Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2010

01.06.2010

Geometry and dynamics of activity-dependent homeostatic regulation in neurons

verfasst von: Andrey V. Olypher, Astrid A. Prinz

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To maintain activity in a functional range, neurons constantly adjust membrane excitability to changing intra- and extracellular conditions. Such activity-dependent homeostatic regulation (ADHR) is critical for normal processing of the nervous system and avoiding pathological conditions. Here, we posed a homeostatic regulation problem for the classical Morris-Lecar (ML) model. The problem was motivated by the phenomenon of the functional recovery of stomatogastric neurons in crustaceans in the absence of neuromodulation. In our study, the regulation of the ionic conductances in the ML model depended on the calcium current or the intracellular calcium concentration. We found an asymptotic solution to the problem under the assumption of slow regulation. The solution provides a full account of the regulation in the case of correlated or anticorrelated changes of the maximal conductances of the calcium and potassium currents. In particular, the solution shows how the target and parameters of the regulation determine which perturbations of the conductances can be compensated by the ADHR. In some cases, the sets of compensated initial perturbations are not convex. On the basis of our analysis we formulated specific questions for subsequent experimental and theoretical studies of ADHR.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arnold, V. I., Afrajmovich, V. S., Il’yashenko, Y. S., & Shil’nikov, L. P. (1994). Bifurcation theory and catastrophe theory. Berlin: Springer. Arnold, V. I., Afrajmovich, V. S., Il’yashenko, Y. S., & Shil’nikov, L. P. (1994). Bifurcation theory and catastrophe theory. Berlin: Springer.
Zurück zum Zitat Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4), 469–483.CrossRef Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4), 469–483.CrossRef
Zurück zum Zitat Cressman, J. R., Jr., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of Computational Neuroscience, 26(2), 159–170.CrossRefPubMed Cressman, J. R., Jr., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of Computational Neuroscience, 26(2), 159–170.CrossRefPubMed
Zurück zum Zitat Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.PubMed Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.PubMed
Zurück zum Zitat Davis, G. W. (2006). Homeostatic control of neural activity: from phenomenology to molecular design. Annual Review of Neuroscience, 29, 307–323.CrossRefPubMed Davis, G. W. (2006). Homeostatic control of neural activity: from phenomenology to molecular design. Annual Review of Neuroscience, 29, 307–323.CrossRefPubMed
Zurück zum Zitat Davis, G. W., & Bezprozvanny, I. (2001). Maintaining the stability of neural function: a homeostatic hypothesis. Annual Review of Physiology, 63, 847–869.CrossRefPubMed Davis, G. W., & Bezprozvanny, I. (2001). Maintaining the stability of neural function: a homeostatic hypothesis. Annual Review of Physiology, 63, 847–869.CrossRefPubMed
Zurück zum Zitat El-Samad, H., Goff, J. P., & Khammash, M. (2002). Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. Journal of Theoretical Biology, 214(1), 17–29.CrossRefPubMed El-Samad, H., Goff, J. P., & Khammash, M. (2002). Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. Journal of Theoretical Biology, 214(1), 17–29.CrossRefPubMed
Zurück zum Zitat El-Samad, H., Kurata, H., Doyle, J. C., Gross, C. A., & Khammash, M. (2005). Surviving heat shock: control strategies for robustness and performance. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2736–2741.CrossRefPubMed El-Samad, H., Kurata, H., Doyle, J. C., Gross, C. A., & Khammash, M. (2005). Surviving heat shock: control strategies for robustness and performance. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2736–2741.CrossRefPubMed
Zurück zum Zitat Ermentrout, E. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Philadelphia: SIAM. Ermentrout, E. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Philadelphia: SIAM.
Zurück zum Zitat Fellin, T., Pascual, O., & Haydon, P. G. (2006). Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology (Bethesda), 21, 208–215. Fellin, T., Pascual, O., & Haydon, P. G. (2006). Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology (Bethesda), 21, 208–215.
