Skip to main content

2018 | OriginalPaper | Buchkapitel

30. Geometrical Representation of Gravity Field Determination

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Geometrical or kinematic orbit determination, demonstrated for the first time using GPS on board the CHAMP satellite (Švehla and Rothacher 2003), was the basis for the retrieval of the very first determination of the gravitational field of the Earth making use of the energy balance approach, see Gerlach et al. (2003). By means of numerical differentiation, the geometric positions of the CHAMP satellite were used to determine geometrical velocities along the orbit, and making use of the energy integral, the very first geometrical gravity model of the Earth was developed. One advantage of gravity field determination based on the energy balance approach is that we can work directly with the gravitational potential as a scalar field instead of having to integrate the equation of motion. In the case of the GOCE mission, a gravity gradiometer maps gravity gradients along the orbit (Rummel et al. 2011). Geometrical positions determined using GPS are used to position the gravity gradient measurements within the terrestrial reference frame and to estimate low-order gravity field coefficients. Here we present gravity field determination using kinematic orbits, and in addition, introduce a concept of gravity field determination based on gravitational redshift and atom interferometry. The possibility of determining kinematic orbits of LEO satellites has triggered the development of new approaches in gravity field determination, opened up new fields and significantly changed the way we think about the gravity field of the Earth, not only from the point of view of satellite dynamics and numerical integration. One of the most important applications of the metric theories of gravity, such as the General Theory of Relativity, is that a clock moved further away from the source of the gravitational potential will run faster, thus one can measure perturbations in the gravitational potential along an orbit by measuring variations in the optical clock frequency. Very soon mechanical test masses used to observe gravity from space will be replaced by atoms and test particles at quantum level. One advantage of quantum mechanics compared to the classical post-Newtonian framework we use in geodesy is that atoms can be used to directly measure not only the acceleration of motion, but, in addition, also relative frequency offsets, i.e., gravitational redshift. A gravity gradiometer could be constructed based on atom interferometry and this is most likely the next step in the determination of the Earth’s gravity field. On the other hand, the redshift effect for matter waves is by orders of magnitude higher in frequency than the frequencies of standard microwave and optical clocks. The Compton frequency ωC of matter waves is very high since it includes the rest mass energy multiplied by c2, e.g., for cesium one obtains ωC/2π = 3.2 x 1025 Hz. This is significantly higher than the frequency used to measure time and to define the SI second using cesium atomic clocks. Considering that an orbit error is consistent with an error in the orbit velocity, the net redshift effect for the clock determined from the satellite position is compensated by the second order Doppler effect calculated from the satellite velocity. In size, the net effect on the total redshift effect is smaller and satellite orbit in terms of radial position is required with less accuracy compared to the accuracy of the static position for a ground clock placed on the Earth. A smaller variation in frequency can be measured at higher matter wave frequencies or by an atom gradiometer concept. This symmetry principle could be used to map gravity fields from space and in the construction of an atom gradiometer. Here we discuss the question of how the new relativistic technique based on optical clocks and atom interferometers, in general, can contribute to global, regional and local gravity field determination and the realization of a global height system. We show that there are applications for this new technique in reference frame realization for positioning, time and temporal gravity determination and how this new geometric technique could unify all three fundamental reference frames in geodesy. The principle of error compensation in the calculation of the redshift effect, considering an orbit error in satellite position and the error in the second order Doppler effect calculated from the satellite velocity, has been discussed in the timing community. This is one of the main arguments, why an orbit in space (GEO) offers the best environment to define and establish the standard of frequency and define the SI second using an atomic clock, far better than using the geoid and the surface of the Earth. The main argument is, however, that cold atoms can be observed for