Skip to main content

2018 | OriginalPaper | Buchkapitel

Fuzzy Physiologically Based Pharmacokinetic (PBPK) Model of Chloroform in Swimming Pools

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chloroform is one of the most prevalent disinfection byproducts (DBPs) formed in swimming pools through reactions between disinfectants and organic contaminants. Chloroform and related DBPs have been a subject of research in exposure and human health risk assessments over the last several decades. Physiologically based pharmacokinetic (PBPK) models are one tool that is being used increasingly by researchers to evaluate the health impacts of swimming pool exposures. These models simulate the absorption, distribution, metabolism and excretion of chemicals in the human body to assess doses to sensitive organs. As with any model, uncertainties arise from variability and imprecision in inputs. Among the most uncertain model parameters are the partition coefficients which describe uptake and distribution of chemical to different tissues of the body. In this paper, a fuzzy based model is presented for improving the description and incorporation of uncertain parameters into the model. The fuzzy PBPK model compares well with the deterministic model and measured concentrations while providing more information about uncertainty.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
While models that evaluate environmental exposures are technically considered “toxico” kinetic models, much of the literature refers to PBPK because the pharmaceutical industry originally drove much of this research. The terms will be used interchangeably here.
 
2
For more detailed discussion of fuzzy sets, fuzzy numbers, fuzzy arithmetic and their use in modeling, see [48, 4952].
 
Literatur
1.
Zurück zum Zitat C.M. Villanueva, S. Cordier, L. Font-Ribera, L.A. Salas, P. Levallois, Overview of disinfection by-products and associated health effects. Curr. Environ. Health Rep. 2015(2), 107–115 (2015)CrossRef C.M. Villanueva, S. Cordier, L. Font-Ribera, L.A. Salas, P. Levallois, Overview of disinfection by-products and associated health effects. Curr. Environ. Health Rep. 2015(2), 107–115 (2015)CrossRef
2.
Zurück zum Zitat S.D. Richardson et al., Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat. Res. 636(1–3), 178–242 (2007)CrossRef S.D. Richardson et al., Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat. Res. 636(1–3), 178–242 (2007)CrossRef
3.
Zurück zum Zitat C.M. Villanueva et al., Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. Am. J. Epidemiol. 165(2), 148–156 (2007)CrossRef C.M. Villanueva et al., Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. Am. J. Epidemiol. 165(2), 148–156 (2007)CrossRef
4.
Zurück zum Zitat M.J. Nieuwenhuijsen, M.B. Toledano, N.E. Eaton, J. Fawell, P. Elliott, Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup. Environ. Med. 57(2), 73–85 (2000)CrossRef M.J. Nieuwenhuijsen, M.B. Toledano, N.E. Eaton, J. Fawell, P. Elliott, Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup. Environ. Med. 57(2), 73–85 (2000)CrossRef
5.
Zurück zum Zitat M. Goodman, S. Hays, Asthma and swimming: a meta-analysis. J. Asthma 45(8), 639–647 (2008)CrossRef M. Goodman, S. Hays, Asthma and swimming: a meta-analysis. J. Asthma 45(8), 639–647 (2008)CrossRef
6.
Zurück zum Zitat J.H. Jacobs et al., Exposure to trichloramine and respiratory symptoms in indoor swimming pool workers. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 29(4), 690–698 (2007) J.H. Jacobs et al., Exposure to trichloramine and respiratory symptoms in indoor swimming pool workers. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 29(4), 690–698 (2007)
7.
Zurück zum Zitat B. Lévesque et al., The determinants of prevalence of health complaints among young competitive swimmers. Int. Arch. Occup. Environ. Health 80(1), 32–39 (2006)CrossRef B. Lévesque et al., The determinants of prevalence of health complaints among young competitive swimmers. Int. Arch. Occup. Environ. Health 80(1), 32–39 (2006)CrossRef
8.
Zurück zum Zitat K. Thickett, J. McCoach, J. Gerber, S. Sadhra, P. Burge, Occupational asthma caused by chloramines in indoor swimming-pool air. Eur. Respir. J. 19(5), 827–832 (2002)CrossRef K. Thickett, J. McCoach, J. Gerber, S. Sadhra, P. Burge, Occupational asthma caused by chloramines in indoor swimming-pool air. Eur. Respir. J. 19(5), 827–832 (2002)CrossRef
9.
