Skip to main content

2011 | OriginalPaper | Buchkapitel

Genetic Modification of Human Embryonic and Induced Pluripotent Stem Cells: Viral and Non-viral Approaches

verfasst von : Nicole M. Kane, Chris Denning, Andrew H. Baker

Erschienen in: Stem Cell Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Human embryonic stem cells (hESCs) and induced pluripotent cells (iPSCs) are well suited for translational cell therapy. For hESC, the pluripotent phenotype, naturally occurring within the inner cell mass of the early embryo, bestows the capability to differentiate into any cell type of interest and this, coupled with their ability to remain in an undifferentiated state with indefinite proliferative capacity, means that essentially unlimited numbers of identical, well-defined and genetically characterised stem cells can be produced in culture for therapeutic applications. An understanding of the regulatory mechanisms responsible for pluripotency and differentiation potential of hESCs is critical for translating their potential in vitro to therapeutic use in vivo. Harnessing of this therapeutic potential in conjunction with modern genetic modification tools promises great advancement in the study of developmental and adult physiology and pathophysiology with a view towards implementation of genetically modified hESCs to advance regenerative medicine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rovira M, Jane-Valbuena J, Marchand M, Savatier P, Real FX, Skoudy A. Viral-mediated coexpression of Pdx1 and p48 regulates exocrine pancreatic differentiation in mouse ES cells. Cloning Stem Cells. Fall 2007; 9(3):327–338.CrossRef Rovira M, Jane-Valbuena J, Marchand M, Savatier P, Real FX, Skoudy A. Viral-mediated coexpression of Pdx1 and p48 regulates exocrine pancreatic differentiation in mouse ES cells. Cloning Stem Cells. Fall 2007; 9(3):327–338.CrossRef
2.
Zurück zum Zitat Li Z, Suzuki Y, Huang M, et al. Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells. 2009 Mar: 18(2):205–14.CrossRef Li Z, Suzuki Y, Huang M, et al. Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells. 2009 Mar: 18(2):205–14.CrossRef
3.
Zurück zum Zitat Xie X, Chan KS, Cao F, et al. Imaging of STAT3 signaling pathway during mouse embryonic stem cell differentiation. Stem Cells Dev. 2008 Jun 24. Xie X, Chan KS, Cao F, et al. Imaging of STAT3 signaling pathway during mouse embryonic stem cell differentiation. Stem Cells Dev. 2008 Jun 24.
4.
Zurück zum Zitat Cao F, Drukker M, Lin S, et al. Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells. Spring 2007; 9(1):107–117.CrossRef Cao F, Drukker M, Lin S, et al. Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells. Spring 2007; 9(1):107–117.CrossRef
5.
Zurück zum Zitat Strulovici Y, Leopold PL, O‘Connor TP, Pergolizzi RG, Crystal RG. Human embryonic stem cells and gene therapy. Mol Ther. 2007 May; 15(5):850–866. Strulovici Y, Leopold PL, O‘Connor TP, Pergolizzi RG, Crystal RG. Human embryonic stem cells and gene therapy. Mol Ther. 2007 May; 15(5):850–866.
6.
Zurück zum Zitat Yu J, Vodyanik M, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec 21; 318(5858):1917–20. Yu J, Vodyanik M, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec 21; 318(5858):1917–20.
7.
Zurück zum Zitat Lowry WE, Richter L, Yachechko R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A. 2008 Feb 26; 105(8):2883–2888.CrossRef Lowry WE, Richter L, Yachechko R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A. 2008 Feb 26; 105(8):2883–2888.CrossRef
8.
Zurück zum Zitat Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008 Jan 10; 451(7175):141–146.CrossRef Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008 Jan 10; 451(7175):141–146.CrossRef
9.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30; 131(5):861–872.CrossRef Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30; 131(5):861–872.CrossRef
10.
Zurück zum Zitat Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell. 2008 Sep 5; 134(5):877–86.CrossRef Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell. 2008 Sep 5; 134(5):877–86.CrossRef
11.
