Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2009

01.12.2009

General Basis Functions for Parametric Representation of Energy Deposition Processes

verfasst von: S. G. Lambrakos

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

General basis functions for parametric representation of energy deposition processes are constructed according to the general physical characteristics of energy deposition within a volume of material from a beam energy source. These basis functions include previously constructed source functions as special cases. The construction of a general parameterization of energy deposition processes, e.g., welding and rapid prototyping, is necessary for inverse analysis of such processes. The structure of such a parameterization follows from the concepts of model and data spaces that imply the existence of an optimal parametric representation for a given class of inverse problems. Accordingly, the optimal parametric representation lying within the model space is determined by the characteristics of the available data, i.e., data space, which contain both experimental measurements and numerical simulation data. Experimental measurements include solidification cross-sections, thermocouple measurements, and microstructural changes. Numerical simulation data include general temperature field trend characteristics, response characteristics of materials to volumetric energy deposition, and the relative sensitivity of temperature field characteristics to phenomena occurring on different space and time scales. A general procedure is described for using basis functions with the available experimental and numerical data to construct a multidimensional field representation of a large class of energy deposition processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.N. Ghosh Roy: Methods of Inverse Problems in Physics, CRC Press, Boca Raton, 1991. D.N. Ghosh Roy: Methods of Inverse Problems in Physics, CRC Press, Boca Raton, 1991.
2.
Zurück zum Zitat K.A. Woodbury: editor: Inverse Engineering Handbook, CRC Press, New York, 2003. K.A. Woodbury: editor: Inverse Engineering Handbook, CRC Press, New York, 2003.
3.
Zurück zum Zitat A. Tarantola: Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, PA, 2005.CrossRef A. Tarantola: Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, PA, 2005.CrossRef
4.
Zurück zum Zitat C.R. Vogel: Computational Methods for Inverse Problems, SIAM, Philadelphia, PA, 2002.CrossRef C.R. Vogel: Computational Methods for Inverse Problems, SIAM, Philadelphia, PA, 2002.CrossRef
5.
Zurück zum Zitat P.C. Sabatier: editor. Inverse Problems: an Interdisciplinary Study. Academic Press, London, 1987. P.C. Sabatier: editor. Inverse Problems: an Interdisciplinary Study. Academic Press, London, 1987.
6.
Zurück zum Zitat C.W. Groetsch: Inverse Problems in the Mathematical Sciences, Vieweg, Bruanschweig; Wiesbaden, 1993.CrossRef C.W. Groetsch: Inverse Problems in the Mathematical Sciences, Vieweg, Bruanschweig; Wiesbaden, 1993.CrossRef
7.
Zurück zum Zitat A. Kirsch: An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996.CrossRef A. Kirsch: An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996.CrossRef
8.
Zurück zum Zitat A. G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer Science, New York, (2005) pp. 9–10. A. G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer Science, New York, (2005) pp. 9–10.
9.
Zurück zum Zitat I.J.D. Craig and J.C. Brown: Inverse Problems in Astronomy, A Guide to Inversion Strategies for Remotely Sensed Data, Adam Hilger Ltd, Bristol and Boston, 1986. I.J.D. Craig and J.C. Brown: Inverse Problems in Astronomy, A Guide to Inversion Strategies for Remotely Sensed Data, Adam Hilger Ltd, Bristol and Boston, 1986.
10.
Zurück zum Zitat M.N. Ozisik and H.R.B. Orlande: Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000. M.N. Ozisik and H.R.B. Orlande: Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000.
11.
Zurück zum Zitat K. Kurpisz and A.J. Nowak: Inverse Thermal Problems, Computational Mechanics Publications, Boston, USA, 1995. K. Kurpisz and A.J. Nowak: Inverse Thermal Problems, Computational Mechanics Publications, Boston, USA, 1995.
12.
Zurück zum Zitat O.M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994.CrossRef O.M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994.CrossRef
13.
Zurück zum Zitat J.V. Beck, B. Blackwell, C.R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley Interscience, New York, 1985. J.V. Beck, B. Blackwell, C.R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley Interscience, New York, 1985.
14.
Zurück zum Zitat J.V. Beck, Inverse Problems in Heat Transfer with Application to Solidification and Welding, Modeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M.R. Ozgu, and K.W. Mahin, Eds., The Minerals, Metals and Materials Society, 1991, p 427–437 J.V. Beck, Inverse Problems in Heat Transfer with Application to Solidification and Welding, Modeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M.R. Ozgu, and K.W. Mahin, Eds., The Minerals, Metals and Materials Society, 1991, p 427–437
15.
