Skip to main content

2004 | OriginalPaper | Buchkapitel

Galilean Differential Geometry of Moving Images

verfasst von : Daniel Fagerström

Erschienen in: Computer Vision - ECCV 2004

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

In this paper we develop a systematic theory about local structure of moving images in terms of Galilean differential invariants. We argue that Galilean invariants are useful for studying moving images as they disregard constant motion that typically depends on the motion of the observer or the observed object, and only describe relative motion that might capture surface shape and motion boundaries. The set of Galilean invariants for moving images also contains the Euclidean invariants for (still) images. Complete sets of Galilean invariants are derived for two main cases: when the spatio-temporal gradient cuts the image plane and when it is tangent to the image plane. The former case correspond to isophote curve motion and the later to creation and disappearance of image structure, a case that is not well captured by the theory of optical flow. The derived invariants are shown to be describable in terms of acceleration, divergence, rotation and deformation of image structure. The described theory is completely based on bottom up computation from local spatio-temporal image information.

Metadaten
Titel
Galilean Differential Geometry of Moving Images
verfasst von
Daniel Fagerström
Copyright-Jahr
2004
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-24673-2_40

Premium Partner