Zurück zum Zitat Park IH, Lerou PH, Zhao R, Huo H, Daley GQ. Generation of human-induced pluripotent stem cells. Nat Protoc. 2008; 3(7):1180–1186.CrossRef Park IH, Lerou PH, Zhao R, Huo H, Daley GQ. Generation of human-induced pluripotent stem cells. Nat Protoc. 2008; 3(7):1180–1186.CrossRef
12.
Zurück zum Zitat Gao X, Kim KS, Liu D. Nonviral gene delivery: what we know and what is next. Aaps J. 2007; 9(1):E92–E104.CrossRef Gao X, Kim KS, Liu D. Nonviral gene delivery: what we know and what is next. Aaps J. 2007; 9(1):E92–E104.CrossRef
13.
Zurück zum Zitat Lakshmipathy U, Pelacho B, Sudo K, et al. Efficient transfection of embryonic and adult stem cells. Stem Cells. 2004; 22(4):531–543.CrossRef Lakshmipathy U, Pelacho B, Sudo K, et al. Efficient transfection of embryonic and adult stem cells. Stem Cells. 2004; 22(4):531–543.CrossRef
14.
Zurück zum Zitat Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6; 282(5391):1145–1147.CrossRef Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6; 282(5391):1145–1147.CrossRef
15.
Zurück zum Zitat Liew CG, Draper JS, Walsh J, Moore H, Andrews PW. Transient and stable transgene expression in human embryonic stem cells. Stem Cells. 2007 Jun; 25(6):1521–1528.CrossRef Liew CG, Draper JS, Walsh J, Moore H, Andrews PW. Transient and stable transgene expression in human embryonic stem cells. Stem Cells. 2007 Jun; 25(6):1521–1528.CrossRef
16.
Zurück zum Zitat Eiges R, Schuldiner M, Drukker M, Yanuka O, Itskovitz-Eldor J, Benvenisty N. Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol. 2001 Apr 3; 11(7):514–518.CrossRef Eiges R, Schuldiner M, Drukker M, Yanuka O, Itskovitz-Eldor J, Benvenisty N. Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol. 2001 Apr 3; 11(7):514–518.CrossRef
17.
Zurück zum Zitat Lebkowski JS, Gold J, Xu C, Funk W, Chiu CP, Carpenter MK. Human embryonic stem cells: culture, differentiation, and genetic modification for regenerative medicine applications. Cancer J. 2001 Nov-Dec ; 7(Suppl 2):S83–S93. Lebkowski JS, Gold J, Xu C, Funk W, Chiu CP, Carpenter MK. Human embryonic stem cells: culture, differentiation, and genetic modification for regenerative medicine applications. Cancer J. 2001 Nov-Dec ; 7(Suppl 2):S83–S93.
18.
Zurück zum Zitat Siemen H, Nix M, Endl E, Koch P, Itskovitz-Eldor J, Brustle O. Nucleofection of human embryonic stem cells. Stem Cells Dev. 2005 Aug; 14(4):378–383.CrossRef Siemen H, Nix M, Endl E, Koch P, Itskovitz-Eldor J, Brustle O. Nucleofection of human embryonic stem cells. Stem Cells Dev. 2005 Aug; 14(4):378–383.CrossRef
19.
Zurück zum Zitat Vallier L, Rugg-Gunn PJ, Bouhon IA, Andersson FK, Sadler AJ, Pedersen RA. Enhancing and diminishing gene function in human embryonic stem cells. Stem Cells. 2004; 22(1):2–11.CrossRef Vallier L, Rugg-Gunn PJ, Bouhon IA, Andersson FK, Sadler AJ, Pedersen RA. Enhancing and diminishing gene function in human embryonic stem cells. Stem Cells. 2004; 22(1):2–11.CrossRef
20.
Zurück zum Zitat Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol. 2003 Mar; 21(3):319–321.CrossRef Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol. 2003 Mar; 21(3):319–321.CrossRef
21.
