Skip to main content
Erschienen in: Journal of Engineering Thermophysics 1/2020

01.02.2020

Geometrical Evaluation of a Channel with Alternated Mounted Blocks under Mixed Convection Laminar Flows Using Constructal Design

verfasst von: F. B. Teixeira, M. V. Altnetter, G. Lorenzini, B. D. do A. Rodriguez, L. A. O. Rocha, L. A. Isoldi, E. D. dos Santos

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents a numerical study of incompressible, laminar, two-dimensional, mixed convection flows in horizontal channels with two rectangular alternated blocks mounted in the surfaces. The influence of the geometry and positioning of the blocks on the heat transfer rate is evaluated using Constructal Design. The problem is subjected to two geometric constraints associated with the areas of the channel and the two blocks and three degrees of freedom: \(H_{1}/L_{1}\) (the ratio of the height to the width of the upstream block), \(H_{2}/L_{2}\) (the ratio of the height to the width of the downstream block), and \(L_{3}\) (the horizontal distance between the centers of the blocks). The purpose is to maximize the heat transfer rate per length unit \(q'\) considering three different Reynolds (\(Re_{H}= 10\), 100, and 200) and Grashof numbers (\(Gr_{H} = 650\), 6,500, and 65,000). The conservation equations of mass, momentum, and energy are solved using the Finite Volume Method, and the buoyance forces are modeled with the Boussinesq approximation. In general, the best performance is reached for the largest intrusion of the blocks. However, changes in \(Gr_{H}\) and \(Re_{H}\) affected the optimal distance (\(L_{3})_{o}\), and for \(Gr_{H}=65,000\) non-symmetrical blocks led to the best performance, showing the importance of design investigation for different flow conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bejan, A., Convection Heat Transfer, Durham, USA: Wiley, 2004. Bejan, A., Convection Heat Transfer, Durham, USA: Wiley, 2004.
2.
Zurück zum Zitat Durgam, S., Venkateshan, S.P., and Sundararajan, T., A Novel Concept of Discrete Heat Source Array with Dummy Components Cooled by Forced Convection in a Vertical Channel, Appl. Therm. Eng., 2018, vol. 129, pp. 979–994; https://doi.org/10.1016/j.applthermaleng.2017.10.061. Durgam, S., Venkateshan, S.P., and Sundararajan, T., A Novel Concept of Discrete Heat Source Array with Dummy Components Cooled by Forced Convection in a Vertical Channel, Appl. Therm. Eng., 2018, vol. 129, pp. 979–994; https://doi.org/10.1016/j.applthermaleng.2017.10.061.
3.
Zurück zum Zitat Min, C., Li, X., Yuan, Y., Chen, Z., and Tian, L., An Inverse Study to Optimize the Rib Pitch in a Two-Dimensional Channel Flow Problem for Heat Transfer Enhancement, Int. J. Heat Mass Transfer, 2017, vol. 112, pp. 1044–1051; https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.001. Min, C., Li, X., Yuan, Y., Chen, Z., and Tian, L., An Inverse Study to Optimize the Rib Pitch in a Two-Dimensional Channel Flow Problem for Heat Transfer Enhancement, Int. J. Heat Mass Transfer, 2017, vol. 112, pp. 1044–1051; https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.001.
4.
Zurück zum Zitat Alves, T.A. and Altemani, C.A.C., An Invariant Descriptor for Heaters Temperature Prediction in Conjugate Cooling, Int. J. Therm. Sci., 2012, vol. 58, pp. 92–101; DOI: 10.1016/j.ijthermalsci.2012.03.007. Alves, T.A. and Altemani, C.A.C., An Invariant Descriptor for Heaters Temperature Prediction in Conjugate Cooling, Int. J. Therm. Sci., 2012, vol. 58, pp. 92–101; DOI: 10.1016/j.ijthermalsci.2012.03.007.
5.