Zurück zum Zitat Fernandez, F. R., Engbers, J. D., & Turner, R. W. (2007). Firing dynamics of cerebellar purkinje cells. Journal of Neurophysiology, 98(1), 278–294.CrossRefPubMed Fernandez, F. R., Engbers, J. D., & Turner, R. W. (2007). Firing dynamics of cerebellar purkinje cells. Journal of Neurophysiology, 98(1), 278–294.CrossRefPubMed
Zurück zum Zitat Fields, R. D., Lee, P. R., & Cohen, J. E. (2005). Temporal integration of intracellular Сa2+ signaling networks in regulating gene expression by action potentials. Cell Calcium, 37(5), 433–442.CrossRefPubMed Fields, R. D., Lee, P. R., & Cohen, J. E. (2005). Temporal integration of intracellular Сa2+ signaling networks in regulating gene expression by action potentials. Cell Calcium, 37(5), 433–442.CrossRefPubMed
Zurück zum Zitat Fradkov, A. L., & Pogromsky, A. Y. (1998). Introduction to control of oscillations and chaos. Singapore: World Scientific.CrossRef Fradkov, A. L., & Pogromsky, A. Y. (1998). Introduction to control of oscillations and chaos. Singapore: World Scientific.CrossRef
Zurück zum Zitat French, L. B., Lanning, C. C., & Harris-Warrick, R. M. (2002). The localization of two voltage-gated calcium channels in the pyloric network of the lobster stomatogastric ganglion. Neuroscience, 112(1), 217–232.CrossRefPubMed French, L. B., Lanning, C. C., & Harris-Warrick, R. M. (2002). The localization of two voltage-gated calcium channels in the pyloric network of the lobster stomatogastric ganglion. Neuroscience, 112(1), 217–232.CrossRefPubMed
Zurück zum Zitat Goaillard, J. M., & Marder, E. (2006). Dynamic clamp analyses of cardiac, endocrine, and neural function. Physiology (Bethesda), 21, 197–207. Goaillard, J. M., & Marder, E. (2006). Dynamic clamp analyses of cardiac, endocrine, and neural function. Physiology (Bethesda), 21, 197–207.
Zurück zum Zitat Golowasch, J., Casey, M., Abbott, L. F., & Marder, E. (1999). Network stability from activity-dependent regulation of neuronal conductances. Neural Computation, 11(5), 1079–1096.CrossRefPubMed Golowasch, J., Casey, M., Abbott, L. F., & Marder, E. (1999). Network stability from activity-dependent regulation of neuronal conductances. Neural Computation, 11(5), 1079–1096.CrossRefPubMed
Zurück zum Zitat Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer.
Zurück zum Zitat Gunay, G., & Prinz, A.A. (2009). Model calcium sensors for network homeostasis: Sensor and readout parameter analysis from a database of model neuronal networks. Journal of Neuroscience (in press). Gunay, G., & Prinz, A.A. (2009). Model calcium sensors for network homeostasis: Sensor and readout parameter analysis from a database of model neuronal networks. Journal of Neuroscience (in press).
Zurück zum Zitat Izhikevich, E. (2007). Dynamical systems in neuroscience. Cambridge: MIT. Izhikevich, E. (2007). Dynamical systems in neuroscience. Cambridge: MIT.
Zurück zum Zitat Khorkova, O., & Golowasch, J. (2007). Neuromodulators, not activity, control coordinated expression of ionic currents. Journal of Neuroscience, 27(32), 8709–8718.CrossRefPubMed Khorkova, O., & Golowasch, J. (2007). Neuromodulators, not activity, control coordinated expression of ionic currents. Journal of Neuroscience, 27(32), 8709–8718.CrossRefPubMed
Zurück zum Zitat Kunjilwar, K. K., Fishman, H. M., Englot, D. J., O’Neil, R. G., & Walters, E. T. (2009). Long-lasting hyperexcitability induced by depolarization in the absence of detectable Ca2+ signals. Journal of Neurophysiology, 101(3), 1351–1360.CrossRefPubMed Kunjilwar, K. K., Fishman, H. M., Englot, D. J., O’Neil, R. G., & Walters, E. T. (2009). Long-lasting hyperexcitability induced by depolarization in the absence of detectable Ca2+ signals. Journal of Neurophysiology, 101(3), 1351–1360.CrossRefPubMed
Zurück zum Zitat Kuznetsov, Y., Levitin, V., & Skovoroda, A. (1996). Continuation of stationary solutions to evolution problems in content. In. Amsterdam: Centrum/Voor Wiskunde en Informatica. Kuznetsov, Y., Levitin, V., & Skovoroda, A. (1996). Continuation of stationary solutions to evolution problems in content. In. Amsterdam: Centrum/Voor Wiskunde en Informatica.
