Skip to main content

2018 | OriginalPaper | Buchkapitel

8. GaN in Switched-Mode Power Amplifiers

verfasst von : David J. Perreault, Charles R. Sullivan, Juan M. Rivas

Erschienen in: Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Radio-frequency (rf) power is important to a wide range of applications, including radio transmitters, plasma generation, medical imagers (e.g., MRI), power converters, and wireless power transfer (WPT) among myriad other applications. Advances in power semiconductor devices, magnetics, and circuit design are opening the door to much more efficient generation and delivery of power at radio frequencies. This chapter presents an overview of switched-mode power amplifiers – or radio-frequency inverters – encompassing their design, control, and construction. We focus on the high-frequency (HF, 3–30 MHz) and very-high-frequency (VHF, 30–300 MHz) ranges. We explore key aspects of rf power conversion, including power circuit architecture and design, selection and efficient drive of power devices at rf, and control methods for modulating power and managing load variations. We also address circuit construction, including the design and application of passive components at radio frequencies. Magnetics for power applications at HF and VHF pose a special challenge when compactness and high efficiency are desired. We explore the design of air-core and magnetic-core magnetics for this frequency range, including winding design, core material evaluation and selection, and application of magnetic cores.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Absolute delays of gate-drive signals is itself not an issue, unless one seeks to actively adjust switch timing under feedback control.
 
2
The split-winding transformer “push-pull” version of the Class D eliminates the level-shifting challenge, but transformer leakage makes this variant undesirable at high frequencies.
 
3
It is possible to build a switched-mode system whose output responds to variations in rf input amplitude [32], but such systems use controls to indirectly mimic that characteristic of linear power amplifers.
 
Literatur
1.
Zurück zum Zitat B. Molnar, Basic limitations on waveforms achievable in single-ended switching-mode tuned (Class E) power amplifiers. IEEE J. Solid-State Circuits 19(1), 144–146 (1984) B. Molnar, Basic limitations on waveforms achievable in single-ended switching-mode tuned (Class E) power amplifiers. IEEE J. Solid-State Circuits 19(1), 144–146 (1984)
2.
Zurück zum Zitat E.L. Owen, History [origin of the inverter]. IEEE Ind. Appl. Mag. 2(1), 64–66 (1996) E.L. Owen, History [origin of the inverter]. IEEE Ind. Appl. Mag. 2(1), 64–66 (1996)
3.
Zurück zum Zitat D. Prince, The inverter. Gen. Elect. Rev. 28, 676–681 (1925) D. Prince, The inverter. Gen. Elect. Rev. 28, 676–681 (1925)
4.
Zurück zum Zitat I. T. U. (ITU), Radio regulations articles. Booklet (2016). ISM bands outlined in Article 5.150 I. T. U. (ITU), Radio regulations articles. Booklet (2016). ISM bands outlined in Article 5.150
5.
Zurück zum Zitat D.C. Hamill, Impedance plane analysis of Class DE amplifier. Electron. Lett. 30(23), 1905–1906 (1994) D.C. Hamill, Impedance plane analysis of Class DE amplifier. Electron. Lett. 30(23), 1905–1906 (1994)
6.
Zurück zum Zitat S.-A. El-Hamamsy, Design of high-efficiency RF Class-D power amplifier. IEEE Trans. Power Electron. 9(3), 297–308 (1994) S.-A. El-Hamamsy, Design of high-efficiency RF Class-D power amplifier. IEEE Trans. Power Electron. 9(3), 297–308 (1994)
7.
Zurück zum Zitat N. Sokal, A. Sokal, Class E—a new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Solid-State Circuits SC-10(3), 168–176 (1975) N. Sokal, A. Sokal, Class E—a new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Solid-State Circuits SC-10(3), 168–176 (1975)
8.
Zurück zum Zitat M.K. Kazimierczuk, D. Czarkowski, Resonant power converters (Wiley, New York, 2012) M.K. Kazimierczuk, D. Czarkowski, Resonant power converters (Wiley, New York, 2012)
9.
Zurück zum Zitat M. Kazimierczuk, K. Puczko, Exact analysis of Class-E tuned power amplifier at any Q and switch duty cycle. IEEE Trans. Circuits Syst. 34, 149–159 (1987) M. Kazimierczuk, K. Puczko, Exact analysis of Class-E tuned power amplifier at any Q and switch duty cycle. IEEE Trans. Circuits Syst. 34, 149–159 (1987)
10.
Zurück zum Zitat N.O. Sokal, Class-E RF power amplifiers. American Radio Relay League (ARRL), QEX, pp. 9–20, Jan/Feb 2001 N.O. Sokal, Class-E RF power amplifiers. American Radio Relay League (ARRL), QEX, pp. 9–20, Jan/Feb 2001
11.