Zurück zum Zitat Karmo, D., Ajib, S., and Khateeb, A.A., New Method for Designing an Effective Finned Heat Exchanger, Appl. Therm. Eng., 2013, vol. 51, pp. 539–550; DOI: 10.1016/j.applthermaleng.2012.09.042. Karmo, D., Ajib, S., and Khateeb, A.A., New Method for Designing an Effective Finned Heat Exchanger, Appl. Therm. Eng., 2013, vol. 51, pp. 539–550; DOI: 10.1016/j.applthermaleng.2012.09.042.
6.
Zurück zum Zitat Sajedi, R., Taghilou, M., and Jafari, M., Experimental and Numerical Study on the Optimal Fin Numbering in an External Extended Finned Tube Heat Exchanger, Appl. Therm. Eng., 2015, vol. 83, pp. 139–146; DOI: 10.1016/j.applthermaleng.2014.12.040. Sajedi, R., Taghilou, M., and Jafari, M., Experimental and Numerical Study on the Optimal Fin Numbering in an External Extended Finned Tube Heat Exchanger, Appl. Therm. Eng., 2015, vol. 83, pp. 139–146; DOI: 10.1016/j.applthermaleng.2014.12.040.
7.
Zurück zum Zitat Kim, J. and Choi, H., An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries, J. Mech. Sci. Tech., 2004, vol. 18, pp. 1026–1035; DOI: 10.1007/BF02990875. Kim, J. and Choi, H., An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries, J. Mech. Sci. Tech., 2004, vol. 18, pp. 1026–1035; DOI: 10.1007/BF02990875.
8.
Zurück zum Zitat Molki, M., Faghri, M., and Ozbay, O., A Correlation for Heat Transfer and Wake Effect in the Entrance Region of an In-Line Array of Rectangular Blocks Simulation Electronic Components, J. Heat Transfer, 1995, vol. 117, pp. 40–46; DOI: 10.1115/1.2822320. Molki, M., Faghri, M., and Ozbay, O., A Correlation for Heat Transfer and Wake Effect in the Entrance Region of an In-Line Array of Rectangular Blocks Simulation Electronic Components, J. Heat Transfer, 1995, vol. 117, pp. 40–46; DOI: 10.1115/1.2822320.
9.
Zurück zum Zitat Young, T.J. and Vafai, K., Convective Cooling of Heated Obstacle in a Channel, Int. J. Heat Mass Transfer, 1998, vol. 41, pp. 3131–3148; DOI: 10.1016/S0017-9310(97)00323-2. Young, T.J. and Vafai, K., Convective Cooling of Heated Obstacle in a Channel, Int. J. Heat Mass Transfer, 1998, vol. 41, pp. 3131–3148; DOI: 10.1016/S0017-9310(97)00323-2.
10.
Zurück zum Zitat Desrayaud, G., Fichera, A., and Mea, D., Natural Convective Cooling of a Protruding Heat-Flux Module in a Vertical Channel,Proc. 3rd European Thermal Sci. Conf., Heidelberg, Germany, 2000. Desrayaud, G., Fichera, A., and Mea, D., Natural Convective Cooling of a Protruding Heat-Flux Module in a Vertical Channel,Proc. 3rd European Thermal Sci. Conf., Heidelberg, Germany, 2000.
11.
Zurück zum Zitat Bazdidi-Tehrami, F. and Naderi-Abadi, M., Numerical Analysis of Laminar Heat Transfer in Entrance Region of a Horizontal Channel with Transverse Fins, Int. Comm. Heat Mass Transfer, 2004, vol. 31, pp. 211–220. Bazdidi-Tehrami, F. and Naderi-Abadi, M., Numerical Analysis of Laminar Heat Transfer in Entrance Region of a Horizontal Channel with Transverse Fins, Int. Comm. Heat Mass Transfer, 2004, vol. 31, pp. 211–220.
12.
Zurück zum Zitat Ismail, M.F., Reza, M.O., Zobaer, M.A., and Ali, M., Numerical Investigation of Turbulent Heat Convection from Solid and Longitudinally Perforated Rectangular Fins, Procedia Engin., 2013, vol. 56, pp. 497–502; DOI: 10.1016/j.proeng.2013.03.152. Ismail, M.F., Reza, M.O., Zobaer, M.A., and Ali, M., Numerical Investigation of Turbulent Heat Convection from Solid and Longitudinally Perforated Rectangular Fins, Procedia Engin., 2013, vol. 56, pp. 497–502; DOI: 10.1016/j.proeng.2013.03.152.
