Skip to main content
Erschienen in: Wireless Networks 5/2020

04.03.2020

Fuzzy logic rate adjustment controls using a circuit breaker for persistent congestion in wireless sensor networks

verfasst von: Phet Aimtongkham, Sovannarith Heng, Paramate Horkaew, Tri Gia Nguyen, Chakchai So-In

Erschienen in: Wireless Networks | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Congestion control is necessary for enhancing the quality of service in wireless sensor networks (WSNs). With advances in sensing technology, a substantial amount of data traversing a WSN can easily cause congestion, especially given limited resources. As a consequence, network throughput decreases due to significant packet loss and increased delays. Moreover, congestion not only adversely affects the data traffic and transmission success rate but also excessively dissipates energy, which in turn reduces the sensor node and, hence, network lifespans. A typical congestion control strategy was designed to address congestion due to transient events. However, on many occasions, congestion was caused by repeated anomalies and, as a consequence, persisted for an extended period. This paper thus proposes a congestion control strategy that can eliminate both types of congestion. The study adopted a fuzzy logic algorithm for resolving congestion in three key areas: optimal path selection, traffic rate adjustment that incorporates a momentum indicator, and an optimal timeout setting for a circuit breaker to limit persistent congestion. With fuzzy logic, decisions can be made efficiently based on probabilistic weights derived from fitness functions of congestion-relevant parameters. The simulation and experimental results reported herein demonstrate that the proposed strategy outperforms state-of-the-art strategies in terms of the traffic rate, transmission delay, queue utilization, and energy efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Ovsthus, K., & Kristensen, L. M. (2014). An industrial perspective on wireless sensor networks—A survey of requirements, protocols, and challenges. IEEE Communications Surveys & Tutorials,16(3), 1391–1412.CrossRef Ovsthus, K., & Kristensen, L. M. (2014). An industrial perspective on wireless sensor networks—A survey of requirements, protocols, and challenges. IEEE Communications Surveys & Tutorials,16(3), 1391–1412.CrossRef
4.
Zurück zum Zitat Mahmood, M. A., Seah, W. K., & Welch, I. (2015). Reliability in wireless sensor networks: A survey and challenges ahead. Computer Networks,79, 166–187.CrossRef Mahmood, M. A., Seah, W. K., & Welch, I. (2015). Reliability in wireless sensor networks: A survey and challenges ahead. Computer Networks,79, 166–187.CrossRef
5.
Zurück zum Zitat Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks,67, 104–122.CrossRef Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks,67, 104–122.CrossRef
6.
Zurück zum Zitat Khan, J. A., Qureshi, H. K., & Iqbal, A. (2015). Energy management in wireless sensor networks: A survey. Computers & Electrical Engineering,41, 159–176.CrossRef Khan, J. A., Qureshi, H. K., & Iqbal, A. (2015). Energy management in wireless sensor networks: A survey. Computers & Electrical Engineering,41, 159–176.CrossRef
7.
Zurück zum Zitat Erdelj, M., Król, M., & Natalizio, E. (2017). Wireless sensor networks and multi-UAV systems for natural disaster management. Computer Networks,124, 72–86.CrossRef Erdelj, M., Król, M., & Natalizio, E. (2017). Wireless sensor networks and multi-UAV systems for natural disaster management. Computer Networks,124, 72–86.CrossRef
8.
Zurück zum Zitat Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications,60, 192–219.CrossRef Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications,60, 192–219.CrossRef
9.
Zurück zum Zitat Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials,19(2), 828–854.CrossRef Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials,19(2), 828–854.CrossRef
10.