a long time in space and are not limited by the free-fall on Earth, gaining an additional 3–4 orders of magnitude in sensitivity for atomic clocks. Thus a GEO or a GNSS orbit could offer the best place to define the datum for time on Earth and be used in supporting definition of the fundamental reference frames in geodesy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bašić T, Rapp RH (1992) Oceanwide prediction of gravity anomalies and sea surface heights using Geos-3, seasat and geosat altimeter data and ETOPO5U bathymetric data. OSU Report 416, pp 1–89 Bašić T, Rapp RH (1992) Oceanwide prediction of gravity anomalies and sea surface heights using Geos-3, seasat and geosat altimeter data and ETOPO5U bathymetric data. OSU Report 416, pp 1–89
Zurück zum Zitat Chou C-W, Hume DB, Koelemeij JCJ et al (2009) Frequency comparison of two high-accuracy Al+ optical clocks Chou C-W, Hume DB, Koelemeij JCJ et al (2009) Frequency comparison of two high-accuracy Al+ optical clocks
Zurück zum Zitat Čolić K, Pribičević B, Švehla D (1998) First cm–Geoid in the republic of croatia—the capital city zagreb pilot project. In: Vermeer M, Adam J (eds) IAG–symposium: second continental workshop on the geoid in Europe, Budapest, 10–14 Mar 1998, Reports of the finnish geodetic institute 98:4, Proceedings, Masala, Finland, pp 245–249 Čolić K, Pribičević B, Švehla D (1998) First cm–Geoid in the republic of croatia—the capital city zagreb pilot project. In: Vermeer M, Adam J (eds) IAG–symposium: second continental workshop on the geoid in Europe, Budapest, 10–14 Mar 1998, Reports of the finnish geodetic institute 98:4, Proceedings, Masala, Finland, pp 245–249
Zurück zum Zitat Fu VL-L, Cazenave A (2001) Satellite altimetry and earth sciences. Academic Press Fu VL-L, Cazenave A (2001) Satellite altimetry and earth sciences. Academic Press
Zurück zum Zitat Gill P, Margolis H, Curtis A et al (2008) Optical atomic clocks for space—final report Gill P, Margolis H, Curtis A et al (2008) Optical atomic clocks for space—final report
Zurück zum Zitat Helmert FR (1884) Die mathematischen und physikalischen Theorien der höheren Geodäsie. B. G. Teubner Helmert FR (1884) Die mathematischen und physikalischen Theorien der höheren Geodäsie. B. G. Teubner
Zurück zum Zitat Ihde J (2007) Consideration of a global vertical reference system (GVRS) in the IERS conventions. In: Paper presented at the IERS workshop on conventions. Sevres Ihde J (2007) Consideration of a global vertical reference system (GVRS) in the IERS conventions. In: Paper presented at the IERS workshop on conventions. Sevres
Zurück zum Zitat Kasevich M (2013) Fundamental physics tests by atom interferometry. In: STE-QUEST science workshop. ESTEC 22–23 May 2013. ESTEC/ESA, The Netherlands Kasevich M (2013) Fundamental physics tests by atom interferometry. In: STE-QUEST science workshop. ESTEC 22–23 May 2013. ESTEC/ESA, The Netherlands
Zurück zum Zitat Kleppner D (2008) PHYSICS: a milestone in time keeping. Science 319:1768–1769CrossRef Kleppner D (2008) PHYSICS: a milestone in time keeping. Science 319:1768–1769CrossRef
Zurück zum Zitat Ludlow AD, Zelevinsky T, Campbell GK et al (2008) Sr Lattice clock at 1 × 10 − 16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319:1805–1808CrossRef Ludlow AD, Zelevinsky T, Campbell GK et al (2008) Sr Lattice clock at 1 × 10 − 16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319:1805–1808CrossRef
Zurück zum Zitat Ludlow A, Sherman J, Hinkley N et al (2013) The Yb lattice clock (and others!) at NIST for space-based applications. In: STE-QUEST science workshop. ESTEC 22–23 May 2013. ESTEC/ESA, The Netherlands Ludlow A, Sherman J, Hinkley N et al (2013) The Yb lattice clock (and others!) at NIST for space-based applications. In: STE-QUEST science workshop. ESTEC 22–23 May 2013. ESTEC/ESA, The Netherlands
Zurück zum Zitat Pavlis NK, Weiss MA (2000) The relativistic red shift with 2 × 10 − 17 uncertainty at NIST, Boulder, Colorado, USA. In: Frequency control symposium and exhibition, 2000. Proceedings of the 2000 IEEE/EIA international, pp 642–650 Pavlis NK, Weiss MA (2000) The relativistic red shift with 2 × 10 − 17 uncertainty at NIST, Boulder, Colorado, USA. In: Frequency control symposium and exhibition, 2000. Proceedings of the 2000 IEEE/EIA international, pp 642–650
Zurück zum Zitat Pavlis NK, Weiss MA (2003) The relativistic redshift with 3 × 10 − 17 uncertainty at NIST, Boulder, Colorado, USA. Metrologia 40:66–73CrossRef Pavlis NK, Weiss MA (2003) The relativistic redshift with 3 × 10 − 17 uncertainty at NIST, Boulder, Colorado, USA. Metrologia 40:66–73CrossRef
Zurück zum Zitat Petit G (1998) Importance of common framework for realization of space-time reference systems. In: Towards an integrated global geodetic observing system (IGGOS). Springer, pp 1–7 Petit G (1998) Importance of common framework for realization of space-time reference systems. In: Towards an integrated global geodetic observing system (IGGOS). Springer, pp 1–7