Zurück zum Zitat Giudice A, Trounson A. Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell. 2008 May 8; 2(5):422–433.CrossRef Giudice A, Trounson A. Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell. 2008 May 8; 2(5):422–433.CrossRef
22.
Zurück zum Zitat Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther. 2007 Nov: 15(11):2027–36.CrossRef Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther. 2007 Nov: 15(11):2027–36.CrossRef
23.
Zurück zum Zitat Braam SR, Denning C, van den Brink S, et al. Improved genetic manipulation of human embryonic stem cells. Nat Methods. 2008 May; 5(5):389–392.CrossRef Braam SR, Denning C, van den Brink S, et al. Improved genetic manipulation of human embryonic stem cells. Nat Methods. 2008 May; 5(5):389–392.CrossRef
24.
Zurück zum Zitat Denning C, Allegrucci C, Priddle H, et al. Common culture conditions for maintenance and cardiomyocyte differentiation of the human embryonic stem cell lines, BG01 and HUES-7. Int J Dev Biol. 2006; 50(1):27–37.CrossRef Denning C, Allegrucci C, Priddle H, et al. Common culture conditions for maintenance and cardiomyocyte differentiation of the human embryonic stem cell lines, BG01 and HUES-7. Int J Dev Biol. 2006; 50(1):27–37.CrossRef
25.
Zurück zum Zitat Huber I, Itzhaki I, Caspi O, et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J. 2007 Aug; 21(10):2551–2563.CrossRef Huber I, Itzhaki I, Caspi O, et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J. 2007 Aug; 21(10):2551–2563.CrossRef
26.
Zurück zum Zitat Wang D, Haviland DL, Burns AR, Zsigmond E, Wetsel RA. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2007 Mar 13; 104(11):4449–4454.CrossRef Wang D, Haviland DL, Burns AR, Zsigmond E, Wetsel RA. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2007 Mar 13; 104(11):4449–4454.CrossRef
27.
Zurück zum Zitat Urbach A, Schuldiner M, Benvenisty N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells. 2004; 22(4):635–641.CrossRef Urbach A, Schuldiner M, Benvenisty N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells. 2004; 22(4):635–641.CrossRef
28.
Zurück zum Zitat Davis RP, Ng ES, Costa M, et al. Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood. 2008 Feb 15; 111(4):1876–1884.CrossRef Davis RP, Ng ES, Costa M, et al. Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood. 2008 Feb 15; 111(4):1876–1884.CrossRef
29.
Zurück zum Zitat Thyagarajan B, Liu Y, Shin S, et al. Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. 2008 Jan ; 26(1):119–126.CrossRef Thyagarajan B, Liu Y, Shin S, et al. Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. 2008 Jan ; 26(1):119–126.CrossRef
30.
Zurück zum Zitat Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science. 1997; 275:1320–1323.CrossRef Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science. 1997; 275:1320–1323.CrossRef
31.
Zurück zum Zitat Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Nat Acad Sci USA. 1997; 94:3352–3356.CrossRef Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Nat Acad Sci USA. 1997; 94:3352–3356.CrossRef
32.
Zurück zum Zitat Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 1993 Apr 23; 73(2):309–319.CrossRef Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 1993 Apr 23; 73(2):309–319.CrossRef
33.
Zurück zum Zitat Cohen CJ, Shieh JTC, Pickles RJ, Okegawa T, Hsieh J-T, Bergelson JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. PNAS. 2001 Dec 18; 98(26):15191–15196.CrossRef Cohen CJ, Shieh JTC, Pickles RJ, Okegawa T, Hsieh J-T, Bergelson JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. PNAS. 2001 Dec 18; 98(26):15191–15196.CrossRef
34.
Zurück zum Zitat Waddington S, McVey J, Bhella D, et al. Adenovirus serotype 5 Hexon mediates liver gene transfer. Cell. 2008; 132(3):397–409.CrossRef Waddington S, McVey J, Bhella D, et al. Adenovirus serotype 5 Hexon mediates liver gene transfer. Cell. 2008; 132(3):397–409.CrossRef
35.
