Skip to main content
Erschienen in: Water Resources Management 7/2013

01.05.2013

Generalized Explicit Models for Estimation of Wetting Front Length and Potential Recharge

verfasst von: Shakir Ali, Narayan C. Ghosh, Ranvir Singh, B. K. Sethy

Erschienen in: Water Resources Management | Ausgabe 7/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Determination of length of advancement of wetting front is prerequisite for estimation of potential recharge. The advancement of wetting front is a time varying function governs by depth of ponding and suction head. Use of the Green-Ampt (GA) model for determining time varying length of wetting front involves a trial and error iterative method and hence, a tedious procedure. Replacing the logarithmic term of the GA model by sequential segmental second order polynomial, generalized algebraic equation based models for estimating time varying length of advancement of wetting front and potential recharge rates have been developed. Unlike following a trial and error method as involve in the GA model, the proposed model provides an explicit equation with no restriction to infiltration time period and depth of ponding. The universal values of the models coefficients for different ranges of \( {{{{L_f}}} \left/ {{\left( {H+{\psi_f}} \right)}} \right.} \) [Lf = length of advance of wetting front, H = depth of ponding, and ψ f = suction head at the wetting front] have been determined with the help of the GA model by numerical experiments. Validity of the model has also been tested with the published laboratory experimental data. Analyzed results showed, the proposed models have similar responses as that of the GA model within a maximum relative error of 0.5 % for length of wetting front and 1.2 % for potential recharge estimate, and the corresponding percent bias has been found 0.20 % and 0.12 %, respectively. The proposed models can successfully be used as alternate to the GA model to design artificial groundwater recharge structures, irrigation systems and resolving solute transport problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdulrazzak MJ, Morel-Seytoux HJ (1983) Recharge from an ephemeral stream following wetting front arrival to water table. Water Resour Res 19:194–200CrossRef Abdulrazzak MJ, Morel-Seytoux HJ (1983) Recharge from an ephemeral stream following wetting front arrival to water table. Water Resour Res 19:194–200CrossRef
Zurück zum Zitat Aggelides S, Youngs EG (1978) The dependence of the parameters in the Green and Ampt infiltration equation on the initial water content in draining and wetting states. Water Resour Res 14(5):857–862CrossRef Aggelides S, Youngs EG (1978) The dependence of the parameters in the Green and Ampt infiltration equation on the initial water content in draining and wetting states. Water Resour Res 14(5):857–862CrossRef
Zurück zum Zitat Ali Shakir (2009) Study of artificial groundwater recharge from a pond in a small watershed. Ph. D. thesis, Indian Institute of Technology Roorkee, Roorkee, India, 173p Ali Shakir (2009) Study of artificial groundwater recharge from a pond in a small watershed. Ph. D. thesis, Indian Institute of Technology Roorkee, Roorkee, India, 173p
Zurück zum Zitat Barry DA, Parlange JY, Sander GC, Sivapalan M (1995) Comment on explicit expression for Green-Ampt(delta function diffusivity) infiltration rate and cumulative storage. Water Resour Res 31(5):1445–1446CrossRef Barry DA, Parlange JY, Sander GC, Sivapalan M (1995) Comment on explicit expression for Green-Ampt(delta function diffusivity) infiltration rate and cumulative storage. Water Resour Res 31(5):1445–1446CrossRef