13.
Zurück zum Zitat Boutina, L. and Bessaih, R., Numerical Simulation of Mixed Convection Air-Cooling of Electronic Components Mounted in an Inclined Channel, Appl. Therm. Engin., 2011, vol. 31, pp. 2052–2062; DOI: 10.1016/j.applthermaleng.2011.03.021. Boutina, L. and Bessaih, R., Numerical Simulation of Mixed Convection Air-Cooling of Electronic Components Mounted in an Inclined Channel, Appl. Therm. Engin., 2011, vol. 31, pp. 2052–2062; DOI: 10.1016/j.applthermaleng.2011.03.021.
14.
Zurück zum Zitat Pishkar, I. and Ghasemi, B., Cooling Enhancement of Two Fins in a Horizontal Channel by Nanofluid Mixed Convection, Int. J. Therm. Sci., 2012, vol. 59, pp. 141–151; DOI: 10.1016/j.ijthermalsci.2012.04.015. Pishkar, I. and Ghasemi, B., Cooling Enhancement of Two Fins in a Horizontal Channel by Nanofluid Mixed Convection, Int. J. Therm. Sci., 2012, vol. 59, pp. 141–151; DOI: 10.1016/j.ijthermalsci.2012.04.015.
15.
Zurück zum Zitat Bessaih, R. and Kadja, M., Turbulent Natural Convection Cooling of Electronic Components Mounted on a Vertical Channel, Appl. Therm. Eng., 2000, vol. 20, pp. 141–154; https://doi.org/10.1016/S1359-4311(99)00010-1. Bessaih, R. and Kadja, M., Turbulent Natural Convection Cooling of Electronic Components Mounted on a Vertical Channel, Appl. Therm. Eng., 2000, vol. 20, pp. 141–154; https://doi.org/10.1016/S1359-4311(99)00010-1.
16.
Zurück zum Zitat Perng, S.-W. and Wu, H.-W., Numerical Investigation of Mixed Convective Heat Transfer for Unsteady Turbulent Flow over Heated Blocks in a Horizontal Channel, Int. J. Therm. Sci., 2008, vol. 47, pp. 620–632; https://doi.org/10.1016/j.ijthermalsci.2007.04.003. Perng, S.-W. and Wu, H.-W., Numerical Investigation of Mixed Convective Heat Transfer for Unsteady Turbulent Flow over Heated Blocks in a Horizontal Channel, Int. J. Therm. Sci., 2008, vol. 47, pp. 620–632; https://doi.org/10.1016/j.ijthermalsci.2007.04.003.
17.
Zurück zum Zitat Hernandez, I.V.G., Barbosa, J.G.S., Gutiérrez, C.C.T., Jiménez, J.A.B., and Moreno, L.A.P., Numerical Simulation for Mixed Convective Airflow through a Vertical Finned Channel, Ingenierı́a Invest. Tecnolog., 2014, vol. 16, pp. 157–172. Hernandez, I.V.G., Barbosa, J.G.S., Gutiérrez, C.C.T., Jiménez, J.A.B., and Moreno, L.A.P., Numerical Simulation for Mixed Convective Airflow through a Vertical Finned Channel, Ingenierı́a Invest. Tecnolog., 2014, vol. 16, pp. 157–172.
18.
Zurück zum Zitat Durgam, S., Venkateshan, S.P., and Sundararajan, T., Experimental and Numerical Investigations on Optimal Distribution of Heat Source Array under Natural and Forced Convection in a Horizontal Channel, Int. J. Therm. Sci., 2017, vol. 115, pp. 125–138; DOI:10.1016/j.ijthermalsci.2017.01.017. Durgam, S., Venkateshan, S.P., and Sundararajan, T., Experimental and Numerical Investigations on Optimal Distribution of Heat Source Array under Natural and Forced Convection in a Horizontal Channel, Int. J. Therm. Sci., 2017, vol. 115, pp. 125–138; DOI:10.1016/j.ijthermalsci.2017.01.017.
19.