Zurück zum Zitat Ghaffari, A. (2015). Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer Applications,52, 101–115.CrossRef Ghaffari, A. (2015). Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer Applications,52, 101–115.CrossRef
11.
Zurück zum Zitat Hasan, M. Z., Al-Rizzo, H., & Al-Turjman, F. (2017). A survey on multipath routing protocols for QoS assurances in real-time wireless multimedia sensor networks. IEEE Communications Surveys & Tutorials,19(3), 1424–1456.CrossRef Hasan, M. Z., Al-Rizzo, H., & Al-Turjman, F. (2017). A survey on multipath routing protocols for QoS assurances in real-time wireless multimedia sensor networks. IEEE Communications Surveys & Tutorials,19(3), 1424–1456.CrossRef
12.
Zurück zum Zitat Shah, S. A., Nazir, B., & Khan, I. A. (2017). Congestion control algorithms in wireless sensor networks: Trends and opportunities. Journal of King Saud University-Computer and Information Sciences,29(3), 236–245.CrossRef Shah, S. A., Nazir, B., & Khan, I. A. (2017). Congestion control algorithms in wireless sensor networks: Trends and opportunities. Journal of King Saud University-Computer and Information Sciences,29(3), 236–245.CrossRef
13.
Zurück zum Zitat Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., & Polakos, P. (2016). Wireless sensor network virtualization: A survey. IEEE Communications Surveys & Tutorials,18(1), 553–576.CrossRef Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., & Polakos, P. (2016). Wireless sensor network virtualization: A survey. IEEE Communications Surveys & Tutorials,18(1), 553–576.CrossRef
14.
Zurück zum Zitat Lara, R., Benítez, D., Caamaño, A., Zennaro, M., & Rojo-Álvarez, J. L. (2015). On real-time performance evaluation of volcano-monitoring systems with wireless sensor networks. IEEE Sensors Journal,15(6), 3514–3523.CrossRef Lara, R., Benítez, D., Caamaño, A., Zennaro, M., & Rojo-Álvarez, J. L. (2015). On real-time performance evaluation of volcano-monitoring systems with wireless sensor networks. IEEE Sensors Journal,15(6), 3514–3523.CrossRef
15.
Zurück zum Zitat Harrison, D. C., Seah, W. K., & Rayudu, R. (2016). Rare event detection and propagation in wireless sensor networks. ACM Computing Surveys (CSUR),48(4), 58.CrossRef Harrison, D. C., Seah, W. K., & Rayudu, R. (2016). Rare event detection and propagation in wireless sensor networks. ACM Computing Surveys (CSUR),48(4), 58.CrossRef
16.
Zurück zum Zitat Xu, C., Zhao, J., & Muntean, G. M. (2016). Congestion control design for multipath transport protocols: A survey. IEEE Communications Surveys & Tutorials,18(4), 2948–2969.CrossRef Xu, C., Zhao, J., & Muntean, G. M. (2016). Congestion control design for multipath transport protocols: A survey. IEEE Communications Surveys & Tutorials,18(4), 2948–2969.CrossRef
17.
Zurück zum Zitat Pham, Q. V., & Hwang, W. J. (2017). Network utility maximization-based congestion control over wireless networks: A survey and potential directives. IEEE Communications Surveys & Tutorials,19(2), 1173–1200.CrossRef Pham, Q. V., & Hwang, W. J. (2017). Network utility maximization-based congestion control over wireless networks: A survey and potential directives. IEEE Communications Surveys & Tutorials,19(2), 1173–1200.CrossRef
18.
Zurück zum Zitat Zhou, D., Song, W., & Cheng, Y. (2013). A study of fair bandwidth sharing with AIMD-based multipath congestion control. IEEE Wireless Communications Letters,2(3), 299–302.CrossRef Zhou, D., Song, W., & Cheng, Y. (2013). A study of fair bandwidth sharing with AIMD-based multipath congestion control. IEEE Wireless Communications Letters,2(3), 299–302.CrossRef
19.
Zurück zum Zitat Ding, W., Tang, L., & Ji, S. (2016). Optimizing routing based on congestion control for wireless sensor networks. Wireless Networks,22(3), 915–925.CrossRef Ding, W., Tang, L., & Ji, S. (2016). Optimizing routing based on congestion control for wireless sensor networks. Wireless Networks,22(3), 915–925.CrossRef
20.
