Skip to main content

2010 | OriginalPaper | Buchkapitel

GEM*STAR: The Alternative Reactor Technology Comprising Graphite, Molten Salt, and Accelerators

verfasst von : Charles D. Bowman, R. Bruce Vogelaar, Edward G. Bilpuch, Calvin R. Howell, Anton P. Tonchev, Werner Tornow, R. L. Walter

Erschienen in: Handbook of Nuclear Engineering

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The technology of nuclear power could be quite different from today’s if it had been practical in the beginning to supplement fission neutrons with accelerator-produced neutrons. The purpose of this chapter is to illustrate the possible benefits of implementing supplementary neutrons from accelerators in an optimized reactor. GEMSTAR (Green Energy MultiplierSubcritical Technology for Alternative Reactors developed by Accelerator Driven Neutron Applications (ADNA Corp) is a subcritical thermal-spectrum reactor operating with molten salt fuel in a graphite matrix and in a continuous flow mode initially at keff = 0. 99. The model described is able to use natural uranium as fuel and generate twice as much electric power as a light water reactor (LWR) generates from the same mined uranium. GEMSTAR at keff = 0. 99 also can be fueled with unreprocessed LWR spent fuel, and it can generate as much electricity as the LWR had generated from the same fuel. Because GEMSTAR uses liquid fuel, it can recycle its own fuel at keff = 0. 95 without any operations on the fuel. This recycle can be repeated several more times, always without reprocessing, as accelerator or fusion neutron generation technology development reduces the cost of neutrons. GEMSTAR therefore increases the electricity from mined uranium many times while avoiding the serious problems of current nuclear-power technology arising from enrichment, reprocessing, fast reactor deployment, and near term high-level waste storage. GEMSTAR also offers technology for nuclear energy generation that promises reductions in nuclear electricity cost and eliminates major proliferation concerns. The technology can use a modest source of intermittent “green” electricity such as wind or solar as input power to drive an accelerator that, in effect, multiplies the green energy by a factor of about 30 with 24–7 continuity and without compromising any environmental objectives of green energy sources. This chapter is not a complete history of molten salt, graphite, and accelerator technologies, but a description of how these orphan elements of nuclear power development may be integrated for a GEMSTAR solution to the main barriers that constrain the full deployment of today’s nuclear power technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adams JW, Lageraaen PR, Kalb PD, Rutenkroger SP (1997) Feasibility study of dupoly to recycle depleted uranium. Formal Report BNL-52597 Adams JW, Lageraaen PR, Kalb PD, Rutenkroger SP (1997) Feasibility study of dupoly to recycle depleted uranium. Formal Report BNL-52597
Zurück zum Zitat ANL-5800 (1963) Reactor physics constants, 2nd edn. Argonne National Laboratory, Lemont ANL-5800 (1963) Reactor physics constants, 2nd edn. Argonne National Laboratory, Lemont
Zurück zum Zitat Arnold GP, Myers VW, Weber AH (1949) The effect of crystal orientation on the scattering of slow neutrons. Phys Rev 75:217CrossRef Arnold GP, Myers VW, Weber AH (1949) The effect of crystal orientation on the scattering of slow neutrons. Phys Rev 75:217CrossRef
Zurück zum Zitat Bateman H (1927) A modification of Gordon’s equation. Phys Rev 30:55–60CrossRef Bateman H (1927) A modification of Gordon’s equation. Phys Rev 30:55–60CrossRef
Zurück zum Zitat Beckurts KH, Wirtz K (1964) Neutron physics. Karlsruhe Nuclear Research Center, Springer, BerlinMATH Beckurts KH, Wirtz K (1964) Neutron physics. Karlsruhe Nuclear Research Center, Springer, BerlinMATH
Zurück zum Zitat Bowman CD (1998) Accelerator-driven systems for nuclear waste transmutation. Annu Rev Nucl Part Sci 48:505–556CrossRef Bowman CD (1998) Accelerator-driven systems for nuclear waste transmutation. Annu Rev Nucl Part Sci 48:505–556CrossRef