Zurück zum Zitat LeMasson, G., Marder, E., & Abbott, L. F. (1993). Activity-dependent regulation of conductances in model neurons. Science, 259(5103), 1915–1917.CrossRefPubMed LeMasson, G., Marder, E., & Abbott, L. F. (1993). Activity-dependent regulation of conductances in model neurons. Science, 259(5103), 1915–1917.CrossRefPubMed
Zurück zum Zitat Liu, Z., Golowasch, J., Marder, E., & Abbott, L. F. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. Journal of Neuroscience, 18(7), 2309–2320.PubMed Liu, Z., Golowasch, J., Marder, E., & Abbott, L. F. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. Journal of Neuroscience, 18(7), 2309–2320.PubMed
Zurück zum Zitat Luther, J. A., Robie, A. A., Yarotsky, J., Reina, C., Marder, E., & Golowasch, J. (2003). Episodic bouts of activity accompany recovery of rhythmic output by a neuromodulator- and activity-deprived adult neural network. Journal of Neurophysiology, 90(4), 2720–2730.CrossRefPubMed Luther, J. A., Robie, A. A., Yarotsky, J., Reina, C., Marder, E., & Golowasch, J. (2003). Episodic bouts of activity accompany recovery of rhythmic output by a neuromodulator- and activity-deprived adult neural network. Journal of Neurophysiology, 90(4), 2720–2730.CrossRefPubMed
Zurück zum Zitat MacLean, J. N., Zhang, Y., Johnson, B. R., & Harris-Warrick, R. M. (2003). Activity-independent homeostasis in rhythmically active neurons. Neuron, 37(1), 109–120.CrossRefPubMed MacLean, J. N., Zhang, Y., Johnson, B. R., & Harris-Warrick, R. M. (2003). Activity-independent homeostasis in rhythmically active neurons. Neuron, 37(1), 109–120.CrossRefPubMed
Zurück zum Zitat MacLean, J. N., Zhang, Y., Goeritz, M. L., Casey, R., Oliva, R., Guckenheimer, J., et al. (2005). Activity-independent coregulation of ia and ih in rhythmically active neurons. Journal of Neurophysiology, 94(5), 3601–3617.CrossRefPubMed MacLean, J. N., Zhang, Y., Goeritz, M. L., Casey, R., Oliva, R., Guckenheimer, J., et al. (2005). Activity-independent coregulation of ia and ih in rhythmically active neurons. Journal of Neurophysiology, 94(5), 3601–3617.CrossRefPubMed
Zurück zum Zitat Marder, E., & Prinz, A. A. (2002). Modeling stability in neuron and network function: The role of activity in homeostasis. Bioessays, 24(12), 1145–1154.CrossRefPubMed Marder, E., & Prinz, A. A. (2002). Modeling stability in neuron and network function: The role of activity in homeostasis. Bioessays, 24(12), 1145–1154.CrossRefPubMed
Zurück zum Zitat Marder, E., & Goaillard, J. M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience, 7(7), 563–574.CrossRefPubMed Marder, E., & Goaillard, J. M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience, 7(7), 563–574.CrossRefPubMed
Zurück zum Zitat Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z., & Golowasch, J. (1996). Memory from the dynamics of intrinsic membrane currents. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13481–13486.CrossRefPubMed Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z., & Golowasch, J. (1996). Memory from the dynamics of intrinsic membrane currents. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13481–13486.CrossRefPubMed
Zurück zum Zitat McAnelly, M. L., & Zakon, H. H. (2000). Coregulation of voltage-dependent kinetics of Na(+) and N(+) currents in electric organ. Journal of Neuroscience, 20(9), 3408–3414.PubMed McAnelly, M. L., & Zakon, H. H. (2000). Coregulation of voltage-dependent kinetics of Na(+) and N(+) currents in electric organ. Journal of Neuroscience, 20(9), 3408–3414.PubMed
Zurück zum Zitat Miller, J. P., & Selverston, A. I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. Journal of Neurophysiology, 48(6), 1378–1391.PubMed Miller, J. P., & Selverston, A. I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. Journal of Neurophysiology, 48(6), 1378–1391.PubMed
Zurück zum Zitat Mizrahi, A., Dickinson, P. S., Kloppenburg, P., Fenelon, V., Baro, D. J., Harris-Warrick, R. M., et al. (2001). Long-term maintenance of channel distribution in a central pattern generator neuron by neuromodulatory inputs revealed by decentralization in organ culture. Journal of Neuroscience, 21(18), 7331–7339.PubMed Mizrahi, A., Dickinson, P. S., Kloppenburg, P., Fenelon, V., Baro, D. J., Harris-Warrick, R. M., et al. (2001). Long-term maintenance of channel distribution in a central pattern generator neuron by neuromodulatory inputs revealed by decentralization in organ culture. Journal of Neuroscience, 21(18), 7331–7339.PubMed