Zurück zum Zitat Barry DA, Parlange JY, Li L, Jeng DS, Crapper M (2005) Green-Ampt approximations. Adv Water Resour 28:1003–1009CrossRef Barry DA, Parlange JY, Li L, Jeng DS, Crapper M (2005) Green-Ampt approximations. Adv Water Resour 28:1003–1009CrossRef
Zurück zum Zitat Bouwer H (1978) Groundwater hydrology, 1st edn. Wiley, New York Bouwer H (1978) Groundwater hydrology, 1st edn. Wiley, New York
Zurück zum Zitat CGWB (2011a) Dynamic Ground Water Resources of India, Ministry of Water Resources, Govt. of India: Central Ground Water Board CGWB (2011a) Dynamic Ground Water Resources of India, Ministry of Water Resources, Govt. of India: Central Ground Water Board
Zurück zum Zitat CGWB (2011b) Selected case studies, rainwater harvesting and artificial recharge. Central Ground Water Board, New Dehli CGWB (2011b) Selected case studies, rainwater harvesting and artificial recharge. Central Ground Water Board, New Dehli
Zurück zum Zitat Dagan G, Bresler E (1983) Unsaturated flow in spatially variable fields I- derivation of models of infiltration and redistribution. Water Resour Res 19(2):413–420CrossRef Dagan G, Bresler E (1983) Unsaturated flow in spatially variable fields I- derivation of models of infiltration and redistribution. Water Resour Res 19(2):413–420CrossRef
Zurück zum Zitat Dillon P, Page D, Beringen H, Ward J (2009) Managed aquifer recharge: an introduction, waterlines report series No. 13. National Water Commission, Canberra, Australia, 65p Dillon P, Page D, Beringen H, Ward J (2009) Managed aquifer recharge: an introduction, waterlines report series No. 13. National Water Commission, Canberra, Australia, 65p
Zurück zum Zitat Enciso-Medina J, Martin D, Eisenhauer D (1998) Infiltration model from furrow irrigation. J Irrig Drain Eng 124(2):73–80CrossRef Enciso-Medina J, Martin D, Eisenhauer D (1998) Infiltration model from furrow irrigation. J Irrig Drain Eng 124(2):73–80CrossRef
Zurück zum Zitat Fok YS (1967) Infiltration equation in exponential forms. J Irrigat Drain Div ASCE 93(IR4):125–135 Fok YS (1967) Infiltration equation in exponential forms. J Irrigat Drain Div ASCE 93(IR4):125–135
Zurück zum Zitat Fok YS, Chiang HS (1984) 2-D infiltration equations for furrow irrigation. J Irrigat Drain Div ASCE 110(2):209–217 Fok YS, Chiang HS (1984) 2-D infiltration equations for furrow irrigation. J Irrigat Drain Div ASCE 110(2):209–217
Zurück zum Zitat Freyberg DL, Reeder JW, Franzini JB, Remson I (1980) Application of Green- Ampt model to infiltration under time dependent surface water depths. Water Resour Res 16(3):517–528CrossRef Freyberg DL, Reeder JW, Franzini JB, Remson I (1980) Application of Green- Ampt model to infiltration under time dependent surface water depths. Water Resour Res 16(3):517–528CrossRef
Zurück zum Zitat Govindaraju RS, Kavvas ML, Jones SE, Rolston DE (1996) Use of Green- Ampt model for analyzing one- dimension convective transport in unsaturated soils. J Hydrol 178:337–350CrossRef Govindaraju RS, Kavvas ML, Jones SE, Rolston DE (1996) Use of Green- Ampt model for analyzing one- dimension convective transport in unsaturated soils. J Hydrol 178:337–350CrossRef
Zurück zum Zitat Green WH, Ampt G (1911) Study in soil physics. I. The flow of air and water through soils. J Agric Sci 4:1–24CrossRef Green WH, Ampt G (1911) Study in soil physics. I. The flow of air and water through soils. J Agric Sci 4:1–24CrossRef