Zurück zum Zitat J.M. Rivas, R.S. Wahby, J.S. Shafran, D.J. Perreault, New architectures for radio-frequency dc-dc power conversion. IEEE Trans. Power Electron. 21(2), 380–393 (2006) J.M. Rivas, R.S. Wahby, J.S. Shafran, D.J. Perreault, New architectures for radio-frequency dc-dc power conversion. IEEE Trans. Power Electron. 21(2), 380–393 (2006)
12.
Zurück zum Zitat J.M. Rivas, D. Jackson, O. Leitermann, A.D. Sagneri, Y. Han, D.J. Perreault, Design considerations for very high frequency dc-dc converters, in 37th IEEE Power Electronics Specialists Conference, 2006, pp. 18–22 J.M. Rivas, D. Jackson, O. Leitermann, A.D. Sagneri, Y. Han, D.J. Perreault, Design considerations for very high frequency dc-dc converters, in 37th IEEE Power Electronics Specialists Conference, 2006, pp. 18–22
13.
Zurück zum Zitat R.C. Pilawa-Podgurski, A.D. Sagneri, J.M. Rivas, D.I. Anderson, D.J. Perreault, Very-high-frequency resonant boost converters. IEEE Trans. Power Electron. 24(6), 1654–1665 (2009) R.C. Pilawa-Podgurski, A.D. Sagneri, J.M. Rivas, D.I. Anderson, D.J. Perreault, Very-high-frequency resonant boost converters. IEEE Trans. Power Electron. 24(6), 1654–1665 (2009)
14.
Zurück zum Zitat L. Roslaniec, A.S. Jurkov, A.A. Bastami, D.J. Perreault, Design of single-switch inverters for variable resistance/load modulation operation. IEEE Trans. Power Electron. 30, 3200–3214 (2015) L. Roslaniec, A.S. Jurkov, A.A. Bastami, D.J. Perreault, Design of single-switch inverters for variable resistance/load modulation operation. IEEE Trans. Power Electron. 30, 3200–3214 (2015)
15.
Zurück zum Zitat S.D. Kee, I. Aoki, A. Hajimiri, D. Rutledge, The Class-E/F family of ZVS switching amplifiers. IEEE Trans. Microwave Theory Tech. 51, 1677–1690 (2003) S.D. Kee, I. Aoki, A. Hajimiri, D. Rutledge, The Class-E/F family of ZVS switching amplifiers. IEEE Trans. Microwave Theory Tech. 51, 1677–1690 (2003)
16.
Zurück zum Zitat J.M. Rivas, Y. Han, O. Leitermann, A. Sagneri, D.J. Perreault, A high-frequency resonant inverter topology with low voltage stress, in IEEE Power Electronics Specialists Conference (PESC) (IEEE, 2007), pp. 2705–2717 J.M. Rivas, Y. Han, O. Leitermann, A. Sagneri, D.J. Perreault, A high-frequency resonant inverter topology with low voltage stress, in IEEE Power Electronics Specialists Conference (PESC) (IEEE, 2007), pp. 2705–2717
17.
Zurück zum Zitat R.L. Steigerwald, Lossless gate driver circuit for a high frequency converter, U.S. Patent 5,010,261, 23 Apr 1991 R.L. Steigerwald, Lossless gate driver circuit for a high frequency converter, U.S. Patent 5,010,261, 23 Apr 1991
18.
Zurück zum Zitat D. Maksimovic, A MOS gate drive with resonant transitions, in IEEE 22nd Annual Power Electronics Specialists Conference (PESC ’91 Record), June 1991, pp. 527–532 D. Maksimovic, A MOS gate drive with resonant transitions, in IEEE 22nd Annual Power Electronics Specialists Conference (PESC ’91 Record), June 1991, pp. 527–532
19.
Zurück zum Zitat P. Dwane, D.O. Sullivan, M.G. Egan, An assessment of resonant gate drive techniques for use in modern low power dc-dc converters, in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), vol. 3, Mar 2005, pp. 1572–1580 P. Dwane, D.O. Sullivan, M.G. Egan, An assessment of resonant gate drive techniques for use in modern low power dc-dc converters, in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), vol. 3, Mar 2005, pp. 1572–1580
20.
Zurück zum Zitat L. Gu, W. Liang, J. Rivas-Davila, A multi-resonant gate driver for very-high-frequency (VHF) resonant converters, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), July 2017, pp. 1–7 L. Gu, W. Liang, J. Rivas-Davila, A multi-resonant gate driver for very-high-frequency (VHF) resonant converters, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), July 2017, pp. 1–7
21.
Zurück zum Zitat F. Hattori, H. Umegami, M. Yamamoto, Multi-resonant gate drive circuit of isolating-gate GaN HEMTs for tens of MHz. IET Circuits, Devices Syst. 11(3), 261–266 (2017) F. Hattori, H. Umegami, M. Yamamoto, Multi-resonant gate drive circuit of isolating-gate GaN HEMTs for tens of MHz. IET Circuits, Devices Syst. 11(3), 261–266 (2017)
22.