Zurück zum Zitat Wan, C. Y., Eisenman, S. B., & Campbell, A. T. (2003). CODA: congestion detection and avoidance in sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 266–279). ACM. Wan, C. Y., Eisenman, S. B., & Campbell, A. T. (2003). CODA: congestion detection and avoidance in sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 266–279). ACM.
21.
Zurück zum Zitat Bentaleb, A., Taani, B., Begen, A. C., Timmerer, C., & Zimmermann, R. (2018). A survey on bitrate adaptation schemes for streaming media over HTTP. IEEE Communications Surveys & Tutorials. Bentaleb, A., Taani, B., Begen, A. C., Timmerer, C., & Zimmermann, R. (2018). A survey on bitrate adaptation schemes for streaming media over HTTP. IEEE Communications Surveys & Tutorials.
22.
Zurück zum Zitat Herrero, R. (2017). Integrating HEC with circuit breakers and multipath RTP to improve RTC media quality. Telecommunication Systems,64(1), 211–221.MathSciNetCrossRef Herrero, R. (2017). Integrating HEC with circuit breakers and multipath RTP to improve RTC media quality. Telecommunication Systems,64(1), 211–221.MathSciNetCrossRef
23.
Zurück zum Zitat Nayak, P., & Devulapalli, A. (2016). A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors Journal,16(1), 137–144.CrossRef Nayak, P., & Devulapalli, A. (2016). A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors Journal,16(1), 137–144.CrossRef
24.
Zurück zum Zitat Tao, L. Q., & Yu, F. Q. (2010). ECODA: enhanced congestion detection and avoidance for multiple class of traffic in sensor networks. IEEE Transactions on Consumer Electronics,56(3), 1387–1394.CrossRef Tao, L. Q., & Yu, F. Q. (2010). ECODA: enhanced congestion detection and avoidance for multiple class of traffic in sensor networks. IEEE Transactions on Consumer Electronics,56(3), 1387–1394.CrossRef
25.
Zurück zum Zitat Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2003). Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking (ToN),11(1), 2–16.CrossRef Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2003). Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking (ToN),11(1), 2–16.CrossRef
26.
Zurück zum Zitat Gholipour, M., Haghighat, A. T., & Meybodi, M. R. (2017). Hop-by-Hop Congestion Avoidance in wireless sensor networks based on genetic support vector machine. Neurocomputing,223, 63–76.CrossRef Gholipour, M., Haghighat, A. T., & Meybodi, M. R. (2017). Hop-by-Hop Congestion Avoidance in wireless sensor networks based on genetic support vector machine. Neurocomputing,223, 63–76.CrossRef
27.
Zurück zum Zitat Narawade, V., & Kolekar, U. D. (2018). ACSRO: Adaptive cuckoo search based rate adjustment for optimized congestion avoidance and control in wireless sensor networks. Alexandria Engineering Journal,57(1), 131–145.CrossRef Narawade, V., & Kolekar, U. D. (2018). ACSRO: Adaptive cuckoo search based rate adjustment for optimized congestion avoidance and control in wireless sensor networks. Alexandria Engineering Journal,57(1), 131–145.CrossRef
28.
Zurück zum Zitat Singh, K., Singh, K., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks,138, 90–107.CrossRef Singh, K., Singh, K., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks,138, 90–107.CrossRef
29.
Zurück zum Zitat Jaiswal, S., & Yadav, A. (2013). Fuzzy based adaptive congestion control in wireless sensor networks. In Contemporary computing (IC3), 2013 sixth international conference on (pp. 433–438). IEEE. Jaiswal, S., & Yadav, A. (2013). Fuzzy based adaptive congestion control in wireless sensor networks. In Contemporary computing (IC3), 2013 sixth international conference on (pp. 433–438). IEEE.
30.
Zurück zum Zitat Sonmez, C., Incel, O. D., Isik, S., Donmez, M. Y., & Ersoy, C. (2014). Fuzzy-based congestion control for wireless multimedia sensor networks. EURASIP Journal on Wireless Communications and Networking,2014(1), 63.CrossRef Sonmez, C., Incel, O. D., Isik, S., Donmez, M. Y., & Ersoy, C. (2014). Fuzzy-based congestion control for wireless multimedia sensor networks. EURASIP Journal on Wireless Communications and Networking,2014(1), 63.CrossRef
31.