Zurück zum Zitat B. Lévesque et al., Evaluation of the health risk associated with exposure to chloroform in indoor swimming pools. J. Toxicol. Environ. Health A 61(4), 225–244 (2000)CrossRef B. Lévesque et al., Evaluation of the health risk associated with exposure to chloroform in indoor swimming pools. J. Toxicol. Environ. Health A 61(4), 225–244 (2000)CrossRef
10.
Zurück zum Zitat C. Catto, G. Charest-Tardif, M. Rodriguez, R. Tardif, Assessing exposure to chloroform in swimming pools using physiologically based toxicokinetic modeling. Environ. Pollut. 1(2), 132–147 (2012)CrossRef C. Catto, G. Charest-Tardif, M. Rodriguez, R. Tardif, Assessing exposure to chloroform in swimming pools using physiologically based toxicokinetic modeling. Environ. Pollut. 1(2), 132–147 (2012)CrossRef
11.
Zurück zum Zitat K. Krishnan, T. Peyret, Physiologically based toxicokinetic (PBTK) modeling in ecotoxicology, in Ecotoxicology Modeling, ed. J. Devillers, vol. 2 (Springer Science + Business Media, 2009), pp. 145–175CrossRef K. Krishnan, T. Peyret, Physiologically based toxicokinetic (PBTK) modeling in ecotoxicology, in Ecotoxicology Modeling, ed. J. Devillers, vol. 2 (Springer Science + Business Media, 2009), pp. 145–175CrossRef
12.
Zurück zum Zitat US EPA (United States Environmental Protection Agency), The History of Drinking Water Treatment (2000) US EPA (United States Environmental Protection Agency), The History of Drinking Water Treatment (2000)
13.
Zurück zum Zitat Ontario Sewer and Watermain Construction Association (OSWCA), Drinking Water Management in Ontario: A Brief History, no. January, pp. 1–14, 2001 Ontario Sewer and Watermain Construction Association (OSWCA), Drinking Water Management in Ontario: A Brief History, no. January, pp. 1–14, 2001
14.
Zurück zum Zitat K. Olsen, Clear waters and a green gas: a history of chlorine as a swimming pool sanitizer in the United States. Bull. Hist. Chem. 32(2), 129–140 (2007) K. Olsen, Clear waters and a green gas: a history of chlorine as a swimming pool sanitizer in the United States. Bull. Hist. Chem. 32(2), 129–140 (2007)
15.
Zurück zum Zitat J. Rook, Formation of haloforms during chlorination of natural waters. Water Treat. Exam. 23, 234–243 (1974) J. Rook, Formation of haloforms during chlorination of natural waters. Water Treat. Exam. 23, 234–243 (1974)
16.
Zurück zum Zitat US EPA, Small System Compliance Technology List for the Non-Microbial Contaminants Regulated Before 1996 (1998) US EPA, Small System Compliance Technology List for the Non-Microbial Contaminants Regulated Before 1996 (1998)
17.
Zurück zum Zitat J. Beech, Estimated worst case trihalomethane body burden of a child using a swimming pool. Med. Hypotheses 303–307 (1980)CrossRef J. Beech, Estimated worst case trihalomethane body burden of a child using a swimming pool. Med. Hypotheses 303–307 (1980)CrossRef
18.
Zurück zum Zitat S.D. Richardson et al., What’s in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ. Health Perspect. 118(11), 1523–1531 (2010)CrossRef S.D. Richardson et al., What’s in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ. Health Perspect. 118(11), 1523–1531 (2010)CrossRef
19.
Zurück zum Zitat World Health Organization, Disinfectants and Disinfectant By-Products. Environmental Health Criteria 216, Geneva (2000) World Health Organization, Disinfectants and Disinfectant By-Products. Environmental Health Criteria 216, Geneva (2000)
20.
Zurück zum Zitat Health Canada, Guidelines for Canadian Drinking Water Quality Ottawa, ON (1978) Health Canada, Guidelines for Canadian Drinking Water Quality Ottawa, ON (1978)
21.
Zurück zum Zitat H. Gilmour, Physically active Canadians. Health Inf. Res. Div. Health Rep. 18(3), 45–65 (2007) H. Gilmour, Physically active Canadians. Health Inf. Res. Div. Health Rep. 18(3), 45–65 (2007)
22.
