Skip to main content
Erschienen in: Meccanica 1/2014

01.01.2014

Geometric continuum mechanics

verfasst von: Giovanni Romano, Raffaele Barretta, Marina Diaco

Erschienen in: Meccanica | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Geometric Continuum Mechanics ( GCM) is a new formulation of Continuum Mechanics ( CM) based on the requirement of Geometric Naturality ( GN). According to GN, in introducing basic notions, governing principles and constitutive relations, the sole geometric entities of space-time to be involved are the metric field and the motion along the trajectory. The additional requirement that the theory should be applicable to bodies of any dimensionality, leads to the formulation of the Geometric Paradigm ( GP) stating that push-pull transformations are the natural comparison tools for material fields. This basic rule implies that rates of material tensors are Lie-derivatives and not derivatives by parallel transport. The impact of the GP on the present state of affairs in CM is decisive in resolving questions still debated in literature and in clarifying theoretical and computational issues. As a consequence, the notion of Material Frame Indifference ( MFI) is corrected to the new Constitutive Frame Invariance ( CFI) and reasons are adduced for the rejection of chain decompositions of finite elasto-plastic strains. Geometrically consistent notions of Rate Elasticity ( RE) and Rate Elasto-Visco-Plasticity ( REVP) are formulated and consistent relevant computational methods are designed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In differential geometry these are respectively denoted by low and high asterisks ; [51]. This standard notation leads however to consider too many similar stars in the geometric sky, i.e. push, pull, duality, Hodge operator.
 
2
The time-function https://static-content.springer.com/image/art%3A10.1007%2Fs11012-013-9777-9/MediaObjects/11012_2013_9777_IEq53_HTML.gif is assumed to be a projection, i.e. surjective with a surjective tangent map.
 
3
An immersion is a injective map whose tangent map is injective too.
 
4
The introduction of the geometric notions of connection and parallel transport can be avoided by restricting oneself to transport by translation in Euclid space.
 
5
The proof is due to Fréchet, von Neumann, Jordan, see [59]. Validity of parallelogram identity is an assumption stronger than the one of validity of Pythagoras’ theorem.
 
6
For bodies of maximal dimension, the VPP is a proved theorem [27].
 
7
The Whitney product of tensor bundles with projection \(\boldsymbol{\pi}_{\mathbb{M},\mathbb{N}}\in \mathrm{C}^{1}(\mathbb{N};\mathbb{M}) \) and \(\boldsymbol{\pi}_{\mathbb{M},\mathbb{H}}\in \mathrm{C}^{1}(\mathbb{H};\mathbb{M}) \) over the same base manifold \(\mathbb{M}\), is the product bundle fulfilling the condition \(\mathbb{N}\times_{\mathbb{M}}\mathbb{H}:=\{(\mathbf{n},\mathbf{h})\in \mathbb{N}\times \mathbb{H}\mid \boldsymbol{\pi}_{\mathbb{M},\mathbb{N}}(\mathbf{n})= \boldsymbol{\pi}_{\mathbb{M},\mathbb{H}}(\mathbf{h})\}\) [27].
 
8
CFI substitutes the notion of Material Frame Indifference stated in [54] by the equality https://static-content.springer.com/image/art%3A10.1007%2Fs11012-013-9777-9/MediaObjects/11012_2013_9777_IEq211_HTML.gif in which the change of constitutive operator due to the change of observer is not taken into account [31].
 
9
An hypo-elastic model was introduced by Truesdell in [52] with a different definition. The new formulation of rate elasticity was first contributed in [29].
 