Zurück zum Zitat Bowman CD (2000a) Once-through thermal spectrum accelerator-driven light water reactor waste destruction without reprocessing. Nucl Technol 132:66–93 Bowman CD (2000a) Once-through thermal spectrum accelerator-driven light water reactor waste destruction without reprocessing. Nucl Technol 132:66–93
Zurück zum Zitat Bowman CD (2000b) Once-through thermal spectrum accelerator-driven light water reactor waste destruction without reprocessing. Nucl Technol 132:79–83 Bowman CD (2000b) Once-through thermal spectrum accelerator-driven light water reactor waste destruction without reprocessing. Nucl Technol 132:79–83
Zurück zum Zitat Bowman CD (2001) Apparatus for transmutation of nuclear reactor waste. US Patent US 6,233,298 B1, 15 May 2001 Bowman CD (2001) Apparatus for transmutation of nuclear reactor waste. US Patent US 6,233,298 B1, 15 May 2001
Zurück zum Zitat Bowman CD, Magill J (2006) Potential role for lasers for sustainable fission energy production and transmutation of nuclear waste. In: Schwoerer H, Magill J, Beleites B (eds) Lasers and nuclei, applications of ultrahigh intensity lasers in nuclear science. Springer, Berlin, pp 169–189 Bowman CD, Magill J (2006) Potential role for lasers for sustainable fission energy production and transmutation of nuclear waste. In: Schwoerer H, Magill J, Beleites B (eds) Lasers and nuclei, applications of ultrahigh intensity lasers in nuclear science. Springer, Berlin, pp 169–189
Zurück zum Zitat Bowman C, Arthur E, Lisowski P, Lawrence G, Jensen R, Anderson J, Blind B, Capiello M, Davidson J, England T, Engle L, Haight R, Hughes H III, Ireland J, Krakowski R, Labauve R, Letellier B, Perry R, Russell G, Staudhammer K, Versamis G, Wilson W (1992) Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl Inst Meth Phys Res A 320:336–367CrossRef Bowman C, Arthur E, Lisowski P, Lawrence G, Jensen R, Anderson J, Blind B, Capiello M, Davidson J, England T, Engle L, Haight R, Hughes H III, Ireland J, Krakowski R, Labauve R, Letellier B, Perry R, Russell G, Staudhammer K, Versamis G, Wilson W (1992) Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl Inst Meth Phys Res A 320:336–367CrossRef
Zurück zum Zitat Bowman CD, Bowman DC, Hill T, Long J, Tonchev AP, Yornow W, Trouw F, Vogel S, Walter RL, Wender S, Yuan V (2008) Measurements of thermal neutron diffraction and inelastic scattering in reactor grade graphite. Nucl Sci Eng 159:182–198 Bowman CD, Bowman DC, Hill T, Long J, Tonchev AP, Yornow W, Trouw F, Vogel S, Walter RL, Wender S, Yuan V (2008) Measurements of thermal neutron diffraction and inelastic scattering in reactor grade graphite. Nucl Sci Eng 159:182–198
Zurück zum Zitat Bowman CD, Bilpuch EG, Bowman DC, Crowell AS, Howell CR, McCabe K, Smith GA, Tonchev AP, Tornow W, Violet V, Vogelaar RB, Walter RL, Yingling J (2009a) Reducing parasitic thermal neutron absorption in graphite reactors by 30%. Nucl Sci Eng Bowman CD, Bilpuch EG, Bowman DC, Crowell AS, Howell CR, McCabe K, Smith GA, Tonchev AP, Tornow W, Violet V, Vogelaar RB, Walter RL, Yingling J (2009a) Reducing parasitic thermal neutron absorption in graphite reactors by 30%. Nucl Sci Eng
Zurück zum Zitat Bowman C, Bowman D, Bilpuch E, Crowell A, Howell C, McCabe K, Smith G, Tonchev A, Tornow W, Vylet V, Walter R (2009b) Neutrons from a proton-driven deuterium target as a possible competitor to spallation for nuclear energy applications. Nucl Sci Eng 161: 119–124 Bowman C, Bowman D, Bilpuch E, Crowell A, Howell C, McCabe K, Smith G, Tonchev A, Tornow W, Vylet V, Walter R (2009b) Neutrons from a proton-driven deuterium target as a possible competitor to spallation for nuclear energy applications. Nucl Sci Eng 161: 119–124
Zurück zum Zitat Bunn M, Fetter S, Holdren JP, van der Zwann B (2003) The economics of reprocessing vs. direct disposal of spent nuclear fuel. In: Project on managing the atom, Belfer Center for Science and International Affairs, Harvard University. http://www.ksg.harvard.edu/bcsia/atom Bunn M, Fetter S, Holdren JP, van der Zwann B (2003) The economics of reprocessing vs. direct disposal of spent nuclear fuel. In: Project on managing the atom, Belfer Center for Science and International Affairs, Harvard University. http://​www.​ksg.​harvard.​edu/​bcsia/​atom