Zurück zum Zitat Kalyuzhniy O, Di Paolo NC, Silvestry M, et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. PNAS. 2008; 105(14):5483–5488.CrossRef Kalyuzhniy O, Di Paolo NC, Silvestry M, et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. PNAS. 2008; 105(14):5483–5488.CrossRef
36.
Zurück zum Zitat Gaggar A, Shayakhmetov DM, Lieber A. CD46 is a cellular receptor for group B adenoviruses. Nat Med. 2003 Nov; 9(11):1408–1412.CrossRef Gaggar A, Shayakhmetov DM, Lieber A. CD46 is a cellular receptor for group B adenoviruses. Nat Med. 2003 Nov; 9(11):1408–1412.CrossRef
37.
Zurück zum Zitat Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A. Localization of regions in CD46 that interact with adenovirus. Virology. 2005; 79:7503–7513.CrossRef Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A. Localization of regions in CD46 that interact with adenovirus. Virology. 2005; 79:7503–7513.CrossRef
38.
Zurück zum Zitat Tuve S, Wang H, Ware C, et al. A new Group B adenovirus receptor is expressed at high levels on human stem and tumor cells. Virology. 2006 Oct 04; 80(24):12109–12120.CrossRef Tuve S, Wang H, Ware C, et al. A new Group B adenovirus receptor is expressed at high levels on human stem and tumor cells. Virology. 2006 Oct 04; 80(24):12109–12120.CrossRef
39.
Zurück zum Zitat Krasnykh V, Dmitriev I, Mikheeva G, Miller R, Belousova N, Curiel DT. Characterisation of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol. 1998; 72(3):1844–1852. Krasnykh V, Dmitriev I, Mikheeva G, Miller R, Belousova N, Curiel DT. Characterisation of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol. 1998; 72(3):1844–1852.
40.
Zurück zum Zitat Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 1998; 72(12):9706–9713. Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 1998; 72(12):9706–9713.
41.
Zurück zum Zitat Nicklin S, Von Seggern D, Work L, et al. Ablating adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol Ther. 2001; 4:534–542.CrossRef Nicklin S, Von Seggern D, Work L, et al. Ablating adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol Ther. 2001; 4:534–542.CrossRef
42.
Zurück zum Zitat Nicklin S, White S, Watkins S, Hawkins R, Baker A. Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation. 2000; 102:231–237.CrossRef Nicklin S, White S, Watkins S, Hawkins R, Baker A. Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation. 2000; 102:231–237.CrossRef
43.
Zurück zum Zitat Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996; 380:364–366.CrossRef Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996; 380:364–366.CrossRef
44.
Zurück zum Zitat Cavazzana-C M, Hacein-Bey S, Saint-Basile CD, et al. Gene therapy of human severe combined immunodeficiency (scid)-1x disease. Science. 2000; 288:669–672.CrossRef Cavazzana-C M, Hacein-Bey S, Saint-Basile CD, et al. Gene therapy of human severe combined immunodeficiency (scid)-1x disease. Science. 2000; 288:669–672.CrossRef
45.
Zurück zum Zitat Hacein-Bey-Abina S, Kalle CV, Schmidt M, et al. LM02-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003; 302:415–419.CrossRef Hacein-Bey-Abina S, Kalle CV, Schmidt M, et al. LM02-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003; 302:415–419.CrossRef
46.
Zurück zum Zitat Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008 Sept; 118(9):3132–3142.CrossRef Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008 Sept; 118(9):3132–3142.CrossRef
47.
Zurück zum Zitat Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25; 126(4):663–676.CrossRef Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25; 126(4):663–676.CrossRef
48.