Zurück zum Zitat J.V. Beck, Inverse Problems in Heat Transfer, Mathematics of Heat Transfer, G.E. Tupholme and A.S. Wood, Eds., Clarendon Press, 1998, p 13–24 J.V. Beck, Inverse Problems in Heat Transfer, Mathematics of Heat Transfer, G.E. Tupholme and A.S. Wood, Eds., Clarendon Press, 1998, p 13–24
16.
Zurück zum Zitat N. Zabaras, Inverse Modeling of Solidification and Welding Processes, Modeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M.R. Ozgu, and K.W. Mahin, Eds., The Minerals, Metals and Materials Society, 1991, p 523–530 N. Zabaras, Inverse Modeling of Solidification and Welding Processes, Modeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M.R. Ozgu, and K.W. Mahin, Eds., The Minerals, Metals and Materials Society, 1991, p 523–530
17.
Zurück zum Zitat G.S. Dulikravich and T.J. Martin, Inverse Shape and Boundary Condition Problems and Optimization, Heat Conduction: Advances in Numerical Heat Transfer, Chap. 10, Vol 1, W.J. Minkowycz and E.M. Sparrow, Eds.., Taylor & Francis, 1996, p 381–426 G.S. Dulikravich and T.J. Martin, Inverse Shape and Boundary Condition Problems and Optimization, Heat Conduction: Advances in Numerical Heat Transfer, Chap. 10, Vol 1, W.J. Minkowycz and E.M. Sparrow, Eds.., Taylor & Francis, 1996, p 381–426
18.
Zurück zum Zitat T.J. Martin, G.S. Dulikravich, Inverse Determination of Boundary Conditions in Steady Heat Conduction with Heat Generation, ASME J. Heat Transfer 118 (1996) 546–554.CrossRef T.J. Martin, G.S. Dulikravich, Inverse Determination of Boundary Conditions in Steady Heat Conduction with Heat Generation, ASME J. Heat Transfer 118 (1996) 546–554.CrossRef
19.
Zurück zum Zitat J. Xie, and J. Zou, “Numerical Reconstruction of Heat Fluxes.” SIAM J. Numer. anal. 43, 4, 1504–1535, 2005.CrossRef J. Xie, and J. Zou, “Numerical Reconstruction of Heat Fluxes.” SIAM J. Numer. anal. 43, 4, 1504–1535, 2005.CrossRef
20.
Zurück zum Zitat S.G. Lambrakos and S.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes, Mathematical Modelling of Weld Phenomena, Vol 8, 847 (Graz, Austria), Verlag der Technischen Universite, 2007 S.G. Lambrakos and S.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes, Mathematical Modelling of Weld Phenomena, Vol 8, 847 (Graz, Austria), Verlag der Technischen Universite, 2007
21.
Zurück zum Zitat S.G. Lambrakos and J.G. Michopoulos, Computational Parameterization Simplicity and Filtering of Data-Driven Inverse Analysis for Heat Deposition Processes, Proceedings of IDETC/CIE 2006, ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Sept 10-13 (Philadelphia, PA), 2006 S.G. Lambrakos and J.G. Michopoulos, Computational Parameterization Simplicity and Filtering of Data-Driven Inverse Analysis for Heat Deposition Processes, Proceedings of IDETC/CIE 2006, ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Sept 10-13 (Philadelphia, PA), 2006
22.
Zurück zum Zitat S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes Using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, Vol 7, 1025 (Graz, Austria), Verlag der Technischen Universite, 2005, p 1025–1055 S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes Using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, Vol 7, 1025 (Graz, Austria), Verlag der Technischen Universite, 2005, p 1025–1055
23.
Zurück zum Zitat P.G. Moore, H.N. Jones III, and S.G. Lambrakos, An inverse Heat Transfer Model of Thermal Degradation within Multifunctional Tensioned Cable Structures, J. Mater. Eng. Perform., 2005, 14(1)CrossRef P.G. Moore, H.N. Jones III, and S.G. Lambrakos, An inverse Heat Transfer Model of Thermal Degradation within Multifunctional Tensioned Cable Structures, J. Mater. Eng. Perform., 2005, 14(1)CrossRef
24.