Literatur
2.
Zurück zum Zitat Argyris JH (1966) Continua discontinua. In: Proc conf matrix methods struct mech AFFDL-TR-66-80, Oct. 26–28, 1965, Wright-Patterson AFB Ohio Argyris JH (1966) Continua discontinua. In: Proc conf matrix methods struct mech AFFDL-TR-66-80, Oct. 26–28, 1965, Wright-Patterson AFB Ohio
3.
Zurück zum Zitat Barretta R (2012) On the relative position of twist and shear centres in the orthotropic and fiberwise homogeneous Saint-Venant beam theory. Int J Solids Struct 49:3038–3046 CrossRef Barretta R (2012) On the relative position of twist and shear centres in the orthotropic and fiberwise homogeneous Saint-Venant beam theory. Int J Solids Struct 49:3038–3046 CrossRef
6.
Zurück zum Zitat Barretta R, Barretta A (2010) Shear stresses in elastic beams: an intrinsic approach. Eur J Mech A, Solids 29:400–409 CrossRef Barretta R, Barretta A (2010) Shear stresses in elastic beams: an intrinsic approach. Eur J Mech A, Solids 29:400–409 CrossRef
8.
Zurück zum Zitat Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York MATH Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York MATH
9.
Zurück zum Zitat Bernstein B (1960) Hypo-elasticity and elasticity. Arch Ration Mech Anal 6:90–104 Bernstein B (1960) Hypo-elasticity and elasticity. Arch Ration Mech Anal 6:90–104
10.
Zurück zum Zitat Cowin CS (1996) Strain or deformation rate dependent finite growth in soft tissues. J Biomech 29:647–649 CrossRef Cowin CS (1996) Strain or deformation rate dependent finite growth in soft tissues. J Biomech 29:647–649 CrossRef
11.
Zurück zum Zitat Crisfield MA (1991) Non-linear finite element analysis of solids and structures, vol. 1: Essentials. Wiley, London Crisfield MA (1991) Non-linear finite element analysis of solids and structures, vol. 1: Essentials. Wiley, London
12.
Zurück zum Zitat Crisfield MA (1996) Non-linear finite element analysis of solids and structures, vol. 2: Advanced topics. Wiley, London Crisfield MA (1996) Non-linear finite element analysis of solids and structures, vol. 2: Advanced topics. Wiley, London
13.
Zurück zum Zitat De Cicco S, Diaco M (2002) A theory of thermoelastic materials with voids without energy dissipation. J Therm Stresses 25(5):493–503 CrossRef De Cicco S, Diaco M (2002) A theory of thermoelastic materials with voids without energy dissipation. J Therm Stresses 25(5):493–503 CrossRef
14.
Zurück zum Zitat Epstein M (2010) The geometrical language of continuum mechanics. Cambridge University Press, Cambridge CrossRefMATH Epstein M (2010) The geometrical language of continuum mechanics. Cambridge University Press, Cambridge CrossRefMATH
15.
Zurück zum Zitat Euler L (1761) Principia motus fluidorum. Novi Comm Acad Sci Petrop 6:271–311 Euler L (1761) Principia motus fluidorum. Novi Comm Acad Sci Petrop 6:271–311
16.
Zurück zum Zitat Gurtin ME (1981) An introduction to continuum mechanics. Academic Press, San Diego MATH Gurtin ME (1981) An introduction to continuum mechanics. Academic Press, San Diego MATH
18.
Zurück zum Zitat Lee EH (1969) Elastic-plastic deformations at finite strains. J Appl Mech 36(1):1–6 CrossRefMATH Lee EH (1969) Elastic-plastic deformations at finite strains. J Appl Mech 36(1):1–6 CrossRefMATH
19.
Zurück zum Zitat Lubarda V (2004) Constitutive theories based on the multiplicative decomposition deformation gradient: thermoelasticity, elastoplasticity, and biomechanics. Appl Mech Rev 57(2):95–108 ADSCrossRef Lubarda V (2004) Constitutive theories based on the multiplicative decomposition deformation gradient: thermoelasticity, elastoplasticity, and biomechanics. Appl Mech Rev 57(2):95–108 ADSCrossRef
20.
Zurück zum Zitat Lubliner J (1990) Plasticity theory. McMillan, New York MATH Lubliner J (1990) Plasticity theory. McMillan, New York MATH
21.
Zurück zum Zitat Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice Hall, Redwood City MATH Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice Hall, Redwood City MATH
22.