Zurück zum Zitat Horton R (1933) The role infiltration in the hydrology cycle. Am Geophys Union Trans 14:446–460CrossRef Horton R (1933) The role infiltration in the hydrology cycle. Am Geophys Union Trans 14:446–460CrossRef
Zurück zum Zitat Kale RV, Sahoo B (2011) Green-ampt infiltration models for varied field conditions: a revisit. Water Resour Manag 25:3505–3536CrossRef Kale RV, Sahoo B (2011) Green-ampt infiltration models for varied field conditions: a revisit. Water Resour Manag 25:3505–3536CrossRef
Zurück zum Zitat Kostiakov AN (1932) On the dynamics of coefficients of water percolation in soils. Sixth Commission, Int. soil science Society, Part A:15–21 Kostiakov AN (1932) On the dynamics of coefficients of water percolation in soils. Sixth Commission, Int. soil science Society, Part A:15–21
Zurück zum Zitat Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241CrossRef Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241CrossRef
Zurück zum Zitat Li RM, Steven MA, Simons DB (1976) Solutions to Green-Ampt infiltration equation. J Irrigat Drain Eng Div ASCE 102(IR2):239–248 Li RM, Steven MA, Simons DB (1976) Solutions to Green-Ampt infiltration equation. J Irrigat Drain Eng Div ASCE 102(IR2):239–248
Zurück zum Zitat Mailapalli DR, Wallender WW, Singh R, Raghuwanshi NS (2009) Application of a nonstandard explicit integration to solve Green and Ampt infiltration equation. J Hydrol Eng ASCE 14(2):203–206CrossRef Mailapalli DR, Wallender WW, Singh R, Raghuwanshi NS (2009) Application of a nonstandard explicit integration to solve Green and Ampt infiltration equation. J Hydrol Eng ASCE 14(2):203–206CrossRef
Zurück zum Zitat Mein RG, Larson CL (1973) Modeling infiltration during steady a rain. Water Resour Res 9(2):384–394CrossRef Mein RG, Larson CL (1973) Modeling infiltration during steady a rain. Water Resour Res 9(2):384–394CrossRef
Zurück zum Zitat Morel-Seytoux HT, Khanji J (1974) Derivation of an equation of infiltration. Water Resour Res 4(10):795–800CrossRef Morel-Seytoux HT, Khanji J (1974) Derivation of an equation of infiltration. Water Resour Res 4(10):795–800CrossRef
Zurück zum Zitat Philip JR (1957) Theory of infiltration: sorptivity and algebraic equations. Soil Sci 84:257–265CrossRef Philip JR (1957) Theory of infiltration: sorptivity and algebraic equations. Soil Sci 84:257–265CrossRef
Zurück zum Zitat Philip JR (1969) Theory of infiltration. Adv Hydrosci 5:215–296 Philip JR (1969) Theory of infiltration. Adv Hydrosci 5:215–296
Zurück zum Zitat Philip JR (1992) Falling—head ponded infiltration with evaporation. J Hydrol 17:1–21 Philip JR (1992) Falling—head ponded infiltration with evaporation. J Hydrol 17:1–21
Zurück zum Zitat Ramos H (2007) A non-standard explicit integration scheme for initial value problems. Appl Mat Comput 189(1):710–718CrossRef Ramos H (2007) A non-standard explicit integration scheme for initial value problems. Appl Mat Comput 189(1):710–718CrossRef
Zurück zum Zitat Rao MD, Raghuwanshi NS, Singh R (2009) Development of a physically based 1D-infiltration model for seal formed irrigated soils. Agr Water Manag 84(1–2):164–174 Rao MD, Raghuwanshi NS, Singh R (2009) Development of a physically based 1D-infiltration model for seal formed irrigated soils. Agr Water Manag 84(1–2):164–174
Zurück zum Zitat Rawls WJ, Brakensiek DL, Saxon KE (1982) Estimation of soil water properties. Trans ASAE 25:1316–1320 Rawls WJ, Brakensiek DL, Saxon KE (1982) Estimation of soil water properties. Trans ASAE 25:1316–1320
Zurück zum Zitat Reeder JW, Freyberg DL, Franzini JB, Remson I (1980) Infiltration under rapidly varying surface water depths. Water Resour Res 8(5):97–104CrossRef Reeder JW, Freyberg DL, Franzini JB, Remson I (1980) Infiltration under rapidly varying surface water depths. Water Resour Res 8(5):97–104CrossRef