Zurück zum Zitat S.G. Lambrakos and J.O. Milewski, “Analysis of Processes involving Heat Deposition using Constrained Optimization,” Science and Technology of Welding and Joining, 7(3) 137, 2002.CrossRef S.G. Lambrakos and J.O. Milewski, “Analysis of Processes involving Heat Deposition using Constrained Optimization,” Science and Technology of Welding and Joining, 7(3) 137, 2002.CrossRef
25.
Zurück zum Zitat S.G. Lambrakos and D.W. Moon, Analysis of Welds Using Geometric Constraints, Computer-Aided Design, Engineering, and Manufacturing, Systems Techniques and Applications, C. Leondes, Ed. (New York), CRC Press, 2001 S.G. Lambrakos and D.W. Moon, Analysis of Welds Using Geometric Constraints, Computer-Aided Design, Engineering, and Manufacturing, Systems Techniques and Applications, C. Leondes, Ed. (New York), CRC Press, 2001
26.
Zurück zum Zitat S.G. Lambrakos, E.A. Metzbower, J.O. Milewski, G. Lewis, R. Dixon and D. Korzekwa: “Simulation of Deep penetration Welding Processes using Geometric Constraints based on Experimental information,’ J. Mater. Eng. Perform., 3(5), 639, 1994.CrossRef S.G. Lambrakos, E.A. Metzbower, J.O. Milewski, G. Lewis, R. Dixon and D. Korzekwa: “Simulation of Deep penetration Welding Processes using Geometric Constraints based on Experimental information,’ J. Mater. Eng. Perform., 3(5), 639, 1994.CrossRef
27.
Zurück zum Zitat K.P. Cooper and S.G. Lambrakos, Fabrication of Net-Shaped Metallic Parts by Overlapping Reinforcement Weld Beads, Proceedings of the Seventh International Conference on Trends in Welding Research, May 16-20 (Materials Park, OH, Pine Mountain, GA), ASM International, 2005, p 647 K.P. Cooper and S.G. Lambrakos, Fabrication of Net-Shaped Metallic Parts by Overlapping Reinforcement Weld Beads, Proceedings of the Seventh International Conference on Trends in Welding Research, May 16-20 (Materials Park, OH, Pine Mountain, GA), ASM International, 2005, p 647
28.
Zurück zum Zitat E.A. Metzbower, D.W. Moon, C.R. Feng, S.G. Lambrakos, and R.J. Wong, Modelling of HSLA-65 GMAW Welds, Mathematical Modelling of Weld Phenomena, Vol 7 (Graz, Austria), Verlag der Technischen Universite, 2005, p 327–339 E.A. Metzbower, D.W. Moon, C.R. Feng, S.G. Lambrakos, and R.J. Wong, Modelling of HSLA-65 GMAW Welds, Mathematical Modelling of Weld Phenomena, Vol 7 (Graz, Austria), Verlag der Technischen Universite, 2005, p 327–339
29.
Zurück zum Zitat S.G. Lambrakos, R.W. Fonda, J.O. Milewski and J.E. Mitchell: “Analysis of Friction Stir Welds using Thermocouple Measurements,” Sci. and Tech. Of Welding and Joining, 8, 345, 2003.CrossRef S.G. Lambrakos, R.W. Fonda, J.O. Milewski and J.E. Mitchell: “Analysis of Friction Stir Welds using Thermocouple Measurements,” Sci. and Tech. Of Welding and Joining, 8, 345, 2003.CrossRef
30.
Zurück zum Zitat R.W. Fonda and S.G. Lambrakos: “Analysis of Friction Stir Welds using an Inverse Problem Approach” Sci. and Tech. Of Welding and Joining, 7 (3), 177, 2002.CrossRef R.W. Fonda and S.G. Lambrakos: “Analysis of Friction Stir Welds using an Inverse Problem Approach” Sci. and Tech. Of Welding and Joining, 7 (3), 177, 2002.CrossRef
31.
Zurück zum Zitat J. Hadamard, ‘Sur les problèmes aux dérivées partielles et leur signification physique’, Princeton University Bulletin, 49–52, 1902 J. Hadamard, ‘Sur les problèmes aux dérivées partielles et leur signification physique’, Princeton University Bulletin, 49–52, 1902
32.