Zurück zum Zitat H. Kobayashi, J.M. Hinrichs, P.M. Asbeck, Current-mode Class-D power amplifiers for high-efficiency rf applications. IEEE Trans. Microwave Theory Tech. 49, 2480–2485 (2001) H. Kobayashi, J.M. Hinrichs, P.M. Asbeck, Current-mode Class-D power amplifiers for high-efficiency rf applications. IEEE Trans. Microwave Theory Tech. 49, 2480–2485 (2001)
23.
Zurück zum Zitat F. Raab, Idealized operation of the Class E tuned power amplifier. IEEE Trans. Circuits Syst. 24, 725–735 (1977) F. Raab, Idealized operation of the Class E tuned power amplifier. IEEE Trans. Circuits Syst. 24, 725–735 (1977)
24.
Zurück zum Zitat Z. Kaczmarczyk, W. Jurczak, A Push-Pull Class-E inverter with improved efficiency. IEEE Trans. Ind. Electron. 55, 1871–1874 (2008) Z. Kaczmarczyk, W. Jurczak, A Push-Pull Class-E inverter with improved efficiency. IEEE Trans. Ind. Electron. 55, 1871–1874 (2008)
25.
Zurück zum Zitat J.S. Glaser, J.M. Rivas, A 500 W push-pull dc-dc power converter with a 30 MHz switching frequency, in 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Feb 2010, pp. 654–661 J.S. Glaser, J.M. Rivas, A 500 W push-pull dc-dc power converter with a 30 MHz switching frequency, in 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Feb 2010, pp. 654–661
26.
Zurück zum Zitat I. Aoki, S.D. Kee, D.B. Rutledge, A. Hajimiri, Distributed active transformer: a new power-combining and impedance-transformation technique. IEEE Trans. Microwave Theory Tech. 50, 316–331 (2002) I. Aoki, S.D. Kee, D.B. Rutledge, A. Hajimiri, Distributed active transformer: a new power-combining and impedance-transformation technique. IEEE Trans. Microwave Theory Tech. 50, 316–331 (2002)
27.
Zurück zum Zitat S. Jeon, D.B. Rutledge, A 2.7-kW, 29-MHz Class-E/F odd amplifier with a distributed active transformer, in IEEE MTT-S International Microwave Symposium Digest, June 2005, p. 4 S. Jeon, D.B. Rutledge, A 2.7-kW, 29-MHz Class-E/F odd amplifier with a distributed active transformer, in IEEE MTT-S International Microwave Symposium Digest, June 2005, p. 4
28.
Zurück zum Zitat K. Shinoda, T. Suetsugu, M. Matsuo, S. Mori, Idealized operation of Class DE amplifier and frequency multipliers. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 45, 34–40 (1998) K. Shinoda, T. Suetsugu, M. Matsuo, S. Mori, Idealized operation of Class DE amplifier and frequency multipliers. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 45, 34–40 (1998)
29.
Zurück zum Zitat R. Zulinski, J. Steadman, Idealized operation of Class E frequency multipliers. IEEE Trans. Circuits Syst. 33, 1209–1218 (1986) R. Zulinski, J. Steadman, Idealized operation of Class E frequency multipliers. IEEE Trans. Circuits Syst. 33, 1209–1218 (1986)
30.
Zurück zum Zitat W. Inam, K.K. Afridi, D.J. Perreault, Variable frequency multiplier technique for high-efficiency conversion over a wide operating range. IEEE J. Emerging Sel. Top. Power Electron. 4, 335–343 (2016) W. Inam, K.K. Afridi, D.J. Perreault, Variable frequency multiplier technique for high-efficiency conversion over a wide operating range. IEEE J. Emerging Sel. Top. Power Electron. 4, 335–343 (2016)
31.
Zurück zum Zitat D.J. Perreault, A new architecture for high-frequency variable-load inverters, in 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), June 2016, pp. 1–8 D.J. Perreault, A new architecture for high-frequency variable-load inverters, in 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), June 2016, pp. 1–8
32.
Zurück zum Zitat T.W. Barton, D.J. Perreault, Theory and implementation of rf-input outphasing power amplification. IEEE Trans. Microwave Theory Tech. 63, 4273–4283 (2015) T.W. Barton, D.J. Perreault, Theory and implementation of rf-input outphasing power amplification. IEEE Trans. Microwave Theory Tech. 63, 4273–4283 (2015)
33.
Zurück zum Zitat T. Barton, Not just a phase: outphasing power amplifiers. IEEE Microwave Mag. 17, 18–31 (2016) T. Barton, Not just a phase: outphasing power amplifiers. IEEE Microwave Mag. 17, 18–31 (2016)
34.