Zurück zum Zitat CURE: Clean Use of Reactor Energy (1990) Westinghouse Hanford Company Report WHC-EP-0268 CURE: Clean Use of Reactor Energy (1990) Westinghouse Hanford Company Report WHC-EP-0268
Zurück zum Zitat Forsberg CW (2007) Thermal- and fast-spectrum molten salt reactors for actinide burning and fuel production. In: Global 07, advanced nuclear fuel cycles and systems, American nuclear society meeting, Boise, Idaho, 9–13 Sept 2007 Forsberg CW (2007) Thermal- and fast-spectrum molten salt reactors for actinide burning and fuel production. In: Global 07, advanced nuclear fuel cycles and systems, American nuclear society meeting, Boise, Idaho, 9–13 Sept 2007
Zurück zum Zitat Forsberg CW, Peterson PF, Zhao H (2004) An advanced molten salt reactor using high-temperature reactor technology. In: Inter- national congress on advances in nuclear power plants (ICAPP’04), Imbedded international topical meeting, 2004 American nuclear society annual meeting, Pittsburgh, Pennsylvania, 13–16 June 2004 Forsberg CW, Peterson PF, Zhao H (2004) An advanced molten salt reactor using high-temperature reactor technology. In: Inter- national congress on advances in nuclear power plants (ICAPP’04), Imbedded international topical meeting, 2004 American nuclear society annual meeting, Pittsburgh, Pennsylvania, 13–16 June 2004
Zurück zum Zitat Furukawa K, Kato Y, Chigrinov SE (1994) Plutonium (TRU) transmutation and 233U production by single-fluid type accelerator molten-salt breeder (AMSB). In Accelerator-driven transmutation technology and applications, Las Vegas, 25–29 July 1994 Furukawa K, Kato Y, Chigrinov SE (1994) Plutonium (TRU) transmutation and 233U production by single-fluid type accelerator molten-salt breeder (AMSB). In Accelerator-driven transmutation technology and applications, Las Vegas, 25–29 July 1994
Zurück zum Zitat Gat U, Dodds HL (1993) The source term and waste optimization of molten salt reactors with reprocessing. In: GLOBAL ‘99, Seattle, Washington, 12–17 Sept 1993 Gat U, Dodds HL (1993) The source term and waste optimization of molten salt reactors with reprocessing. In: GLOBAL ‘99, Seattle, Washington, 12–17 Sept 1993
Zurück zum Zitat Gat U, Engel JR, Dodds HL (1992) Molten salt reactors for burning dismantled weapons fuel. Nucl Technol 100:390–394 Gat U, Engel JR, Dodds HL (1992) Molten salt reactors for burning dismantled weapons fuel. Nucl Technol 100:390–394
Zurück zum Zitat Glasstone S, Edlund MC (1952) The elements of nuclear reactor theory. D. Van Nostrand Company, New York Glasstone S, Edlund MC (1952) The elements of nuclear reactor theory. D. Van Nostrand Company, New York
Zurück zum Zitat Lamarsh JR (1983) Introduction to nuclear engineering, 2nd edn. Addison-Wesley, Reading, p 134 Lamarsh JR (1983) Introduction to nuclear engineering, 2nd edn. Addison-Wesley, Reading, p 134
Zurück zum Zitat Lawrence in the Cold War (2002) Center for History of Physics, American Institute of Physics, chp@aip.org Lawrence in the Cold War (2002) Center for History of Physics, American Institute of Physics, chp@aip.org
Zurück zum Zitat Lawrence G et al (1996) Conventional and superconducting RF linac designs for the APT Project. In: Proceedings of 1996 linear accelerator conference, Geneva, Switzerland Lawrence G et al (1996) Conventional and superconducting RF linac designs for the APT Project. In: Proceedings of 1996 linear accelerator conference, Geneva, Switzerland
Zurück zum Zitat Lewis WB (1966) Atomic energy of Canada Limited Report No. AECL-2600 Lewis WB (1966) Atomic energy of Canada Limited Report No. AECL-2600
Zurück zum Zitat Lide DR (ed) (1991) Handbook of chemistry and physics, 72nd edn. CRC Press, Boston Lide DR (ed) (1991) Handbook of chemistry and physics, 72nd edn. CRC Press, Boston
Zurück zum Zitat McLane V, Dunford CL, Rose PF (1988) Neutron cross sections, volume 2, neutron cross section curves. National Nuclear Data Center, Brookhaven National Laboratory, Academic, San Diego McLane V, Dunford CL, Rose PF (1988) Neutron cross sections, volume 2, neutron cross section curves. National Nuclear Data Center, Brookhaven National Laboratory, Academic, San Diego