Zurück zum Zitat Proceedings International Conferences on Trends in Welding Research, Vol 1–7 (Materials Park, OH), ASM International Proceedings International Conferences on Trends in Welding Research, Vol 1–7 (Materials Park, OH), ASM International
33.
Zurück zum Zitat Mathematical Modelling of Weld Phenomena, Vol 1–8 (Graz, Austria), Verlag der Technischen Universite Mathematical Modelling of Weld Phenomena, Vol 1–8 (Graz, Austria), Verlag der Technischen Universite
34.
Zurück zum Zitat J.A. Goldak and M. Akhlaghi, Computational Welding Mechanics, Springer Science+Business Media, Inc., 2005 J.A. Goldak and M. Akhlaghi, Computational Welding Mechanics, Springer Science+Business Media, Inc., 2005
35.
Zurück zum Zitat J. Goldak, A. Chakravarti and M. Bibby, “A new finite element model for welding heat source,” Metall. Trans. B, Vol. 15, pp. 299–305, 1984.CrossRef J. Goldak, A. Chakravarti and M. Bibby, “A new finite element model for welding heat source,” Metall. Trans. B, Vol. 15, pp. 299–305, 1984.CrossRef
36.
Zurück zum Zitat J. Goldak, M. Bibby, J. Moore, R. House and B. Patel, “Computer Modeling of heat flow in welds,” Metall. Trans. B, Vol. 17, pp. 587–600, 1986.CrossRef J. Goldak, M. Bibby, J. Moore, R. House and B. Patel, “Computer Modeling of heat flow in welds,” Metall. Trans. B, Vol. 17, pp. 587–600, 1986.CrossRef
37.
Zurück zum Zitat R.N. Bracewell, The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill Book Company, New York, 1986, p 345–355 R.N. Bracewell, The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill Book Company, New York, 1986, p 345–355
38.
Zurück zum Zitat V.A. Karkhin, V.V. Plochikhine, A.S. Ilyin and H.W. Bergmann: “Inverse Modelling of Fusion Welding Process,” in Mathematical Modelling of Weld Phenomena 6 (ed. H. CERJAK), Maney Publishing, London, 1017–1042, 2002. V.A. Karkhin, V.V. Plochikhine, A.S. Ilyin and H.W. Bergmann: “Inverse Modelling of Fusion Welding Process,” in Mathematical Modelling of Weld Phenomena 6 (ed. H. CERJAK), Maney Publishing, London, 1017–1042, 2002.
39.
Zurück zum Zitat V.A. Karkhin, V.V. Plochikhine and H.W. Bergmann: ‘Solution of Inverse Heat Conduction Problem for Determining Heat Input, Weld Shape, and Grain Structure during Laser Welding, Science and Technology of Welding and Joining, 2002, 7(4), pp. 224–231.CrossRef V.A. Karkhin, V.V. Plochikhine and H.W. Bergmann: ‘Solution of Inverse Heat Conduction Problem for Determining Heat Input, Weld Shape, and Grain Structure during Laser Welding, Science and Technology of Welding and Joining, 2002, 7(4), pp. 224–231.CrossRef
40.
Zurück zum Zitat V.A. Karkhin, P.N. Homich, and V.G. Michailov, Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, Mathematical Modelling of Weld Phenomena, Vol 8 (Graz, Austria), Verlag der Technischen Universite, 2007, p 847 V.A. Karkhin, P.N. Homich, and V.G. Michailov, Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, Mathematical Modelling of Weld Phenomena, Vol 8 (Graz, Austria), Verlag der Technischen Universite, 2007, p 847
41.
Zurück zum Zitat V.A. Karkhin, V.G. Michailov, and V.D. Akatsevich, Modelling the Thermal Behaviour of Weld and Heat-Affected Zone During Pulsed Power Welding, Mathematical Modelling of Weld Phenomena 4 (ed. H. Cerjak), The University Press, Cambridge, (1998) pp. 411–426. V.A. Karkhin, V.G. Michailov, and V.D. Akatsevich, Modelling the Thermal Behaviour of Weld and Heat-Affected Zone During Pulsed Power Welding, Mathematical Modelling of Weld Phenomena 4 (ed. H. Cerjak), The University Press, Cambridge, (1998) pp. 411–426.
42.
Zurück zum Zitat S. Kou, Welding Metallurgy, 2nd ed., Wiley-Interscience, Hoboken, NJ, 2002 S. Kou, Welding Metallurgy, 2nd ed., Wiley-Interscience, Hoboken, NJ, 2002
43.