Zurück zum Zitat Bejan, A., Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume, Int. J. Heat Mass Transfer, 1997, vol. 40, pp. 799–816; DOI: 10.1016/0017-9310(96)00175-5. Bejan, A., Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume, Int. J. Heat Mass Transfer, 1997, vol. 40, pp. 799–816; DOI: 10.1016/0017-9310(96)00175-5.
20.
Zurück zum Zitat Bejan, A., Shape and Structure, from Engineering to Nature, Cambridge, UK: Cambridge Univ. Press, 2000. Bejan, A., Shape and Structure, from Engineering to Nature, Cambridge, UK: Cambridge Univ. Press, 2000.
21.
Zurück zum Zitat Bejan, A. and Lorente, S., Design with Constructal Theory, New Jersey: Wiley, 2008. Bejan, A. and Lorente, S., Design with Constructal Theory, New Jersey: Wiley, 2008.
22.
Zurück zum Zitat Bejan, A. and Zane, J.P., Design in Nature, New York: Doubleday, 2012. Bejan, A. and Zane, J.P., Design in Nature, New York: Doubleday, 2012.
23.
Zurück zum Zitat Bejan, A., The Physics of Life: The Evolution of Everything, New York: St. Martins, 2016. Bejan, A., The Physics of Life: The Evolution of Everything, New York: St. Martins, 2016.
24.
Zurück zum Zitat Bejan, A. and Almogbel, M., Constructal T-Shape Fins,Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 2101–2115; DOI: 10.1016/S0017-9310(99)00283-5. Bejan, A. and Almogbel, M., Constructal T-Shape Fins,Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 2101–2115; DOI: 10.1016/S0017-9310(99)00283-5.
25.
Zurück zum Zitat Lorenzini, G., Biserni, C., Estrada, E.D., Isoldi, L.A., dos Santos, E.D., and Rocha, L.A.O., Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm, J. Heat Transfer, 2014, vol. 136, p. 0-10; DOI:10.1115/1.4027195. Lorenzini, G., Biserni, C., Estrada, E.D., Isoldi, L.A., dos Santos, E.D., and Rocha, L.A.O., Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm, J. Heat Transfer, 2014, vol. 136, p. 0-10; DOI:10.1115/1.4027195.
26.
Zurück zum Zitat Estrada, E.D., Fagundes, T.M., Isoldi, L.A., dos Santos, E.D., Xie, G., and Rocha, L.A.O., Constructal Design Associated to Genetic Algorithm of Asymmetric V-Shaped Pathways, J. Heat Transfer, 2015, vol. 137, p. 061010; https://doi.org/10.1115/1.4029868. Estrada, E.D., Fagundes, T.M., Isoldi, L.A., dos Santos, E.D., Xie, G., and Rocha, L.A.O., Constructal Design Associated to Genetic Algorithm of Asymmetric V-Shaped Pathways, J. Heat Transfer, 2015, vol. 137, p. 061010; https://doi.org/10.1115/1.4029868.
27.
Zurück zum Zitat Xie, G., Song, Y., Asadi, M., and Lorenzini, G., Optimization of Pin-Fins for a Heat Exchanger by Entropy Generation Minimization and Constructal Law, J. Heat Transfer, 2015, vol. 137, p. 061901; https://doi.org/10.1115/1.4029851. Xie, G., Song, Y., Asadi, M., and Lorenzini, G., Optimization of Pin-Fins for a Heat Exchanger by Entropy Generation Minimization and Constructal Law, J. Heat Transfer, 2015, vol. 137, p. 061901; https://​doi.​org/​10.​1115/​1.​4029851.​
28.
Zurück zum Zitat Hajmohammadi, M.R., Introducing a \(\psi\)-Shaped Cavity for Cooling a Heat Generating Medium, Int. J. Therm. Sci., 2017, vol. 121, pp. 204–212; https://doi.org/10.1016/j.ijthermalsci.2017.07.010. Hajmohammadi, M.R., Introducing a \(\psi\)-Shaped Cavity for Cooling a Heat Generating Medium, Int. J. Therm. Sci., 2017, vol. 121, pp. 204–212; https://doi.org/10.1016/j.ijthermalsci.2017.07.010.