Zurück zum Zitat World Health Organization, Guidelines for Safe Recreational-Water Environments Vol. 2: Swimming Pools and Similar Environments, Geneva (2006) World Health Organization, Guidelines for Safe Recreational-Water Environments Vol. 2: Swimming Pools and Similar Environments, Geneva (2006)
23.
Zurück zum Zitat Health Canada, Federal Contaminated Site Risk Assessment in Canada, Part V: Guidance on Complex Human Health Detailed Quantitative Risk Assessment for Chemicals, Ottawa, ON (2010) Health Canada, Federal Contaminated Site Risk Assessment in Canada, Part V: Guidance on Complex Human Health Detailed Quantitative Risk Assessment for Chemicals, Ottawa, ON (2010)
24.
Zurück zum Zitat L. Erdinger et al., Pathways of trihalomethane uptake in swimming pools. Int. J. Hyg. Environ. Health 207(6), 571–575 (2004)CrossRef L. Erdinger et al., Pathways of trihalomethane uptake in swimming pools. Int. J. Hyg. Environ. Health 207(6), 571–575 (2004)CrossRef
25.
Zurück zum Zitat B. Lévesque et al., Evaluation of dermal and respiratory chloroform exposure in humans. Environ. Health Perspect. 102(12), 1082–1087 (1994)CrossRef B. Lévesque et al., Evaluation of dermal and respiratory chloroform exposure in humans. Environ. Health Perspect. 102(12), 1082–1087 (1994)CrossRef
26.
Zurück zum Zitat A.B. Lindstrom, J.D. Pleil, D.C. Berkoff, Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training. Environ. Health Perspect. 105(6), 636–642 (1997)CrossRef A.B. Lindstrom, J.D. Pleil, D.C. Berkoff, Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training. Environ. Health Perspect. 105(6), 636–642 (1997)CrossRef
27.
Zurück zum Zitat International Programme on Chemical Safety, Characterization and Application of Physiologically Based Pharmacokinetic Models, Geneva, Switzerland (2010) International Programme on Chemical Safety, Characterization and Application of Physiologically Based Pharmacokinetic Models, Geneva, Switzerland (2010)
28.
Zurück zum Zitat I.I. Gueorguieva, I. Nestorov, M. Rowland, Fuzzy simulation of pharmacokinetic models: case study of whole body physiologically based model of diazepam. J. Pharmacokinet. Pharmacodyn. 31(3), 185–213 (2004)CrossRef I.I. Gueorguieva, I. Nestorov, M. Rowland, Fuzzy simulation of pharmacokinetic models: case study of whole body physiologically based model of diazepam. J. Pharmacokinet. Pharmacodyn. 31(3), 185–213 (2004)CrossRef
29.
Zurück zum Zitat R. Tardif et al., Impact of human variability on the biological monitoring of exposure to toluene: I. Physiologically based toxicokinetic modelling. Toxicol. Lett. 134(1–3), 155–63 (2002)CrossRef R. Tardif et al., Impact of human variability on the biological monitoring of exposure to toluene: I. Physiologically based toxicokinetic modelling. Toxicol. Lett. 134(1–3), 155–63 (2002)CrossRef
30.
Zurück zum Zitat R.S. Thomas, P.L. Bigelow, T.J. Keefe, R.S. Yang, Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation. Am. Ind. Hyg. Assoc. J. 57(1), 23–32 (1996)CrossRef R.S. Thomas, P.L. Bigelow, T.J. Keefe, R.S. Yang, Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation. Am. Ind. Hyg. Assoc. J. 57(1), 23–32 (1996)CrossRef
31.
Zurück zum Zitat C.J. Portier, N.L. Kaplan, Variability of safe dose estimates when using complicated models of the carcinogenic process. Fundam. Appl. Toxicol. 13, 533–544 (1989)CrossRef C.J. Portier, N.L. Kaplan, Variability of safe dose estimates when using complicated models of the carcinogenic process. Fundam. Appl. Toxicol. 13, 533–544 (1989)CrossRef
32.
