(5):719–728CrossRef
Zurück zum Zitat Wang XY, Bu J (2010) A fast and robust image segmentation using fcm with spatial information. Digit Signal Process 20(4):1173–1182CrossRef Wang XY, Bu J (2010) A fast and robust image segmentation using fcm with spatial information. Digit Signal Process 20(4):1173–1182CrossRef
Zurück zum Zitat Wells W, Grimson W, Kikinis R, Jolesz F (1996) Adaptive segmentation of mri data. IEEE Trans Med Imaging 15(4):429–442CrossRef Wells W, Grimson W, Kikinis R, Jolesz F (1996) Adaptive segmentation of mri data. IEEE Trans Med Imaging 15(4):429–442CrossRef
Zurück zum Zitat Xie X, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847CrossRef Xie X, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847CrossRef
Zurück zum Zitat Xu C, Pham D, Rettmann M, Yu D, Prince J (1999) Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18(6):467–480CrossRef Xu C, Pham D, Rettmann M, Yu D, Prince J (1999) Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18(6):467–480CrossRef
Zurück zum Zitat Yang X, Fei B (2011) A multiscale and multiblock fuzzy c-means classification method for brain mr images. Med Phys 38(6):2879–2891CrossRef Yang X, Fei B (2011) A multiscale and multiblock fuzzy c-means classification method for brain mr images. Med Phys 38(6):2879–2891CrossRef
Zurück zum Zitat Yang Y, Chen JX, Kim W (2003) Gene expression clustering and 3d visualization. Comput Sci Eng 5(5):37–43CrossRef Yang Y, Chen JX, Kim W (2003) Gene expression clustering and 3d visualization. Comput Sci Eng 5(5):37–43CrossRef
Zurück zum Zitat Yu J, Cheng Q, Huang H (2004) Analysis of the weighting exponent in the fcm. IEEE Trans Syst Man Cybern Part B (Cybern) 34(1):634–639CrossRef Yu J, Cheng Q, Huang H (2004) Analysis of the weighting exponent in the fcm. IEEE Trans Syst Man Cybern Part B (Cybern) 34(1):634–639CrossRef
Metadaten
Titel
Fuzzy clustering approach for brain tumor tissue segmentation in magnetic resonance images
verfasst von
Iván A. Rodríguez-Méndez
Raquel. Ureña
Enrique Herrera-Viedma
Publikationsdatum
08.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 20/2019
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-018-3565-3

Weitere Artikel der Ausgabe 20/2019

Soft Computing 20/2019 Zur Ausgabe