29.
Zurück zum Zitat Bello-Ochende, T., Meyer, J.P., and Bejan, A., Constructal Ducts with Wrinkled Entrances, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 3628–3633; https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.014. Bello-Ochende, T., Meyer, J.P., and Bejan, A., Constructal Ducts with Wrinkled Entrances, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 3628–3633; https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.014.
30.
Zurück zum Zitat Bello-Ochende, T., Olakoyejo, O.T., Meyer, J.P., Bejan, A., and Lorente, S., Constructal Flow Orientation in Conjugate Cooling Channels with Internal Heat Generation, Int. J. Heat Mass Transfer, 2013, vol. 57, pp. 241–249; https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.021. Bello-Ochende, T., Olakoyejo, O.T., Meyer, J.P., Bejan, A., and Lorente, S., Constructal Flow Orientation in Conjugate Cooling Channels with Internal Heat Generation, Int. J. Heat Mass Transfer, 2013, vol. 57, pp. 241–249; https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.021.
31.
Zurück zum Zitat Rodrigues, M.K., da Brum, R.S., Vaz, J., Rocha, L.A.O., dos Santos, E.D., and Isoldi, L.A., Numerical Investigation About the Improvement of the Thermal Potential of an Earth-Air Heat Exchanger (EAHE) Employing the Constructal Design Method, Renewable Energy, 2015, vol. 80, pp. 538–551; https://doi.org/10.1016/j.renene.2015.02.041. Rodrigues, M.K., da Brum, R.S., Vaz, J., Rocha, L.A.O., dos Santos, E.D., and Isoldi, L.A., Numerical Investigation About the Improvement of the Thermal Potential of an Earth-Air Heat Exchanger (EAHE) Employing the Constructal Design Method, Renewable Energy, 2015, vol. 80, pp. 538–551; https://doi.org/10.1016/j.renene.2015.02.041.
32.
Zurück zum Zitat Vieira, R.S., Petry, A.P., Rocha, L.A.O., Isoldi, L.A., and dos Santos, E.D., Numerical Evaluation of a Solar Chimney Geometry for Different Ground Temperatures by Means of Constructal Design,Renewable Energy, 2017, vol. 109, pp. 222–234; https://doi.org/10.1016/j.renene.2017.03.007. Vieira, R.S., Petry, A.P., Rocha, L.A.O., Isoldi, L.A., and dos Santos, E.D., Numerical Evaluation of a Solar Chimney Geometry for Different Ground Temperatures by Means of Constructal Design,Renewable Energy, 2017, vol. 109, pp. 222–234; https://doi.org/10.1016/j.renene.2017.03.007.
33.
Zurück zum Zitat Martins, J.C., Goulart, M.M., Gomes, M.N., Souza, J.A., Rocha, L.A.O., Isoldi, L.A., and dos Santos, E.D., Geometric Evaluation of the Main Operational Principle of an Overtopping Wave Energy Converter by Means of Constructal Design, Renewable Energy, 2018, vol. 118, pp. 727–741; https://doi.org/10.1016/j.renene.2017.11.061. Martins, J.C., Goulart, M.M., Gomes, M.N., Souza, J.A., Rocha, L.A.O., Isoldi, L.A., and dos Santos, E.D., Geometric Evaluation of the Main Operational Principle of an Overtopping Wave Energy Converter by Means of Constructal Design, Renewable Energy, 2018, vol. 118, pp. 727–741; https://doi.org/10.1016/j.renene.2017.11.061.
34.
Zurück zum Zitat Helbig, D., da Silva, C.C.C., Real, de V.M., dos Santos, E.D., Isoldi, L.A., and Rocha, L.A.O., Study about Buckling Phenomenon in Perforated Thin Steel Plates Employing Computational Modeling and Constructal Design Method, Latin Am. J. Sol. Struct., 2016, vol. 13, pp. 1912–1936; http://doi.org/10.1590/1679-78252893. Helbig, D., da Silva, C.C.C., Real, de V.M., dos Santos, E.D., Isoldi, L.A., and Rocha, L.A.O., Study about Buckling Phenomenon in Perforated Thin Steel Plates Employing Computational Modeling and Constructal Design Method, Latin Am. J. Sol. Struct., 2016, vol. 13, pp. 1912–1936; http://doi.org/10.1590/1679-78252893.