Zurück zum Zitat E.A. Metzbower, “Laser Beam Welding: Thermal Profiles and HAZ Hardness,” Weld. J., 69 (7), (1990) pp. 272. E.A. Metzbower, “Laser Beam Welding: Thermal Profiles and HAZ Hardness,” Weld. J., 69 (7), (1990) pp. 272.
44.
Zurück zum Zitat I. Tosello, F.X. Tissot and M. Barras, “Modelling of Weld Behaviour for the Control of the GTA Process by Computer Aided Welding,” Mathematical Modelling of Weld Phenomena 4 (eds. H. Cerjak and H.K.D.H. Bhadeshia), IOM Communications Ltd, London, (1998) pp. 80–103. I. Tosello, F.X. Tissot and M. Barras, “Modelling of Weld Behaviour for the Control of the GTA Process by Computer Aided Welding,” Mathematical Modelling of Weld Phenomena 4 (eds. H. Cerjak and H.K.D.H. Bhadeshia), IOM Communications Ltd, London, (1998) pp. 80–103.
45.
Zurück zum Zitat R.C. Reed and H.K.D.H Bhadeshia: “A Simple Model For Multipass Welds,” Acta Metall. Mater. 1994, 42(11), 3663–3678.CrossRef R.C. Reed and H.K.D.H Bhadeshia: “A Simple Model For Multipass Welds,” Acta Metall. Mater. 1994, 42(11), 3663–3678.CrossRef
46.
Zurück zum Zitat M. Maalekian, E. Kozeschnik, H.P. Brantner, and H. Cerjak, Inverse Modelling of Heat Generation in Friction Welding, Mathematical Modelling of Weld Phenomena, Vol 8 (Graz, Austria), Verlag der Technischen Universite, 2007, p 881–890 M. Maalekian, E. Kozeschnik, H.P. Brantner, and H. Cerjak, Inverse Modelling of Heat Generation in Friction Welding, Mathematical Modelling of Weld Phenomena, Vol 8 (Graz, Austria), Verlag der Technischen Universite, 2007, p 881–890
47.
Zurück zum Zitat N.N. Rykalin, “Thermal Fundamentals of Welding,” Publ. of USSR Academy of Sciences, Moscow-Leningrad, 1947. N.N. Rykalin, “Thermal Fundamentals of Welding,” Publ. of USSR Academy of Sciences, Moscow-Leningrad, 1947.
48.
Zurück zum Zitat N.N. Rykalin, Calculation of Heat Flow in Welding, Z. Paley and C.M. Adams, Trans., 1951 N.N. Rykalin, Calculation of Heat Flow in Welding, Z. Paley and C.M. Adams, Trans., 1951
49.
Zurück zum Zitat N.N. Rykalin, Berchnung der Wdrmevorgange beim Schweissen, VEB, Verlag Technik, Berlin, 1957 N.N. Rykalin, Berchnung der Wdrmevorgange beim Schweissen, VEB, Verlag Technik, Berlin, 1957
50.
Zurück zum Zitat N.N. Rykalin, “Energy sources for welding, Welding in the World, Vol.12, No. 9/10 (1974), pp. 227–248. N.N. Rykalin, “Energy sources for welding, Welding in the World, Vol.12, No. 9/10 (1974), pp. 227–248.
51.
Zurück zum Zitat P.N. Sabapathy, M. A. Wahab and M.J. Painter, “Numerical methods to predict failure during the in-service welding of gas pipelines,” J. Strain Anal., Vol. 36, No. 6, pp. 611–619, 2001.CrossRef P.N. Sabapathy, M. A. Wahab and M.J. Painter, “Numerical methods to predict failure during the in-service welding of gas pipelines,” J. Strain Anal., Vol. 36, No. 6, pp. 611–619, 2001.CrossRef
52.
Zurück zum Zitat E. Ranatowski and A. Pocwiardowski, “An analytical-numerical evaluation of the thermal cycle in the HAZ during welding.” Mathematical Modelling of Weld Phenomena 4 (eds. H. Cerjak and H.K.D.H. Bhadeshia), IOM Communications Ltd, London, (1998) pp. 379–395. E. Ranatowski and A. Pocwiardowski, “An analytical-numerical evaluation of the thermal cycle in the HAZ during welding.” Mathematical Modelling of Weld Phenomena 4 (eds. H. Cerjak and H.K.D.H. Bhadeshia), IOM Communications Ltd, London, (1998) pp. 379–395.