Zurück zum Zitat K.-Y. Seng, I. Nestorov, P. Vicini, Physiologically based pharmacokinetic modeling of drug disposition in rat and human: a fuzzy arithmetic approach. Pharm. Res. 25(8), 1771–1781 (2008)CrossRef K.-Y. Seng, I. Nestorov, P. Vicini, Physiologically based pharmacokinetic modeling of drug disposition in rat and human: a fuzzy arithmetic approach. Pharm. Res. 25(8), 1771–1781 (2008)CrossRef
33.
Zurück zum Zitat S. Haddad, G.C. Tardif, R. Tardif, Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes. J. Toxicol. Environ. Health Part A 69(23), 2095–2136 (2006)CrossRef S. Haddad, G.C. Tardif, R. Tardif, Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes. J. Toxicol. Environ. Health Part A 69(23), 2095–2136 (2006)CrossRef
34.
Zurück zum Zitat R. Corley et al., Development of a physiologically based pharmacokinetic model for chloroform. Toxicol. Appl. Pharmacol. 103(3), 512–527 (1990)CrossRef R. Corley et al., Development of a physiologically based pharmacokinetic model for chloroform. Toxicol. Appl. Pharmacol. 103(3), 512–527 (1990)CrossRef
35.
Zurück zum Zitat T.M. Cahill, I. Cousins, D. Mackay, Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environ. Toxicol. Chem. 22(1), 26–34 (2003)CrossRef T.M. Cahill, I. Cousins, D. Mackay, Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environ. Toxicol. Chem. 22(1), 26–34 (2003)CrossRef
36.
Zurück zum Zitat D. Mackay, Multimedia Environmental Models: The Fugacity Approach, 2nd edn. (Lewis Publishers, Boca Raton, FL, 2001)CrossRef D. Mackay, Multimedia Environmental Models: The Fugacity Approach, 2nd edn. (Lewis Publishers, Boca Raton, FL, 2001)CrossRef
37.
Zurück zum Zitat M.B. Reddy, R.S.H. Yang, H.J. Clewell, M.E. Andersen, Physiologically Based Pharmacokinetic Modeling (Wiley, Hoboken, NJ, 2005)CrossRef M.B. Reddy, R.S.H. Yang, H.J. Clewell, M.E. Andersen, Physiologically Based Pharmacokinetic Modeling (Wiley, Hoboken, NJ, 2005)CrossRef
38.
Zurück zum Zitat S. Paterson, D. Mackay, A steady-state fugacity-based pharmacokinetic model with simultaneous multiple exposure routes. Environ. Toxicol. Chem. 6, 395–408 (1987)CrossRef S. Paterson, D. Mackay, A steady-state fugacity-based pharmacokinetic model with simultaneous multiple exposure routes. Environ. Toxicol. Chem. 6, 395–408 (1987)CrossRef
39.
Zurück zum Zitat J. Ramsey, M. Andersen, A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol. Appl. Pharmacol. 73(1), 159–175 (1984)CrossRef J. Ramsey, M. Andersen, A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol. Appl. Pharmacol. 73(1), 159–175 (1984)CrossRef
40.
Zurück zum Zitat M.M. Mumtaz et al., Translational research to develop a human PBPK models tool kit—volatile organic compounds (VOCs). J. Toxicol. Environ. Health Part A 75(1), 6–24 (2012)MathSciNetCrossRef M.M. Mumtaz et al., Translational research to develop a human PBPK models tool kit—volatile organic compounds (VOCs). J. Toxicol. Environ. Health Part A 75(1), 6–24 (2012)MathSciNetCrossRef
41.
Zurück zum Zitat R.I. Macey, G.F. Oster, Berkeley Madonna R.I. Macey, G.F. Oster, Berkeley Madonna
42.
Zurück zum Zitat J. Caro, M. Gallego, Assessment of exposure of workers and swimmers to trihalomethanes in an indoor swimming pool. Environ. Sci. Technol. 41(13), 4793–4798 (2007)CrossRef J. Caro, M. Gallego, Assessment of exposure of workers and swimmers to trihalomethanes in an indoor swimming pool. Environ. Sci. Technol. 41(13), 4793–4798 (2007)CrossRef
43.