Zurück zum Zitat Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.CrossRefPubMed Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.CrossRefPubMed
Zurück zum Zitat Nelson, S. B., & Turrigiano, G. G. (2008). Strength through diversity. Neuron, 60(3), 477–482.CrossRefPubMed Nelson, S. B., & Turrigiano, G. G. (2008). Strength through diversity. Neuron, 60(3), 477–482.CrossRefPubMed
Zurück zum Zitat Olypher, A. V., & Calabrese, R. L. (2007). Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. Journal of Neurophysiology, 98(6), 3749–3758.CrossRefPubMed Olypher, A. V., & Calabrese, R. L. (2007). Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. Journal of Neurophysiology, 98(6), 3749–3758.CrossRefPubMed
Zurück zum Zitat Olypher, A. V., & Prinz, A. A. (2008). Restrictions on intrinsic neuronal properties following from models of homeostatic regulation of neuronal activity. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience Abstracts online. Program No. 376.13. Olypher, A. V., & Prinz, A. A. (2008). Restrictions on intrinsic neuronal properties following from models of homeostatic regulation of neuronal activity. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience Abstracts online. Program No. 376.13.
Zurück zum Zitat Olypher, A. V., & Calabrese, R. L. (2009). How does maintenance of network activity depend on endogenous dynamics of isolated neurons? Neural Computation, 21(6), 1665–1682.CrossRefPubMed Olypher, A. V., & Calabrese, R. L. (2009). How does maintenance of network activity depend on endogenous dynamics of isolated neurons? Neural Computation, 21(6), 1665–1682.CrossRefPubMed
Zurück zum Zitat Olypher, A. V., Cymbalyuk, G., & Calabrese, R. L. (2006). Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons. Journal of Neurophysiology, 96(6), 2857–2867.CrossRefPubMed Olypher, A. V., Cymbalyuk, G., & Calabrese, R. L. (2006). Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons. Journal of Neurophysiology, 96(6), 2857–2867.CrossRefPubMed
Zurück zum Zitat Petersen, O. H., & Verkhratsky, A. (2007). Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells. Cell Calcium, 42(4–5), 373–378.CrossRefPubMed Petersen, O. H., & Verkhratsky, A. (2007). Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells. Cell Calcium, 42(4–5), 373–378.CrossRefPubMed
Zurück zum Zitat Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90(6), 3998–4015.CrossRefPubMed Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90(6), 3998–4015.CrossRefPubMed
Zurück zum Zitat Prinz, A. A., Bucher, D., & Marder, E. (2004a). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352.CrossRefPubMed Prinz, A. A., Bucher, D., & Marder, E. (2004a). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352.CrossRefPubMed
Zurück zum Zitat Prinz, A. A., Abbott, L. F., & Marder, E. (2004b). The dynamic clamp comes of age. Trends in Neuroscience, 27(4), 218–224.CrossRef Prinz, A. A., Abbott, L. F., & Marder, E. (2004b). The dynamic clamp comes of age. Trends in Neuroscience, 27(4), 218–224.CrossRef
Zurück zum Zitat Prinz, A. A., Smolinski, T. G., Soto-Trevino, C., & F.Nadim (2008). Conductance coregulations in a 2-compartment model of the anterior burster (ab) neuron in the lobster pyloric pacemaker kernel. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience Abstracts online. Program No. 376.9. Prinz, A. A., Smolinski, T. G., Soto-Trevino, C., & F.Nadim (2008). Conductance coregulations in a 2-compartment model of the anterior burster (ab) neuron in the lobster pyloric pacemaker kernel. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience Abstracts online. Program No. 376.9.
Zurück zum Zitat Rinzel, J., & Ermentrout, G. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in Neuronal Modeling: From Ions to Networks (pp. 251–291). Cambridge: MIT. Rinzel, J., & Ermentrout, G. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in Neuronal Modeling: From Ions to Networks (pp. 251–291). Cambridge: MIT.