Zurück zum Zitat H. Chireix, High power outphasing modulation. Proc. Inst. Radio Eng. 23, 1370–1392 (1935) H. Chireix, High power outphasing modulation. Proc. Inst. Radio Eng. 23, 1370–1392 (1935)
35.
Zurück zum Zitat P.A. Godoy, D.J. Perreault, J.L. Dawson, Outphasing energy recovery amplifier with resistance compression for improved efficiency. IEEE Trans. Microwave Theory Tech. 57, 2895–2906 (2009) P.A. Godoy, D.J. Perreault, J.L. Dawson, Outphasing energy recovery amplifier with resistance compression for improved efficiency. IEEE Trans. Microwave Theory Tech. 57, 2895–2906 (2009)
36.
Zurück zum Zitat D.J. Perreault, A new power combining and outphasing modulation system for high-efficiency power amplification. IEEE Trans. Circuits Syst. I: Regul. Pap. 58, 1713–1726 (2011) D.J. Perreault, A new power combining and outphasing modulation system for high-efficiency power amplification. IEEE Trans. Circuits Syst. I: Regul. Pap. 58, 1713–1726 (2011)
37.
Zurück zum Zitat T.W. Barton, D.J. Perreault, Four-way microstrip-based power combining for microwave outphasing power amplifiers. IEEE Trans. Circuits Syst. I: Regul. Pap. 61, 2987–2998 (2014) T.W. Barton, D.J. Perreault, Four-way microstrip-based power combining for microwave outphasing power amplifiers. IEEE Trans. Circuits Syst. I: Regul. Pap. 61, 2987–2998 (2014)
38.
Zurück zum Zitat A.S. Jurkov, L. Roslaniec, D.J. Perreault, Lossless multi-way power combining and outphasing for high-frequency resonant inverters, in Proceedings of The 7th International Power Electronics and Motion Control Conference, vol. 2, June 2012, pp. 910–917 A.S. Jurkov, L. Roslaniec, D.J. Perreault, Lossless multi-way power combining and outphasing for high-frequency resonant inverters, in Proceedings of The 7th International Power Electronics and Motion Control Conference, vol. 2, June 2012, pp. 910–917
39.
Zurück zum Zitat T.W. Barton, A.S. Jurkov, P.H. Pednekar, D.J. Perreault, Multi-way lossless outphasing system based on an all-transmission-line combiner. IEEE Trans. Microwave Theory Tech. 64, 1313–1326 (2016) T.W. Barton, A.S. Jurkov, P.H. Pednekar, D.J. Perreault, Multi-way lossless outphasing system based on an all-transmission-line combiner. IEEE Trans. Microwave Theory Tech. 64, 1313–1326 (2016)
40.
Zurück zum Zitat L.R. Kahn, Single-sideband transmission by envelope elimination and restoration. Proc. IRE 40, 803–806 (1952) L.R. Kahn, Single-sideband transmission by envelope elimination and restoration. Proc. IRE 40, 803–806 (1952)
41.
Zurück zum Zitat J.J. Yan, C. Hsia, D.F. Kimball, P.M. Asbeck, Design of a 4-W envelope tracking power amplifier with more than one octave carrier bandwidth. IEEE J. Solid-State Circuits 47, 2298–2308 (2012) J.J. Yan, C. Hsia, D.F. Kimball, P.M. Asbeck, Design of a 4-W envelope tracking power amplifier with more than one octave carrier bandwidth. IEEE J. Solid-State Circuits 47, 2298–2308 (2012)
42.
Zurück zum Zitat T.M. Aitto-oja, High efficiency envelope tracking supply voltage modulator for high power base station amplifier applications, in IEEE MTT-S International Microwave Symposium, May 2010, pp. 1–1 T.M. Aitto-oja, High efficiency envelope tracking supply voltage modulator for high power base station amplifier applications, in IEEE MTT-S International Microwave Symposium, May 2010, pp. 1–1
43.
Zurück zum Zitat M. Rodríguez, Y. Zhang, D. Maksimović, High-frequency PWM buck converters using GaN-on-SiC HEMTs. IEEE Trans. Power Electron. 29, 2462–2473 (2014) M. Rodríguez, Y. Zhang, D. Maksimović, High-frequency PWM buck converters using GaN-on-SiC HEMTs. IEEE Trans. Power Electron. 29, 2462–2473 (2014)
44.
Zurück zum Zitat M. Vasic, O. Garcia, J.A. Oliver, P. Alou, D. Diaz, J.A. Cobos, Multilevel power supply for high-efficiency rf amplifiers. IEEE Trans. Power Electron. 25, 1078–1089 (2010) M. Vasic, O. Garcia, J.A. Oliver, P. Alou, D. Diaz, J.A. Cobos, Multilevel power supply for high-efficiency rf amplifiers. IEEE Trans. Power Electron. 25, 1078–1089 (2010)
45.