35.
Zurück zum Zitat Adewumi, O.O., Bello-Ochende, T., and Meyer, J.P., Constructal Design of Combined Microchannel and Micro Pin Fns for Electronic Cooling, Int. J. Heat Mass Transfer, 2013, vol. 66, pp. 315–323; DOI: 10.1016/j.ijheatmasstransfer.2013.07.039. Adewumi, O.O., Bello-Ochende, T., and Meyer, J.P., Constructal Design of Combined Microchannel and Micro Pin Fns for Electronic Cooling, Int. J. Heat Mass Transfer, 2013, vol. 66, pp. 315–323; DOI: 10.1016/j.ijheatmasstransfer.2013.07.039.
36.
Zurück zum Zitat Feijó, B.C., Lorenzini, G., Isoldi, L.A., Rocha, L.A.O., Goulart, J.N.V., and dos Santos, E.D., Constructal Design of Forced Convective Flows in Channels with Two Alternated Rectangular Heated Bodies, Int. J. Heat Mass Transfer, 2018, vol. 125, pp. 710–721; DOI: 10.1016/j.ijheatmasstransfer.2018.04.086. Feijó, B.C., Lorenzini, G., Isoldi, L.A., Rocha, L.A.O., Goulart, J.N.V., and dos Santos, E.D., Constructal Design of Forced Convective Flows in Channels with Two Alternated Rectangular Heated Bodies, Int. J. Heat Mass Transfer, 2018, vol. 125, pp. 710–721; DOI: 10.1016/j.ijheatmasstransfer.2018.04.086.
37.
Zurück zum Zitat Versteeg, H.K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics—The Finite Volume Method, Longman, 2007. Versteeg, H.K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics—The Finite Volume Method, Longman, 2007.
38.
Zurück zum Zitat Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: McGraw-Hill, 1980. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: McGraw-Hill, 1980.
39.
Zurück zum Zitat ANSYS. 14.0.—FLUENT User’s Guide, ANSYS Inc., 2011. ANSYS. 14.0.—FLUENT User’s Guide, ANSYS Inc., 2011.
40.
Zurück zum Zitat Dos Santos, E.D., Isoldi, L.A., Gomes, M.N., and Rocha, L.A.O., The Constructal Design Applied to Renewable Energy Systems, inSustainable Energy Technol., Rincón-Mejı́a, E. and de las Heras, A., Eds., Boca Raton: CRC Press-Taylor and Francis Group, 2017, pp. 63–87. Dos Santos, E.D., Isoldi, L.A., Gomes, M.N., and Rocha, L.A.O., The Constructal Design Applied to Renewable Energy Systems, inSustainable Energy Technol., Rincón-Mejı́a, E. and de las Heras, A., Eds., Boca Raton: CRC Press-Taylor and Francis Group, 2017, pp. 63–87.
41.
Zurück zum Zitat Sahu, A.K., Chhabra, R.P., and Eswaran V., Effects of Reynolds and Prandtl Numbers on Heat Transfer from a Square Cylinder in the Unsteady Flow Regime, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 839–850; DOI:10.1016/j.ijheatmasstransfer.2008.07.032. Sahu, A.K., Chhabra, R.P., and Eswaran V., Effects of Reynolds and Prandtl Numbers on Heat Transfer from a Square Cylinder in the Unsteady Flow Regime, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 839–850; DOI:10.1016/j.ijheatmasstransfer.2008.07.032.
Metadaten
Titel
Geometrical Evaluation of a Channel with Alternated Mounted Blocks under Mixed Convection Laminar Flows Using Constructal Design
verfasst von
F. B. Teixeira
M. V. Altnetter
G. Lorenzini
B. D. do A. Rodriguez
L. A. O. Rocha
L. A. Isoldi
E. D. dos Santos
Publikationsdatum
01.02.2020
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 1/2020
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232820010087

Weitere Artikel der Ausgabe 1/2020

Journal of Engineering Thermophysics 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.