Zurück zum Zitat Schulz, D. J., Goaillard, J. M., & Marder, E. E. (2007). Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13187–13191.CrossRefPubMed Schulz, D. J., Goaillard, J. M., & Marder, E. E. (2007). Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13187–13191.CrossRefPubMed
Zurück zum Zitat Sorensen, M., DeWeerth, S., Cymbalyuk, G., & Calabrese, R. L. (2004). Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current. Journal of Neuroscience, 24(23), 5427–5438.CrossRefPubMed Sorensen, M., DeWeerth, S., Cymbalyuk, G., & Calabrese, R. L. (2004). Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current. Journal of Neuroscience, 24(23), 5427–5438.CrossRefPubMed
Zurück zum Zitat Stellwagen, D., & Malenka, R. C. (2006). Synaptic scaling mediated by glial tnf-alpha. Nature, 440(7087), 1054–1059.CrossRefPubMed Stellwagen, D., & Malenka, R. C. (2006). Synaptic scaling mediated by glial tnf-alpha. Nature, 440(7087), 1054–1059.CrossRefPubMed
Zurück zum Zitat Taylor, A. L., Hickey, T. J., Prinz, A. A., & Marder, E. (2006). Structure and visualization of high-dimensional conductance spaces. Journal of Neurophysiology, 96(2), 891–905.CrossRefPubMed Taylor, A. L., Hickey, T. J., Prinz, A. A., & Marder, E. (2006). Structure and visualization of high-dimensional conductance spaces. Journal of Neurophysiology, 96(2), 891–905.CrossRefPubMed
Zurück zum Zitat Thoby-Brisson, M., & Simmers, J. (2002). Long-term neuromodulatory regulation of a motor pattern-generating network: Maintenance of synaptic efficacy and oscillatory properties. Journal of Neurophysiology, 88(6), 2942–2953.CrossRefPubMed Thoby-Brisson, M., & Simmers, J. (2002). Long-term neuromodulatory regulation of a motor pattern-generating network: Maintenance of synaptic efficacy and oscillatory properties. Journal of Neurophysiology, 88(6), 2942–2953.CrossRefPubMed
Zurück zum Zitat Turrigiano, G. G. (1999). Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends in Neuroscience, 22(5), 221–227.CrossRef Turrigiano, G. G. (1999). Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends in Neuroscience, 22(5), 221–227.CrossRef
Zurück zum Zitat Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97–107.CrossRefPubMed Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97–107.CrossRefPubMed
Zurück zum Zitat Ullah, G., Cressman, J. R., Jr., Barreto, E., & Schiff, S. J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states. II. Network and glial dynamics. Journal of Computational Neuroscience, 26(2), 171–183.CrossRefPubMed Ullah, G., Cressman, J. R., Jr., Barreto, E., & Schiff, S. J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states. II. Network and glial dynamics. Journal of Computational Neuroscience, 26(2), 171–183.CrossRefPubMed
Zurück zum Zitat Zhang, Y., & Golowasch, J. (2007). Modeling recovery of rhythmic activity: hypothesis for the role of a calcium pump. Neurocomputing, 70(10–12), 1657–1662.CrossRefPubMed Zhang, Y., & Golowasch, J. (2007). Modeling recovery of rhythmic activity: hypothesis for the role of a calcium pump. Neurocomputing, 70(10–12), 1657–1662.CrossRefPubMed
Zurück zum Zitat Zhang, Y., Khorkova, O., Rodriguez, R., & Golowasch, J. (2008). Activity and neuromodulatory input contribute to the recovery of rhythmic output after decentralization in a central pattern generator. Journal of Neurophysiology, 101(1), 372–386.CrossRefPubMed Zhang, Y., Khorkova, O., Rodriguez, R., & Golowasch, J. (2008). Activity and neuromodulatory input contribute to the recovery of rhythmic output after decentralization in a central pattern generator. Journal of Neurophysiology, 101(1), 372–386.CrossRefPubMed
Metadaten
Titel
Geometry and dynamics of activity-dependent homeostatic regulation in neurons
verfasst von
Andrey V. Olypher
Astrid A. Prinz
Publikationsdatum
01.06.2010
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2010
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0213-z

Weitere Artikel der Ausgabe 3/2010

Journal of Computational Neuroscience 3/2010 Zur Ausgabe

Premium Partner