Zurück zum Zitat V. Yousefzadeh, E. Alarcon, D. Maksimovic, Three-level buck converter for envelope tracking applications. IEEE Trans. Power Electron. 21, 549–552 (2006) V. Yousefzadeh, E. Alarcon, D. Maksimovic, Three-level buck converter for envelope tracking applications. IEEE Trans. Power Electron. 21, 549–552 (2006)
46.
Zurück zum Zitat P.A. Godoy, S. Chung, T.W. Barton, D.J. Perreault, J.L. Dawson, A 2.4-GHz, 27-dBm asymmetric multilevel outphasing power amplifier in 65-nm CMOS. IEEE J. Solid-State Circuits 47, 2372–2384 (2012) P.A. Godoy, S. Chung, T.W. Barton, D.J. Perreault, J.L. Dawson, A 2.4-GHz, 27-dBm asymmetric multilevel outphasing power amplifier in 65-nm CMOS. IEEE J. Solid-State Circuits 47, 2372–2384 (2012)
47.
Zurück zum Zitat P.A. Godoy, S. Chung, T.W. Barton, D.J. Perreault, J.L. Dawson, A highly efficient 1.95-GHz, 18-W asymmetric multilevel outphasing transmitter for wideband applications, in 2011 IEEE MTT-S International Microwave Symposium, June 2011, pp. 1–1 P.A. Godoy, S. Chung, T.W. Barton, D.J. Perreault, J.L. Dawson, A highly efficient 1.95-GHz, 18-W asymmetric multilevel outphasing transmitter for wideband applications, in 2011 IEEE MTT-S International Microwave Symposium, June 2011, pp. 1–1
48.
Zurück zum Zitat S. Chung, P.A. Godoy, T.W. Barton, D.J. Perreault, J.L. Dawson, Asymmetric multilevel outphasing transmitter using Class-E PAs with discrete pulse width modulation, in 2010 IEEE MTT-S International Microwave Symposium, May 2010, pp. 264–267 S. Chung, P.A. Godoy, T.W. Barton, D.J. Perreault, J.L. Dawson, Asymmetric multilevel outphasing transmitter using Class-E PAs with discrete pulse width modulation, in 2010 IEEE MTT-S International Microwave Symposium, May 2010, pp. 264–267
49.
Zurück zum Zitat H.M. Nemati, C. Fager, U. Gustavsson, R. Jos, H. Zirath, Design of varactor-based tunable matching networks for dynamic load modulation of high power amplifiers. IEEE Trans. Microwave Theory Tech. 57, 1110–1118 (2009) H.M. Nemati, C. Fager, U. Gustavsson, R. Jos, H. Zirath, Design of varactor-based tunable matching networks for dynamic load modulation of high power amplifiers. IEEE Trans. Microwave Theory Tech. 57, 1110–1118 (2009)
50.
Zurück zum Zitat K. Eisele, R. Engelbrecht, K. Kurokawa, Balanced transistor amplifiers for precise wideband microwave applications, in 1965 IEEE International Solid-State Circuits Conference on Digest of Technical Papers, vol. VIII, Feb 1965, pp. 18–19 K. Eisele, R. Engelbrecht, K. Kurokawa, Balanced transistor amplifiers for precise wideband microwave applications, in 1965 IEEE International Solid-State Circuits Conference on Digest of Technical Papers, vol. VIII, Feb 1965, pp. 18–19
51.
Zurück zum Zitat A.S. Jurkov, A. Radomski, D.J. Perreault, Tunable impedance matching networks based on phase-switched impedance modulation, in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Oct 2017, pp. 947–954 A.S. Jurkov, A. Radomski, D.J. Perreault, Tunable impedance matching networks based on phase-switched impedance modulation, in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Oct 2017, pp. 947–954
52.
Zurück zum Zitat A.A. Bastami, A. Jurkov, P. Gould, M. Hsing, M. Schmidt, J.I. Ha, D.J. Perreault, Dynamic matching system for radio-frequency plasma generation. IEEE Trans. Power Electron. 33, 1940–1951 (2018) A.A. Bastami, A. Jurkov, P. Gould, M. Hsing, M. Schmidt, J.I. Ha, D.J. Perreault, Dynamic matching system for radio-frequency plasma generation. IEEE Trans. Power Electron. 33, 1940–1951 (2018)
53.
Zurück zum Zitat Y. Han, O. Leitermann, D.A. Jackson, J.M. Rivas, D.J. Perreault, Resistance compression networks for radio-frequency power conversion. IEEE Trans. Power Electron. 22, 41–53 (2007) Y. Han, O. Leitermann, D.A. Jackson, J.M. Rivas, D.J. Perreault, Resistance compression networks for radio-frequency power conversion. IEEE Trans. Power Electron. 22, 41–53 (2007)
54.