Zurück zum Zitat R. Tardif, G. Charest-Tardif, J. Brodeur, K. Krishnan, Physiologically based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans. Toxicol. Appl. Pharmacol. 144, 120–134 (1997)CrossRef R. Tardif, G. Charest-Tardif, J. Brodeur, K. Krishnan, Physiologically based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans. Toxicol. Appl. Pharmacol. 144, 120–134 (1997)CrossRef
44.
Zurück zum Zitat C.W. Chen, J.N. Blancato, Incorporation of biological information in cancer risk assessment: example—vinyl chloride. Cell Biol. Toxicol. 5(4), 417–444 (1989)CrossRef C.W. Chen, J.N. Blancato, Incorporation of biological information in cancer risk assessment: example—vinyl chloride. Cell Biol. Toxicol. 5(4), 417–444 (1989)CrossRef
45.
Zurück zum Zitat S. Batterman, L. Zhang, S. Wang, A. Franzblau, Partition coefficients for the trihalomethanes among blood, urine, water, milk and air. Sci. Total Environ. 284(1–3), 237–247 (2002)CrossRef S. Batterman, L. Zhang, S. Wang, A. Franzblau, Partition coefficients for the trihalomethanes among blood, urine, water, milk and air. Sci. Total Environ. 284(1–3), 237–247 (2002)CrossRef
46.
Zurück zum Zitat X. Xu, T.M. Mariano, J.D. Laskin, C.P. Weisel, Percutaneous absorption of trihalomethanes, haloacetic acids, and haloketones. Toxicol. Appl. Pharmacol. 184(1), 19–26 (2002)CrossRef X. Xu, T.M. Mariano, J.D. Laskin, C.P. Weisel, Percutaneous absorption of trihalomethanes, haloacetic acids, and haloketones. Toxicol. Appl. Pharmacol. 184(1), 19–26 (2002)CrossRef
47.
48.
Zurück zum Zitat T.J. Ross, Fuzzy Logic with Engineering Applications, 2nd edn. (Wiley, West Sussex, England, 2004)MATH T.J. Ross, Fuzzy Logic with Engineering Applications, 2nd edn. (Wiley, West Sussex, England, 2004)MATH
49.
Zurück zum Zitat R. Sadiq, T. Husain, A fuzzy-based methodology for an aggregative environmental risk assessment: a case study of drilling waste. Environ. Model Softw. 20(1), 33–46 (2005)CrossRef R. Sadiq, T. Husain, A fuzzy-based methodology for an aggregative environmental risk assessment: a case study of drilling waste. Environ. Model Softw. 20(1), 33–46 (2005)CrossRef
50.
Zurück zum Zitat D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, no. Nf. (Academic Press Inc., Boston MA, 1980) D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, no. Nf. (Academic Press Inc., Boston MA, 1980)
51.
Zurück zum Zitat K. Zhang, H. Li, G. Achari, Fuzzy-stochastic characterization of site uncertainty and variability in groundwater flow and contaminant transport through a heterogeneous aquifer. J. Contam. Hydrol. 106(1–2), 73–82 (2009)CrossRef K. Zhang, H. Li, G. Achari, Fuzzy-stochastic characterization of site uncertainty and variability in groundwater flow and contaminant transport through a heterogeneous aquifer. J. Contam. Hydrol. 106(1–2), 73–82 (2009)CrossRef
52.
Zurück zum Zitat G.J. Klir, Uncertainty and Foundations of Generalized Information Theory (Wiley, Hoboken, NJ, 2006)MATH G.J. Klir, Uncertainty and Foundations of Generalized Information Theory (Wiley, Hoboken, NJ, 2006)MATH
53.
Zurück zum Zitat X. Xu, C.P. Weisel, Dermal uptake of chloroform and haloketones during bathing. J. Expo. Anal. Environ. Epidemiol. 15(4), 289–296 (2005)CrossRef X. Xu, C.P. Weisel, Dermal uptake of chloroform and haloketones during bathing. J. Expo. Anal. Environ. Epidemiol. 15(4), 289–296 (2005)CrossRef
54.
Zurück zum Zitat R.A. Corley, S.M. Gordon, L.A. Wallace, Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures. Toxicol. Sci. 53(1), 13–23 (2000)CrossRef R.A. Corley, S.M. Gordon, L.A. Wallace, Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures. Toxicol. Sci. 53(1), 13–23 (2000)CrossRef
55.