Zurück zum Zitat Carneiro FA, Bianconi ML, Weissmuller G, Stauffer F, Da Poian AT. Membrane recognition by vesicular stomatitis virus involves enthalpy-driven protein-lipid interactions. J Virol. 2002 Mar 19; 76(8):3756–3764.CrossRef Carneiro FA, Bianconi ML, Weissmuller G, Stauffer F, Da Poian AT. Membrane recognition by vesicular stomatitis virus involves enthalpy-driven protein-lipid interactions. J Virol. 2002 Mar 19; 76(8):3756–3764.CrossRef
49.
Zurück zum Zitat Clements MO, Godfrey A, Crossley J, Wilson SJ, Takeuchi Y, Boshoff C. Lentiviral manipulation of gene expression in human adult and embryonic stem cells. Tissue Eng. 2006 Jul; 12(7):1741–1751.CrossRef Clements MO, Godfrey A, Crossley J, Wilson SJ, Takeuchi Y, Boshoff C. Lentiviral manipulation of gene expression in human adult and embryonic stem cells. Tissue Eng. 2006 Jul; 12(7):1741–1751.CrossRef
50.
Zurück zum Zitat Ma Y, Ramezani A, Lewis R, Hawley RG, Thomson JA. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells. 2003; 21(1):111–117.CrossRef Ma Y, Ramezani A, Lewis R, Hawley RG, Thomson JA. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells. 2003; 21(1):111–117.CrossRef
51.
Zurück zum Zitat Kobayashi N, Rivas-Carrillo JD, Soto-Gutierrez A, et al. Gene delivery to embryonic stem cells. Birth Defects Res C Embryo Today. 2005 Mar; 75(1):10–18.CrossRef Kobayashi N, Rivas-Carrillo JD, Soto-Gutierrez A, et al. Gene delivery to embryonic stem cells. Birth Defects Res C Embryo Today. 2005 Mar; 75(1):10–18.CrossRef
52.
Zurück zum Zitat Menendez P, Wang L, Bhatia M. Genetic manipulation of human embryonic stem cells: a system to study early human development and potential therapeutic applications. Curr Gene Ther. 2005 Aug; 5(4):375–385.CrossRef Menendez P, Wang L, Bhatia M. Genetic manipulation of human embryonic stem cells: a system to study early human development and potential therapeutic applications. Curr Gene Ther. 2005 Aug; 5(4):375–385.CrossRef
53.
Zurück zum Zitat Suter DM, Cartier L, Bettiol E, et al. Rapid generation of stable transgenic embryonic stem cell lines using modular lentivectors. Stem Cells. 2006 Mar; 24(3):615–623.CrossRef Suter DM, Cartier L, Bettiol E, et al. Rapid generation of stable transgenic embryonic stem cell lines using modular lentivectors. Stem Cells. 2006 Mar; 24(3):615–623.CrossRef
54.
Zurück zum Zitat Ivey K, Muth A, Arnold J, et al. MircoRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell. 2008; 2:219–229.CrossRef Ivey K, Muth A, Arnold J, et al. MircoRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell. 2008; 2:219–229.CrossRef
55.
Zurück zum Zitat Philpott N, Thrasher A. Use of nonintegrating lentiviral vectors for gene therapy. Hum Gene Ther. 2007 Jun; 18:483–489.CrossRef Philpott N, Thrasher A. Use of nonintegrating lentiviral vectors for gene therapy. Hum Gene Ther. 2007 Jun; 18:483–489.CrossRef
56.
Zurück zum Zitat Lombardo A, Genovese P, Beausejour CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007 Nov; 25(11):1298–1306.CrossRef Lombardo A, Genovese P, Beausejour CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007 Nov; 25(11):1298–1306.CrossRef
57.
Zurück zum Zitat Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008 Aug 1; 321(5889):699–702.CrossRef Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008 Aug 1; 321(5889):699–702.CrossRef
58.
Zurück zum Zitat Kim JB, Sebastiano V, Wu G, et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009 Feb 6; 136(3):411–419.CrossRef Kim JB, Sebastiano V, Wu G, et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009 Feb 6; 136(3):411–419.CrossRef
59.