Zurück zum Zitat T.W. Barton, J.M. Gordonson, D.J. Perreault, Transmission line resistance compression networks and applications to wireless power transfer. IEEE J. Emerging Sel. Top. Power Electron. 3, 252–260 (2015) T.W. Barton, J.M. Gordonson, D.J. Perreault, Transmission line resistance compression networks and applications to wireless power transfer. IEEE J. Emerging Sel. Top. Power Electron. 3, 252–260 (2015)
55.
Zurück zum Zitat C. Sullivan, R. Zhang, Analytical model for effects of twisting on Litz-Wire losses, in IEEE Workshop on Control and Modeling for Power Electronics (COMPEL), June 2014 C. Sullivan, R. Zhang, Analytical model for effects of twisting on Litz-Wire losses, in IEEE Workshop on Control and Modeling for Power Electronics (COMPEL), June 2014
56.
Zurück zum Zitat B.A. Reese, C.R. Sullivan, Litz wire in the MHz range: Modeling and improved designs, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), 2017, pp. 1–8 B.A. Reese, C.R. Sullivan, Litz wire in the MHz range: Modeling and improved designs, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), 2017, pp. 1–8
57.
Zurück zum Zitat S. Hinaga, M. Koledintseva, P. Anmula, J. Drewniak, Effect of conductor surface roughness upon measured loss and extracted values of PCB laminate material dissipation factor, in Proceedings of the Technical Conference on IPC Expo/APEX, 2009, pp. S20–S22 S. Hinaga, M. Koledintseva, P. Anmula, J. Drewniak, Effect of conductor surface roughness upon measured loss and extracted values of PCB laminate material dissipation factor, in Proceedings of the Technical Conference on IPC Expo/APEX, 2009, pp. S20–S22
58.
Zurück zum Zitat C.R. Sullivan, D. Harburg, J. Qiu, C.G. Levey, D. Yao, Integrating magnetics for on-chip power: a perspective. IEEE Trans. Power Electron. 28(9), 4342–4353 (2013) C.R. Sullivan, D. Harburg, J. Qiu, C.G. Levey, D. Yao, Integrating magnetics for on-chip power: a perspective. IEEE Trans. Power Electron. 28(9), 4342–4353 (2013)
59.
Zurück zum Zitat W. Liang, L. Raymond, J. Rivas, 3-D-printed air-core inductors for high-frequency power converters. IEEE Trans. Power Electron. 31(1), 52–64 (2016) W. Liang, L. Raymond, J. Rivas, 3-D-printed air-core inductors for high-frequency power converters. IEEE Trans. Power Electron. 31(1), 52–64 (2016)
60.
Zurück zum Zitat C.R. Sullivan, W. Li, S. Prabhakaran, S. Lu, Design and fabrication of low-loss toroidal air-core inductors, in IEEE Power Electronics Specialists Conference (PESC) (IEEE, 2007), pp. 1754–1759 C.R. Sullivan, W. Li, S. Prabhakaran, S. Lu, Design and fabrication of low-loss toroidal air-core inductors, in IEEE Power Electronics Specialists Conference (PESC) (IEEE, 2007), pp. 1754–1759
61.
Zurück zum Zitat G. Zulauf, W. Liang, J. Rivas-Davila, A unified model for high-power, air-core toroidal PCB inductors, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL) (IEEE, 2017), pp. 1–8 G. Zulauf, W. Liang, J. Rivas-Davila, A unified model for high-power, air-core toroidal PCB inductors, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL) (IEEE, 2017), pp. 1–8
62.
Zurück zum Zitat S. Orlandi, B.A. Allongue, G. Blanchot, S. Buso, F. Faccio, C.A. Fuentes, M. Kayal, S. Michelis, G. Spiazzi, Optimization of shielded PCB air-core toroids for high-efficiency dc-dc converters. IEEE Trans. Power Electron. 26(7), 1837–1846 (2011) S. Orlandi, B.A. Allongue, G. Blanchot, S. Buso, F. Faccio, C.A. Fuentes, M. Kayal, S. Michelis, G. Spiazzi, Optimization of shielded PCB air-core toroids for high-efficiency dc-dc converters. IEEE Trans. Power Electron. 26(7), 1837–1846 (2011)
63.
Zurück zum Zitat S. Ramo, J. Whinnery, T.V. Duzer, Fields and Waves in Communication Electronics, 3rd edn. (Wiley, New York, 1994) S. Ramo, J. Whinnery, T.V. Duzer, Fields and Waves in Communication Electronics, 3rd edn. (Wiley, New York, 1994)
64.
Zurück zum Zitat J. Qiu, D.V. Harburg, C.R. Sullivan, A toroidal power inductor using radial-anisotropy thin-film magnetic material based on a hybrid fabrication process, in IEEE Applied Power Electronics Conference and Exposition, Mar 2013 J. Qiu, D.V. Harburg, C.R. Sullivan, A toroidal power inductor using radial-anisotropy thin-film magnetic material based on a hybrid fabrication process, in IEEE Applied Power Electronics Conference and Exposition, Mar 2013
65.