Zurück zum Zitat Merle-Lucotte E, Heuer D, Le Brun C, Mathieu L, Brissot R, Liatard E, Meplan O, Nuttin A (2006) Fast thorium molten salt reactors started with plutonium. In: Proceedings of the international congress on advances in nuclear power plants (ICAPP), Reno Merle-Lucotte E, Heuer D, Le Brun C, Mathieu L, Brissot R, Liatard E, Meplan O, Nuttin A (2006) Fast thorium molten salt reactors started with plutonium. In: Proceedings of the international congress on advances in nuclear power plants (ICAPP), Reno
Zurück zum Zitat Moir RW, Teller E (2005) Thorium-fueled underground power plant based on molten salt technology. Nucl Technol 151:334–340 Moir RW, Teller E (2005) Thorium-fueled underground power plant based on molten salt technology. Nucl Technol 151:334–340
Zurück zum Zitat Mughabghab SF (1984) Neutron cross sections, volume 1, neutron resonance parameters and thermal cross sections, pp. 12–16, Part B: Z = 61–100. National Nuclear Data Center, Brookhaven National Laboratory, Academic, New York Mughabghab SF (1984) Neutron cross sections, volume 1, neutron resonance parameters and thermal cross sections, pp. 12–16, Part B: Z = 61–100. National Nuclear Data Center, Brookhaven National Laboratory, Academic, New York
Zurück zum Zitat Nightingale RE (1962) Nuclear graphite. Academic, New York Nightingale RE (1962) Nuclear graphite. Academic, New York
Zurück zum Zitat Peterson PF (1996) Long-term safeguards for plutonium in geologic repositories. Sci Glob Secur 6:1–29CrossRef Peterson PF (1996) Long-term safeguards for plutonium in geologic repositories. Sci Glob Secur 6:1–29CrossRef
Zurück zum Zitat Poulter DR (ed) (1963) The design of gas-cooled graphite-moderated reactors. Oxford University Press, New York Poulter DR (ed) (1963) The design of gas-cooled graphite-moderated reactors. Oxford University Press, New York
Zurück zum Zitat Report to Congress (2006) Spent nuclear fuel recycling program plan, U.S. Department of Energy, May 2006 Report to Congress (2006) Spent nuclear fuel recycling program plan, U.S. Department of Energy, May 2006
Zurück zum Zitat Rosen L (1973) The Clinton P. Anderson Meson Physics Facility (LAMPF). Proc Natl Acad Sci USA 70:603–610CrossRef Rosen L (1973) The Clinton P. Anderson Meson Physics Facility (LAMPF). Proc Natl Acad Sci USA 70:603–610CrossRef
Zurück zum Zitat Shapiro S et al (2003) Accelerator based continuous neutron source (ACNS). BNL – Formal Report 71184 (2003); Ruggeiero A, Ludewig H, Shapiro S (2003) Study of a 10-MW continuous spallation neutron source. In: Proceedings of the IEEE 2003 accelerator conference, Portland, Oregon Shapiro S et al (2003) Accelerator based continuous neutron source (ACNS). BNL – Formal Report 71184 (2003); Ruggeiero A, Ludewig H, Shapiro S (2003) Study of a 10-MW continuous spallation neutron source. In: Proceedings of the IEEE 2003 accelerator conference, Portland, Oregon
Zurück zum Zitat Smith R, Shay M, Short S, Ehrman C, Myers T (1999) Estimated cost of an ATW system. Pacific Northwest National Laboratory (PNNL) Report 13018 Smith R, Shay M, Short S, Ehrman C, Myers T (1999) Estimated cost of an ATW system. Pacific Northwest National Laboratory (PNNL) Report 13018
Zurück zum Zitat Stephenson R (1954) Introduction to nuclear engineering. McGraw-Hill, New York Stephenson R (1954) Introduction to nuclear engineering. McGraw-Hill, New York
Zurück zum Zitat Weinberg AM et al (1970) The status and technology of molten salt reactors – a review of molten salt reactor work at the Oak Ridge National Laboratory. Nucl Appl Technol 8:105–219 Weinberg AM et al (1970) The status and technology of molten salt reactors – a review of molten salt reactor work at the Oak Ridge National Laboratory. Nucl Appl Technol 8:105–219
Metadaten
Titel
GEM*STAR: The Alternative Reactor Technology Comprising Graphite, Molten Salt, and Accelerators
verfasst von
Charles D. Bowman
R. Bruce Vogelaar
Edward G. Bilpuch
Calvin R. Howell
Anton P. Tonchev
Werner Tornow
R. L. Walter
Copyright-Jahr
2010
Verlag
Springer US
DOI
https://doi.org/10.1007/978-0-387-98149-9_24