Zurück zum Zitat Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007 Jun 7; 1(1):55–70.CrossRef Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007 Jun 7; 1(1):55–70.CrossRef
60.
Zurück zum Zitat Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007 Jul 19; 448(7151):313–317.CrossRef Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007 Jul 19; 448(7151):313–317.CrossRef
61.
Zurück zum Zitat Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007 Jul 19; 448(7151):318–324.CrossRef Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007 Jul 19; 448(7151):318–324.CrossRef
62.
Zurück zum Zitat Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008 Jul; 26(7):795–797.CrossRef Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008 Jul; 26(7):795–797.CrossRef
63.
Zurück zum Zitat Maherali N, Hochedlinger K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008 Dec 4; 3(6):595–605.CrossRef Maherali N, Hochedlinger K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008 Dec 4; 3(6):595–605.CrossRef
64.
Zurück zum Zitat Eminli S, Jaenisch R, Hochedlinger K. Strategies to induce nuclear reprogramming. Ernst Schering Found Symp Proc. 2006; 5:83–98. Eminli S, Jaenisch R, Hochedlinger K. Strategies to induce nuclear reprogramming. Ernst Schering Found Symp Proc. 2006; 5:83–98.
65.
Zurück zum Zitat Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008 Jun 5; 2(6):525–528.CrossRef Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008 Jun 5; 2(6):525–528.CrossRef
66.
Zurück zum Zitat Jiang J, Chan YS, Loh YH, et al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol. 2008 Mar; 10(3):353–60.CrossRef Jiang J, Chan YS, Loh YH, et al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol. 2008 Mar; 10(3):353–60.CrossRef
67.
Zurück zum Zitat Kim JB, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 2008 Jul 31; 454(7204):646–650.CrossRef Kim JB, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 2008 Jul 31; 454(7204):646–650.CrossRef
68.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131:1–12.CrossRef Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131:1–12.CrossRef
69.
Zurück zum Zitat Pesce M, Gross MK, Scholer HR. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays. 1998 Sept; 20(9):722–732.CrossRef Pesce M, Gross MK, Scholer HR. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays. 1998 Sept; 20(9):722–732.CrossRef
70.
Zurück zum Zitat Fong H, Hohenstein KA, Donovan PJ. Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells. 2008 Aug; 26(8):1931–1938.CrossRef Fong H, Hohenstein KA, Donovan PJ. Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells. 2008 Aug; 26(8):1931–1938.CrossRef
71.
Zurück zum Zitat Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005 Sept 23; 122(6):947–956.CrossRef Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005 Sept 23; 122(6):947–956.CrossRef
72.
Zurück zum Zitat Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 2007 Oct 5; 131(1):46–57.CrossRef Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 2007 Oct 5; 131(1):46–57.CrossRef
73.
Zurück zum Zitat Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neutrons. Science. 2008 Aug 29; 321(5893):1218–21. Epub 2008 Jul 31. Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neutrons. Science. 2008 Aug 29; 321(5893):1218–21. Epub 2008 Jul 31.
74.
Zurück zum Zitat Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell. 2008 Mar 6; 2(3):230–240.CrossRef Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell. 2008 Mar 6; 2(3):230–240.CrossRef
75.
Zurück zum Zitat Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 2002 Feb 1; 295(5556):868–872.CrossRef Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 2002 Feb 1; 295(5556):868–872.CrossRef
76.
Zurück zum Zitat Brambrink T, Foreman R, Welstead GG, et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell. 2008 Feb 7; 2(2):151–159.CrossRef Brambrink T, Foreman R, Welstead GG, et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell. 2008 Feb 7; 2(2):151–159.CrossRef
77.
Zurück zum Zitat Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell. 2008 Sept 11; 3(3):346–353.CrossRef Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell. 2008 Sept 11; 3(3):346–353.CrossRef
78.
Zurück zum Zitat Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell. 2008 Sept 11; 3(3):340–345.CrossRef Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell. 2008 Sept 11; 3(3):340–345.CrossRef
79.