53.
Zurück zum Zitat E. Ranatowski and A. Pocwiardowski, “An analytical-numerical estimation of the thermal cycle during welding with various heat source models application.” Mathematical Modelling of Weld Phenomena 5 (eds. H. Cerjak and H.K.D.H. Bhadeshia), IOM Communications Ltd, London, (1998) pp. 723–742. E. Ranatowski and A. Pocwiardowski, “An analytical-numerical estimation of the thermal cycle during welding with various heat source models application.” Mathematical Modelling of Weld Phenomena 5 (eds. H. Cerjak and H.K.D.H. Bhadeshia), IOM Communications Ltd, London, (1998) pp. 723–742.
54.
Zurück zum Zitat E. Ranatowski and A. Pocwiardowski, “An analytical-numerical assessment of the thermal cycle in HAZ with three dimensional heat source models and pulsed power welding.” Mathematical Modelling of Weld Phenomena 7 (eds. H. Cerjak and H.K.D.H. Bhadeshia and E. Kozeschnik), Published by Verlag der Technischen Universite Graz, Austria, (2001), pp. 1111–1128. E. Ranatowski and A. Pocwiardowski, “An analytical-numerical assessment of the thermal cycle in HAZ with three dimensional heat source models and pulsed power welding.” Mathematical Modelling of Weld Phenomena 7 (eds. H. Cerjak and H.K.D.H. Bhadeshia and E. Kozeschnik), Published by Verlag der Technischen Universite Graz, Austria, (2001), pp. 1111–1128.
55.
Zurück zum Zitat D. Rosenthal, ‘The theory of moving sources of heat and its application to metal treatments, Trans ASME, Vol. 68 (1946), pp. 849–866. D. Rosenthal, ‘The theory of moving sources of heat and its application to metal treatments, Trans ASME, Vol. 68 (1946), pp. 849–866.
56.
Zurück zum Zitat D. Rosenthal, Mathematical Theory of Heat Conduction During Welding and Cutting, Weld. J., 1941, 20(5), p 220–234 D. Rosenthal, Mathematical Theory of Heat Conduction During Welding and Cutting, Weld. J., 1941, 20(5), p 220–234
57.
Zurück zum Zitat D. Rosenthal, Etude theoretic du regime thermique pendant la soudure a l’arc, 2ieme Congress National des Sciences, Brussels, 1935, p 1277–1292 D. Rosenthal, Etude theoretic du regime thermique pendant la soudure a l’arc, 2ieme Congress National des Sciences, Brussels, 1935, p 1277–1292
58.
Zurück zum Zitat O. Grong, Metallurgical Modelling of Welding, Chap. 2, 2nd ed., Materials Modelling Series, H.K.D.H. Bhadeshia, Ed., The Institute of Materials, UK, 1997, p 1–115 O. Grong, Metallurgical Modelling of Welding, Chap. 2, 2nd ed., Materials Modelling Series, H.K.D.H. Bhadeshia, Ed., The Institute of Materials, UK, 1997, p 1–115
59.
Zurück zum Zitat H. S. Carslaw and J. C. Jaegar: Conduction of Heat in Solids, Clarendon Press, Oxford, 2nd ed, 374, 1959. H. S. Carslaw and J. C. Jaegar: Conduction of Heat in Solids, Clarendon Press, Oxford, 2nd ed, 374, 1959.
60.
Zurück zum Zitat Fernsler, R.F., Slinker, S.P., and Lambrakos, S.G., “A Numerical Model and Scaling Relationship for Energetic Electron Beams in Air,” Journal of Applied Physics, published online Vol.104, Issue 6, 063312 (2008).CrossRef Fernsler, R.F., Slinker, S.P., and Lambrakos, S.G., “A Numerical Model and Scaling Relationship for Energetic Electron Beams in Air,” Journal of Applied Physics, published online Vol.104, Issue 6, 063312 (2008).CrossRef
Metadaten
Titel
General Basis Functions for Parametric Representation of Energy Deposition Processes
verfasst von
S. G. Lambrakos
Publikationsdatum
01.12.2009
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2009
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-009-9368-z

Weitere Artikel der Ausgabe 9/2009

Journal of Materials Engineering and Performance 9/2009 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.