Zurück zum Zitat Noll W (1958) A mathematical theory of the mechanical behavior of continuous media. Arch Ration Mech Anal 2:197–226 CrossRefMATH Noll W (1958) A mathematical theory of the mechanical behavior of continuous media. Arch Ration Mech Anal 2:197–226 CrossRefMATH
23.
Zurück zum Zitat Oden JT (2006) Finite elements of nonlinear continua. McGraw-Hill, New York. Dover, New York (1972) MATH Oden JT (2006) Finite elements of nonlinear continua. McGraw-Hill, New York. Dover, New York (1972) MATH
24.
Zurück zum Zitat Ogden RW (1997) Non-linear elastic deformations. Dover, New York Ogden RW (1997) Non-linear elastic deformations. Dover, New York
25.
Zurück zum Zitat Ogden RW (2001) Elements of the theory of finite elasticity. In: Fu YB, Ogden RW (eds) Nonlinear elasticity: theory and applications. Cambridge University Press, Cambridge, pp 1–47 CrossRef Ogden RW (2001) Elements of the theory of finite elasticity. In: Fu YB, Ogden RW (eds) Nonlinear elasticity: theory and applications. Cambridge University Press, Cambridge, pp 1–47 CrossRef
26.
Zurück zum Zitat Pinsky PM, Ortiz M, Pister KS (1983) Numerical integration of rate constitutive equations in finite deformation analysis. Comput Methods Appl Mech Eng 40:137–158 ADSCrossRefMATH Pinsky PM, Ortiz M, Pister KS (1983) Numerical integration of rate constitutive equations in finite deformation analysis. Comput Methods Appl Mech Eng 40:137–158 ADSCrossRefMATH
31.
Zurück zum Zitat Romano G, Barretta R (2013) Geometric constitutive theory and frame invariance. Int J Non-Linear Mech 51:75–86 CrossRef Romano G, Barretta R (2013) Geometric constitutive theory and frame invariance. Int J Non-Linear Mech 51:75–86 CrossRef
32.
Zurück zum Zitat Romano G, Marotti de Sciarra F, Diaco M (1998) Hybrid variational principles for non-smooth structural problems. In: Proceedings of the international conference on nonlinear mechanics, ICNM, pp 353–359 Romano G, Marotti de Sciarra F, Diaco M (1998) Hybrid variational principles for non-smooth structural problems. In: Proceedings of the international conference on nonlinear mechanics, ICNM, pp 353–359
33.
34.
Zurück zum Zitat Romano G, Marotti de Sciarra F, Diaco M (2001) Well-posedness and numerical performances of the strain gap method. Int J Numer Methods Eng 51(1):103–126 CrossRefMATHMathSciNet Romano G, Marotti de Sciarra F, Diaco M (2001) Well-posedness and numerical performances of the strain gap method. Int J Numer Methods Eng 51(1):103–126 CrossRefMATHMathSciNet
35.
Zurück zum Zitat Romano G, Barretta R, Sellitto C (2005) On the evaluation of the elastoplastic tangent stiffness. In: Owen DRJ, Oñate E, Suarez B (eds) Computational plasticity—fundamentals and applications, part 2. CIMNE, Barcelona, pp 1118–1121 Romano G, Barretta R, Sellitto C (2005) On the evaluation of the elastoplastic tangent stiffness. In: Owen DRJ, Oñate E, Suarez B (eds) Computational plasticity—fundamentals and applications, part 2. CIMNE, Barcelona, pp 1118–1121
37.
Zurück zum Zitat Romano G, Barretta R, Diaco M (2007) Conservation laws for multiphase fracturing materials. In: Carpinteri A, Gambarova P, Ferro G, Plizzari G (eds) Proceedings of the 6th international conference on fracture mechanics of concrete and concrete structures—fracture mechanics of concrete and concrete structures, vol 1. Taylor & Francis, London, pp 411–418 Romano G, Barretta R, Diaco M (2007) Conservation laws for multiphase fracturing materials. In: Carpinteri A, Gambarova P, Ferro G, Plizzari G (eds) Proceedings of the 6th international conference on fracture mechanics of concrete and concrete structures—fracture mechanics of concrete and concrete structures, vol 1. Taylor & Francis, London, pp 411–418
38.
Zurück zum Zitat Romano G, Sellitto C, Barretta R (2007) Nonlinear shell theory: a duality approach. J Mech Mater Struct 2(7):1207–1230 CrossRef Romano G, Sellitto C, Barretta R (2007) Nonlinear shell theory: a duality approach. J Mech Mater Struct 2(7):1207–1230 CrossRef
40.