Zurück zum Zitat J. Qiu, A.J. Hanson, C.R. Sullivan, Design of toroidal inductors with multiple parallel foil windings, in IEEE Workshop on Control and Modeling for Power Electronics (COMPEL) (IEEE, 2013), pp. 1–6 J. Qiu, A.J. Hanson, C.R. Sullivan, Design of toroidal inductors with multiple parallel foil windings, in IEEE Workshop on Control and Modeling for Power Electronics (COMPEL) (IEEE, 2013), pp. 1–6
66.
Zurück zum Zitat T. Simpson, Effect of a conducting shield on the inductance of an aircore solenoid. IEEE Trans. Magn. 35, 508—515 (1999) T. Simpson, Effect of a conducting shield on the inductance of an aircore solenoid. IEEE Trans. Magn. 35, 508—515 (1999)
67.
Zurück zum Zitat R. Medhurst, HF resistance and self-capacitance of single-layer solenoids. Wirel. Eng. Part 1, 24(2), pp. 35–43, Part 2 24(3), pp. 80–92, Feb/mar (1947) R. Medhurst, HF resistance and self-capacitance of single-layer solenoids. Wirel. Eng. Part 1, 24(2), pp. 35–43, Part 2 24(3), pp. 80–92, Feb/mar (1947)
68.
Zurück zum Zitat R. Medhurst, Q of solenoid coils. Wirel. Eng. 24(9), p. 281 Sept. (1947) R. Medhurst, Q of solenoid coils. Wirel. Eng. 24(9), p. 281 Sept. (1947)
69.
Zurück zum Zitat M. Callendar, Q of solenoid coils. Wirel. Eng. (Correspondence) 24(6), p. 185 (1946) M. Callendar, Q of solenoid coils. Wirel. Eng. (Correspondence) 24(6), p. 185 (1946)
70.
Zurück zum Zitat T. Lee, Planar Microwave Engineering, chap. 6 (Cambridge University Press, Cambridge 2004) T. Lee, Planar Microwave Engineering, chap. 6 (Cambridge University Press, Cambridge 2004)
71.
Zurück zum Zitat S.L. C.S. A.J. Hanson, J.A. Belk and D. Perreault, Measurements and performance factor comparisons of magnetic materials at high frequency. IEEE Trans. Power Electron. 31(11), 7909–7925 (2016) S.L. C.S. A.J. Hanson, J.A. Belk and D. Perreault, Measurements and performance factor comparisons of magnetic materials at high frequency. IEEE Trans. Power Electron. 31(11), 7909–7925 (2016)
72.
Zurück zum Zitat Y. Han, G. Cheung, A. Li, C.R. Sullivan, D.J. Perreault, Evaluation of magnetic materials for very high frequency applications. IEEE Trans. Power Electron. 27(1), 425–435 (2008) Y. Han, G. Cheung, A. Li, C.R. Sullivan, D.J. Perreault, Evaluation of magnetic materials for very high frequency applications. IEEE Trans. Power Electron. 27(1), 425–435 (2008)
73.
Zurück zum Zitat Soft Ferrites and Accessories Data Handbook, Ferroxcube International Holding B.V. Poland 2013 Soft Ferrites and Accessories Data Handbook, Ferroxcube International Holding B.V. Poland 2013
74.
Zurück zum Zitat D.J. Perreault, J. Hu, J.M. Rivas, Y. Han, O. Leitermann, R.C. Pilawa-Podgurski, A. Sagneri, C.R. Sullivan, Opportunities and challenges in very high frequency power conversion, in Twenty-Fourth Annual Applied Power Electronics Conference and Exposition (APEC) (IEEE, 2009), pp. 1–14 D.J. Perreault, J. Hu, J.M. Rivas, Y. Han, O. Leitermann, R.C. Pilawa-Podgurski, A. Sagneri, C.R. Sullivan, Opportunities and challenges in very high frequency power conversion, in Twenty-Fourth Annual Applied Power Electronics Conference and Exposition (APEC) (IEEE, 2009), pp. 1–14
75.
Zurück zum Zitat C.P. Steinmetz, On the law of hysteresis (reprint of article from 1892). Proc. IEEE 72, 197–221 (1984) C.P. Steinmetz, On the law of hysteresis (reprint of article from 1892). Proc. IEEE 72, 197–221 (1984)
76.
Zurück zum Zitat J. Hu, C.R. Sullivan, AC resistance of planar power inductors and the quasi-distributed gap technique. IEEE Trans. Power Electron. 16(4), 558–567 (2001) J. Hu, C.R. Sullivan, AC resistance of planar power inductors and the quasi-distributed gap technique. IEEE Trans. Power Electron. 16(4), 558–567 (2001)
77.