Zurück zum Zitat Hatamian, M., Bardmily, M. A., Asadboland, M., Hatamian, M., & Barati, H. (2016). Congestion-aware routing and fuzzy-based rate controller for wireless sensor networks. Radioengineering,25(1), 114–123.CrossRef Hatamian, M., Bardmily, M. A., Asadboland, M., Hatamian, M., & Barati, H. (2016). Congestion-aware routing and fuzzy-based rate controller for wireless sensor networks. Radioengineering,25(1), 114–123.CrossRef
32.
Zurück zum Zitat Callaway, E., Gorday, P., Hester, L., Gutierrez, J. A., Naeve, M., Heile, B., et al. (2002). Home networking with IEEE 802.15. 4: A developing standard for low-rate wireless personal area networks. IEEE Communications Magazine,40(8), 70–77.CrossRef Callaway, E., Gorday, P., Hester, L., Gutierrez, J. A., Naeve, M., Heile, B., et al. (2002). Home networking with IEEE 802.15. 4: A developing standard for low-rate wireless personal area networks. IEEE Communications Magazine,40(8), 70–77.CrossRef
33.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670.CrossRef
34.
Zurück zum Zitat Logambigai, R., & Kannan, A. (2016). Fuzzy logic based unequal clustering for wireless sensor networks. Wireless Networks,22(3), 945–957.CrossRef Logambigai, R., & Kannan, A. (2016). Fuzzy logic based unequal clustering for wireless sensor networks. Wireless Networks,22(3), 945–957.CrossRef
35.
Zurück zum Zitat Crossbow Technology Inc. (2006) MiCaZ Datasheet, Document Part No. 6020-0060-04. Crossbow Technology Inc. (2006) MiCaZ Datasheet, Document Part No. 6020-0060-04.
36.
Zurück zum Zitat Low, R. K. Y., & Tan, E. (2016). The role of analyst forecasts in the momentum effect. International Review of Financial Analysis,48, 67–84.CrossRef Low, R. K. Y., & Tan, E. (2016). The role of analyst forecasts in the momentum effect. International Review of Financial Analysis,48, 67–84.CrossRef
37.
Zurück zum Zitat Gao, L., Han, Y., Li, S. Z., & Zhou, G. (2018). Market intraday momentum. Journal of Financial Economics,129, 394–414.CrossRef Gao, L., Han, Y., Li, S. Z., & Zhou, G. (2018). Market intraday momentum. Journal of Financial Economics,129, 394–414.CrossRef
38.
Zurück zum Zitat Marshall, B. R., Nguyen, N. H., & Visaltanachoti, N. (2017). Time series momentum and moving average trading rules. Quantitative Finance,17(3), 405–421.MathSciNetCrossRef Marshall, B. R., Nguyen, N. H., & Visaltanachoti, N. (2017). Time series momentum and moving average trading rules. Quantitative Finance,17(3), 405–421.MathSciNetCrossRef
39.
Zurück zum Zitat Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E. W. T., & Liu, M. (2015). Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review. Applied Soft Computing,36, 534–551.CrossRef Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E. W. T., & Liu, M. (2015). Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review. Applied Soft Computing,36, 534–551.CrossRef
40.
Zurück zum Zitat Vu, V. H., Mashal, I., & Chung, T. Y. (2017). A novel bandwidth estimation method based on MACD for DASH. KSII Transactions on Internet & Information Systems, 11(3). Vu, V. H., Mashal, I., & Chung, T. Y. (2017). A novel bandwidth estimation method based on MACD for DASH. KSII Transactions on Internet & Information Systems, 11(3).
41.
Zurück zum Zitat Kua, J., Armitage, G., & Branch, P. (2017). A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP. IEEE Communications Surveys & Tutorials,19(3), 1842–1866.CrossRef Kua, J., Armitage, G., & Branch, P. (2017). A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP. IEEE Communications Surveys & Tutorials,19(3), 1842–1866.CrossRef
44.
Zurück zum Zitat Eaton, J. W., Bateman, D., & Hauberg, S. (2013). Gnu octave. GNU Octave. Eaton, J. W., Bateman, D., & Hauberg, S. (2013). Gnu octave. GNU Octave.
Metadaten
Titel
Fuzzy logic rate adjustment controls using a circuit breaker for persistent congestion in wireless sensor networks
verfasst von
Phet Aimtongkham
Sovannarith Heng
Paramate Horkaew
Tri Gia Nguyen
Chakchai So-In
Publikationsdatum
04.03.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02289-0

Weitere Artikel der Ausgabe 5/2020

Wireless Networks 5/2020 Zur Ausgabe

Neuer Inhalt