Zurück zum Zitat Petit G, Luzum B (2010) IERS Conventions. Verlag des Bundesamts für Kartographie und Geodäsie Petit G, Luzum B (2010) IERS Conventions. Verlag des Bundesamts für Kartographie und Geodäsie
Zurück zum Zitat Rasel E (2013) STE-QUEST Differential atom interferometer. In: STE-QUEST science workshop. ESTEC 22–23 May 2013. ESTEC/ESA, The Netherlands Rasel E (2013) STE-QUEST Differential atom interferometer. In: STE-QUEST science workshop. ESTEC 22–23 May 2013. ESTEC/ESA, The Netherlands
Zurück zum Zitat Rosenband T, Hume DB, Schmidt PO et al (2008) Frequency ratio of Al+ and Hg+ single-ion optical clocks; Metrology at the 17th decimal place. Science 319:1808–1812CrossRef Rosenband T, Hume DB, Schmidt PO et al (2008) Frequency ratio of Al+ and Hg+ single-ion optical clocks; Metrology at the 17th decimal place. Science 319:1808–1812CrossRef
Zurück zum Zitat Rummel R (2012) Height unification using GOCE. J Geod Sci 2:355–362 Rummel R (2012) Height unification using GOCE. J Geod Sci 2:355–362
Zurück zum Zitat Sacher M, Ihde J, Liebsch G, Mäkinen J (2008) EVRF07 as realization of the European vertical reference system. In: Paper presented at the symposium of the IAG sub-commission for Europe (EUREF) in Brussels, 18–21 June 2008, Brussels Sacher M, Ihde J, Liebsch G, Mäkinen J (2008) EVRF07 as realization of the European vertical reference system. In: Paper presented at the symposium of the IAG sub-commission for Europe (EUREF) in Brussels, 18–21 June 2008, Brussels
Zurück zum Zitat Solomon S, Qin D, Manning M et al (2007) Climate change 2007—the physical science basis. Cambridge University Press, Cambridge Solomon S, Qin D, Manning M et al (2007) Climate change 2007—the physical science basis. Cambridge University Press, Cambridge
Zurück zum Zitat Svehla D, Rothacher M, Hugentobler U et al (2013) STE-QUEST—space geodesy mission for celestial and terrestrial reference frame realization. In: STE-QUEST science workshop. ESTEC 22–23 May 2013. ESTEC/ESA, The Netherlands Svehla D, Rothacher M, Hugentobler U et al (2013) STE-QUEST—space geodesy mission for celestial and terrestrial reference frame realization. In: STE-QUEST science workshop. ESTEC 22–23 May 2013. ESTEC/ESA, The Netherlands
Zurück zum Zitat Švehla D (1997) Preliminary determination of astrogeodetic geoid of the city of Zagreb. Diploma Thesis, Univerity of Zagreb, Faculty of Geodesy Švehla D (1997) Preliminary determination of astrogeodetic geoid of the city of Zagreb. Diploma Thesis, Univerity of Zagreb, Faculty of Geodesy
Zurück zum Zitat Švehla D (2007) Technical note: support to ACES precise orbit determination, TU München Švehla D (2007) Technical note: support to ACES precise orbit determination, TU München
Zurück zum Zitat Švehla D (2008a) Geodesy part of the ACES mission: GALILEO on board the International space station. In: ACES and future GNSS-based Earth observation and navigation, 26–27 May 2008. TU München, Germany, in IAPG/FESG-Schriftenreihe, Nr 28, IAPG, FESG, ISBN (Print) 978-3-934205-27-7, ISSN 1437-8280, 2009 Švehla D (2008a) Geodesy part of the ACES mission: GALILEO on board the International space station. In: ACES and future GNSS-based Earth observation and navigation, 26–27 May 2008. TU München, Germany, in IAPG/FESG-Schriftenreihe, Nr 28, IAPG, FESG, ISBN (Print) 978-3-934205-27-7, ISSN 1437-8280, 2009
Zurück zum Zitat Švehla D (2008b) A novel design for the navigation system and proposal to unify the timing and the positioning system using GIOVE follow-on. EGU General Assembly 2008, Vienna, Austria, Geophysical Research Abstracts, vol 10, EGU2008-A-11022, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-11022 Švehla D (2008b) A novel design for the navigation system and proposal to unify the timing and the positioning system using GIOVE follow-on. EGU General Assembly 2008, Vienna, Austria, Geophysical Research Abstracts, vol 10, EGU2008-A-11022, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-11022
Zurück zum Zitat Švehla D, Rothacher M, Salomon C, Ziebart M (2006) GALILEO on board the International space station and highly accurate GNSS/ACES time and frequency transfer based on phase clocks. IGS workshop “Perspectives and Visions for 2010 and Beyond”, Darmstadt, Germany Švehla D, Rothacher M, Salomon C, Ziebart M (2006) GALILEO on board the International space station and highly accurate GNSS/ACES time and frequency transfer based on phase clocks. IGS workshop “Perspectives and Visions for 2010 and Beyond”, Darmstadt, Germany
Zurück zum Zitat Woodworth PL, Hughes CW, Bingham RJ, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2:302–318 Woodworth PL, Hughes CW, Bingham RJ, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2:302–318
Metadaten
Titel
Geometrical Representation of Gravity Field Determination
verfasst von
Dr. Drazen Svehla
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-76873-1_30

Neuer Inhalt