Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

08.10.2018 | Methodologies and Application | Ausgabe 20/2019

Soft Computing 20/2019

Fuzzy clustering approach for brain tumor tissue segmentation in magnetic resonance images

Zeitschrift:
Soft Computing > Ausgabe 20/2019
Autoren:
Iván A. Rodríguez-Méndez, Raquel. Ureña, Enrique Herrera-Viedma
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The early and accurate detection of brain tumors is key to improve the quality of life and the survival of cancer patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. Consequently, automatic and reliable segmentation methods are required. However, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this contribution, we present a new model of segmentation of brain magnetic resonance images. In order to obtain the region of interest, we propose a hybrid approach that carries out both fuzzy c-mean algorithm and multiobjective optimization taking into account both compactness and separation in the clusters with the purpose of improving the cluster center detection and speed up the convergence time. This new segmentation approach is a key component of the proposed magnetic resonance image-based classification system for brain tumors. Experimental results are presented to demonstrate the effectiveness and efficiency of the proposed approach using the DICOM MRI database.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 20/2019

Soft Computing 20/2019 Zur Ausgabe

Premium Partner

    Bildnachweise