Zurück zum Zitat Romano G, Barretta R, Diaco M (2009) On the general form of the law of dynamics. Int J Non-Linear Mech 44(6):689–695 CrossRef Romano G, Barretta R, Diaco M (2009) On the general form of the law of dynamics. Int J Non-Linear Mech 44(6):689–695 CrossRef
42.
Zurück zum Zitat Romano G, Barretta R, Diaco M (2010) Algorithmic tangent stiffness in elastoplasticity and elastoviscoplasticity: a geometric insight. Mech Res Commun 37(3):289–292 CrossRefMATHMathSciNet Romano G, Barretta R, Diaco M (2010) Algorithmic tangent stiffness in elastoplasticity and elastoviscoplasticity: a geometric insight. Mech Res Commun 37(3):289–292 CrossRefMATHMathSciNet
43.
Zurück zum Zitat Romano G, Diaco M, Barretta R (2010) Variational formulation of the first principle of continuum thermodynamics. Contin Mech Thermodyn 22(3):177–187 ADSCrossRefMATHMathSciNet Romano G, Diaco M, Barretta R (2010) Variational formulation of the first principle of continuum thermodynamics. Contin Mech Thermodyn 22(3):177–187 ADSCrossRefMATHMathSciNet
44.
Zurück zum Zitat Romano G, Barretta A, Barretta R (2012) On torsion and shear of Saint-Venant beams. Eur J Mech A, Solids 35:47–60 CrossRefMathSciNet Romano G, Barretta A, Barretta R (2012) On torsion and shear of Saint-Venant beams. Eur J Mech A, Solids 35:47–60 CrossRefMathSciNet
47.
Zurück zum Zitat Šilhavý M (1997) Mechanics and thermodynamics of continuous media. Springer, Berlin MATH Šilhavý M (1997) Mechanics and thermodynamics of continuous media. Springer, Berlin MATH
48.
Zurück zum Zitat Simó JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: continuum formulation. Comput Methods Appl Mech Eng 66:199–219 ADSCrossRefMATH Simó JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: continuum formulation. Comput Methods Appl Mech Eng 66:199–219 ADSCrossRefMATH
49.
Zurück zum Zitat Simó JC, Ortiz M (1985) A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput Methods Appl Mech Eng 49:221–245 ADSCrossRefMATH Simó JC, Ortiz M (1985) A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput Methods Appl Mech Eng 49:221–245 ADSCrossRefMATH
50.
Zurück zum Zitat Simó JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46:201–215 ADSCrossRefMATH Simó JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46:201–215 ADSCrossRefMATH
51.
Zurück zum Zitat Spivak M (2005) A comprehensive introduction to differential geometry, vols. I–V, 3rd edn. Publish or Perish, Houston Spivak M (2005) A comprehensive introduction to differential geometry, vols. I–V, 3rd edn. Publish or Perish, Houston
52.
Zurück zum Zitat Truesdell C (1955) Hypo-elasticity. J Ration Mech Anal 4(83–133):1019–1020 MathSciNet Truesdell C (1955) Hypo-elasticity. J Ration Mech Anal 4(83–133):1019–1020 MathSciNet
53.
Zurück zum Zitat Truesdell C (1977/1991) A first course in rational continuum mechanics. Academic Press, New York Truesdell C (1977/1991) A first course in rational continuum mechanics. Academic Press, New York
54.
Zurück zum Zitat Truesdell C, Noll W (1965) The non-linear field theories of mechanics. Handbuch der physik, vol III/3. Springer, Berlin, pp 1–602 Truesdell C, Noll W (1965) The non-linear field theories of mechanics. Handbuch der physik, vol III/3. Springer, Berlin, pp 1–602
55.
Zurück zum Zitat Truesdell C, Toupin RA (1960) The classical field theories. Handbuch der physik, vol III/1. Springer, Berlin, pp 226–793 Truesdell C, Toupin RA (1960) The classical field theories. Handbuch der physik, vol III/1. Springer, Berlin, pp 226–793
56.
Zurück zum Zitat Villaggio P (1997) Mathematical models for elastic structures. Cambridge University Press, Cambridge CrossRef Villaggio P (1997) Mathematical models for elastic structures. Cambridge University Press, Cambridge CrossRef
Metadaten
Titel
Geometric continuum mechanics
verfasst von
Giovanni Romano
Raffaele Barretta
Marina Diaco
Publikationsdatum
01.01.2014
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1/2014
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-013-9777-9

Weitere Artikel der Ausgabe 1/2014

Meccanica 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.