Zurück zum Zitat J.S. Nakai et al., Penetration of Chloroform, Trichloroethylene, and Tetrachloroethylene Through Human Skin. J. Toxicol. Environ. Health Part A 58(3), 157–170 (1999)CrossRef J.S. Nakai et al., Penetration of Chloroform, Trichloroethylene, and Tetrachloroethylene Through Human Skin. J. Toxicol. Environ. Health Part A 58(3), 157–170 (1999)CrossRef
56.
Zurück zum Zitat J.N. Mcdougal et al., Dermal absorption of organic chemical vapors in rats and humans. Toxicol. Sci. 14(2), 299–308 (1990)CrossRef J.N. Mcdougal et al., Dermal absorption of organic chemical vapors in rats and humans. Toxicol. Sci. 14(2), 299–308 (1990)CrossRef
57.
Zurück zum Zitat R.L. Chinery, A.K. Gleason, A compartmental model for the prediction of breath exposure while showering. Risk Anal. 13(1), 51–62 (1993)CrossRef R.L. Chinery, A.K. Gleason, A compartmental model for the prediction of breath exposure while showering. Risk Anal. 13(1), 51–62 (1993)CrossRef
58.
Zurück zum Zitat T. McKone, Linking a PBPK model for chloroform with measured breath concentrations in showers: implications for dermal exposure models. J. Expo. Anal. Environ. Epidemiol. 3(3), 339–365 (1993) T. McKone, Linking a PBPK model for chloroform with measured breath concentrations in showers: implications for dermal exposure models. J. Expo. Anal. Environ. Epidemiol. 3(3), 339–365 (1993)
59.
Zurück zum Zitat W. Dong, H. Shah, F. Wong, Fuzzy computations in risk and decision analysis. Civ. Eng. Syst. 2(4), 201–208 (1985)CrossRef W. Dong, H. Shah, F. Wong, Fuzzy computations in risk and decision analysis. Civ. Eng. Syst. 2(4), 201–208 (1985)CrossRef
60.
Zurück zum Zitat R.A. Clewell, H.J.I. Clewell, Toxicokinetics, in Principles of Toxicology: Environmental and Industrial Applications, ed. S.M. Roberts, R.C. James, P.L. Williams, 3rd edn. (Wiley, Hoboken, NJ, 2015) R.A. Clewell, H.J.I. Clewell, Toxicokinetics, in Principles of Toxicology: Environmental and Industrial Applications, ed. S.M. Roberts, R.C. James, P.L. Williams, 3rd edn. (Wiley, Hoboken, NJ, 2015)
61.
Zurück zum Zitat U.S. EPA, Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment, Epa/600/R-05/043F, no. August (2006) U.S. EPA, Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment, Epa/600/R-05/043F, no. August (2006)
62.
Zurück zum Zitat N. Tsamandouras, A. Rostami-Hodjegan, L. Aarons, Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br. J. Clin. Pharmacol. 79(1), 48–55 (2015)CrossRef N. Tsamandouras, A. Rostami-Hodjegan, L. Aarons, Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br. J. Clin. Pharmacol. 79(1), 48–55 (2015)CrossRef
63.
Zurück zum Zitat H.A. Barton et al., Characterizing uncertainty and variability in physiologically based pharmacokinetic models: State of the science and needs for research and implementation. Toxicol. Sci. 99(2), 395–402 (2007)CrossRef H.A. Barton et al., Characterizing uncertainty and variability in physiologically based pharmacokinetic models: State of the science and needs for research and implementation. Toxicol. Sci. 99(2), 395–402 (2007)CrossRef
64.
Zurück zum Zitat R. Dyck, R. Sadiq, M.J. Rodriguez, S. Simard, R. Tardif, Trihalomethane exposures in indoor swimming pools: a level III fugacity model. Water Res. 45, 5084–5098 (2011)CrossRef R. Dyck, R. Sadiq, M.J. Rodriguez, S. Simard, R. Tardif, Trihalomethane exposures in indoor swimming pools: a level III fugacity model. Water Res. 45, 5084–5098 (2011)CrossRef
Metadaten
Titel
Fuzzy Physiologically Based Pharmacokinetic (PBPK) Model of Chloroform in Swimming Pools
verfasst von
R. A. Dyck
R. Sadiq
M. J. Rodriguez
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-75408-6_38