Zurück zum Zitat R. Yang, A. Hanson, D. Perreault, C. Sullivan, A low-loss inductor structure and design guidelines for high-frequency applications, in IEEE Applied Power Electronics Conference, Feb 2018 R. Yang, A. Hanson, D. Perreault, C. Sullivan, A low-loss inductor structure and design guidelines for high-frequency applications, in IEEE Applied Power Electronics Conference, Feb 2018
78.
Zurück zum Zitat C.R. Sullivan, Layered foil as an alternative to Litz Wire: multiple methods for equal current sharing among layers, in IEEE 19th Workshop on Control and Modeling for Power Electronics, 2014 C.R. Sullivan, Layered foil as an alternative to Litz Wire: multiple methods for equal current sharing among layers, in IEEE 19th Workshop on Control and Modeling for Power Electronics, 2014
79.
Zurück zum Zitat A.L.F. Stein, P.A. Kyaw, C.R. Sullivan, High-Q self-resonant structure for wireless power transfer, in IEEE Applied Power Electronics Conference and Exposition (APEC), Mar 2017, pp. 3723–3729 A.L.F. Stein, P.A. Kyaw, C.R. Sullivan, High-Q self-resonant structure for wireless power transfer, in IEEE Applied Power Electronics Conference and Exposition (APEC), Mar 2017, pp. 3723–3729
80.
Zurück zum Zitat P.A. Kyaw, A.L.F. Stein, C.R. Sullivan, High-Q resonator with integrated capacitance for resonant power conversion, in IEEE Applied Power Electronics Conference and Exposition (APEC), Mar 2017, pp. 2519–2526 P.A. Kyaw, A.L.F. Stein, C.R. Sullivan, High-Q resonator with integrated capacitance for resonant power conversion, in IEEE Applied Power Electronics Conference and Exposition (APEC), Mar 2017, pp. 2519–2526
81.
Zurück zum Zitat P.A. Kyaw, A.L.F. Stein, C.R. Sullivan, Fundamental examination of multiple potential passive component technologies for future power electronics. IEEE Trans. Power Electron. (2017). http://dx.doi.org/10.1109/TPEL.2017.2776609 P.A. Kyaw, A.L.F. Stein, C.R. Sullivan, Fundamental examination of multiple potential passive component technologies for future power electronics. IEEE Trans. Power Electron. (2017). http://​dx.​doi.​org/​10.​1109/​TPEL.​2017.​2776609
82.
Zurück zum Zitat C. Trask, Transmission line transformers: theory design and applications. Part 1, in High Frequency Electronics, 2005, pp. 46–53 C. Trask, Transmission line transformers: theory design and applications. Part 1, in High Frequency Electronics, 2005, pp. 46–53
83.
Zurück zum Zitat C. Trask, Transmission line transformers: Theory design and applications. Part 2, in High Frequency Electronics, 2006, pp. 26–32 C. Trask, Transmission line transformers: Theory design and applications. Part 2, in High Frequency Electronics, 2006, pp. 26–32
84.
Zurück zum Zitat R. Mack, J. Sevick, Sevick’s Transmission Line Transformers: Theory and Practice, 5th edn. Scitech Publishing imprint of the IET (IET, 2014) R. Mack, J. Sevick, Sevick’s Transmission Line Transformers: Theory and Practice, 5th edn. Scitech Publishing imprint of the IET (IET, 2014)
85.
Zurück zum Zitat Y. Han, D.J. Perreault, Analysis and design of high efficiency matching networks. IEEE Trans. Power Electron. 21(5), 1484–1491 (2006)CrossRef Y. Han, D.J. Perreault, Analysis and design of high efficiency matching networks. IEEE Trans. Power Electron. 21(5), 1484–1491 (2006)CrossRef
86.
Zurück zum Zitat P.A. Kyaw, A.L. Stein, C.R. Sullivan, Analysis of high efficiency multistage matching networks with volume constraint, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL) (IEEE, 2017), pp. 1–8 P.A. Kyaw, A.L. Stein, C.R. Sullivan, Analysis of high efficiency multistage matching networks with volume constraint, in IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL) (IEEE, 2017), pp. 1–8
87.
Zurück zum Zitat A. Kumar, S. Sinha, A. Sepahvand, K.K. Afridi, Improved design optimization approach for high efficiency matching networks, in 2016 IEEE Energy Conversion Congress and Exposition (ECCE) (IEEE, 2016), pp. 1–7 A. Kumar, S. Sinha, A. Sepahvand, K.K. Afridi, Improved design optimization approach for high efficiency matching networks, in 2016 IEEE Energy Conversion Congress and Exposition (ECCE) (IEEE, 2016), pp. 1–7
Metadaten
Titel
GaN in Switched-Mode Power Amplifiers
verfasst von
David J. Perreault
Charles R. Sullivan
Juan M. Rivas
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-77994-2_8

Neuer Inhalt