Zurück zum Zitat Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333CrossRef Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333CrossRef
Zurück zum Zitat Rushton K (1997) Recharge from permanent water bodies. In: Simmers I (ed) Recharge of phreatic aquifers in semi arid areas. A A Baalkema, Rotterdam, pp 215–255 Rushton K (1997) Recharge from permanent water bodies. In: Simmers I (ed) Recharge of phreatic aquifers in semi arid areas. A A Baalkema, Rotterdam, pp 215–255
Zurück zum Zitat Salvucci GD, Entekhabi D (1994) Explicit expressions for Green-Ampt (delta function diffusivity) infiltration rate and cumulative storage. Water Resour Res 30(9):2661–2663CrossRef Salvucci GD, Entekhabi D (1994) Explicit expressions for Green-Ampt (delta function diffusivity) infiltration rate and cumulative storage. Water Resour Res 30(9):2661–2663CrossRef
Zurück zum Zitat Serrano SE (2001) Explicit solution to Green and Ampt infiltration equation. J Hydrol Eng 6(4):336–340CrossRef Serrano SE (2001) Explicit solution to Green and Ampt infiltration equation. J Hydrol Eng 6(4):336–340CrossRef
Zurück zum Zitat Serrano SE (2003) Improved decomposition solution to Green and Ampt infiltration equation. J Hydrol Eng 8(3):158–160CrossRef Serrano SE (2003) Improved decomposition solution to Green and Ampt infiltration equation. J Hydrol Eng 8(3):158–160CrossRef
Zurück zum Zitat Shah T (2009) Taming the anarchy: groundwater governance in south Asia, resources for the future. Washington D.C. & International Water Management Institute, Colombo Shah T (2009) Taming the anarchy: groundwater governance in south Asia, resources for the future. Washington D.C. & International Water Management Institute, Colombo
Zurück zum Zitat Smith RE (1972) The infiltration envelopes: results from a theoretical infiltration model. J Hydrol 138:215–296 Smith RE (1972) The infiltration envelopes: results from a theoretical infiltration model. J Hydrol 138:215–296
Zurück zum Zitat Smith RA, Parlange YJ (1978) A parameter efficient hydrologic infiltration model. Water Resour Res 14(3):535–538CrossRef Smith RA, Parlange YJ (1978) A parameter efficient hydrologic infiltration model. Water Resour Res 14(3):535–538CrossRef
Zurück zum Zitat Swartzendruber D (1974) Infiltration of constant flux rainfall into soil as analyzed by the approach of Green and Ampt. Soil Sci 117:272–281CrossRef Swartzendruber D (1974) Infiltration of constant flux rainfall into soil as analyzed by the approach of Green and Ampt. Soil Sci 117:272–281CrossRef
Zurück zum Zitat Talsma T (1969) In-situ measurement of sorptivity. Aust J Soil Res 17:269–276CrossRef Talsma T (1969) In-situ measurement of sorptivity. Aust J Soil Res 17:269–276CrossRef
Zurück zum Zitat Warrick AW, Zerihun D, Sanchez CA, Furman A (2005) Infiltration under variable ponding depths of water. J Irrig Drain Eng 131(4):358–363CrossRef Warrick AW, Zerihun D, Sanchez CA, Furman A (2005) Infiltration under variable ponding depths of water. J Irrig Drain Eng 131(4):358–363CrossRef
Metadaten
Titel
Generalized Explicit Models for Estimation of Wetting Front Length and Potential Recharge
verfasst von
Shakir Ali
Narayan C. Ghosh
Ranvir Singh
B. K. Sethy
Publikationsdatum
01.05.2013
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 7/2013
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-013-0295-2

Weitere Artikel der Ausgabe 7/2013

Water Resources Management 7/2013 Zur Ausgabe