Zurück zum Zitat Wernig M, Lengner CJ, Hanna J, et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol. 2008 Aug; 26(8):916–924.CrossRef Wernig M, Lengner CJ, Hanna J, et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol. 2008 Aug; 26(8):916–924.CrossRef
80.
Zurück zum Zitat Kustikova O, Fehse B, Modlich U, et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science. 2005 May 20; 308(5725):1171–1174.CrossRef Kustikova O, Fehse B, Modlich U, et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science. 2005 May 20; 308(5725):1171–1174.CrossRef
81.
Zurück zum Zitat Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008 Jan; 26(1):101–106.CrossRef Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008 Jan; 26(1):101–106.CrossRef
82.
Zurück zum Zitat Narazaki G, Uosaki H, Teranishi M, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008; 118:498–506.CrossRef Narazaki G, Uosaki H, Teranishi M, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008; 118:498–506.CrossRef
83.
Zurück zum Zitat Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007 Oct; 25(10):1177–1181.CrossRef Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007 Oct; 25(10):1177–1181.CrossRef
84.
Zurück zum Zitat Bosnali M, Edenhofer F. Generation of transducible versions of transcription factors Oct4 and Sox2. Biol Chem. 2008 July; 389(7):851–861.CrossRef Bosnali M, Edenhofer F. Generation of transducible versions of transcription factors Oct4 and Sox2. Biol Chem. 2008 July; 389(7):851–861.CrossRef
85.
Zurück zum Zitat Yanez-Munoz RJ, Balaggan KS, MacNeil A, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med. 2006 Mar; 12(3):348–353.CrossRef Yanez-Munoz RJ, Balaggan KS, MacNeil A, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med. 2006 Mar; 12(3):348–353.CrossRef
86.
Zurück zum Zitat Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008 Nov 7; 322(5903):949–953.CrossRef Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008 Nov 7; 322(5903):949–953.CrossRef
87.
Zurück zum Zitat Caspi O, Huber I, Kehat I, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007 Nov 6; 50(19):1884–1893.CrossRef Caspi O, Huber I, Kehat I, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007 Nov 6; 50(19):1884–1893.CrossRef
88.
Zurück zum Zitat Laflamme M, Chen K, Naumova A, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotech. 2007; 25:1015–1024.CrossRef Laflamme M, Chen K, Naumova A, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotech. 2007; 25:1015–1024.CrossRef
89.
Zurück zum Zitat van Laake LW, Passier R, Doevendans PA, Mummery CL. Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res. 2008 May 9; 102(9):1008–1010.CrossRef van Laake LW, Passier R, Doevendans PA, Mummery CL. Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res. 2008 May 9; 102(9):1008–1010.CrossRef
90.
Zurück zum Zitat Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008 May 22; 453(7194):524–528.CrossRef Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008 May 22; 453(7194):524–528.CrossRef
91.
Zurück zum Zitat Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008; 118:507–517.CrossRef Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008; 118:507–517.CrossRef
92.
Zurück zum Zitat Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009 Feb 27; 104(4):e30–41.CrossRef Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009 Feb 27; 104(4):e30–41.CrossRef
93.
Zurück zum Zitat Verlinsky Y, Strelchenko N, Kukharenko V, et al. Human embryonic stem cell lines with genetic disorders. Reprod Biomed Online. 2005 Jan; 10(1):105–110.CrossRef Verlinsky Y, Strelchenko N, Kukharenko V, et al. Human embryonic stem cell lines with genetic disorders. Reprod Biomed Online. 2005 Jan; 10(1):105–110.CrossRef
94.
Zurück zum Zitat Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007 Dec 21; 318(5858):1920–1923.CrossRef Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007 Dec 21; 318(5858):1920–1923.CrossRef
Metadaten
Titel
Genetic Modification of Human Embryonic and Induced Pluripotent Stem Cells: Viral and Non-viral Approaches
verfasst von
Nicole M. Kane
Chris Denning
Andrew H. Baker
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-11865-4_7

Neuer Inhalt