Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Geophysical Fluid Dynamics and Climate Dynamics

verfasst von : Tian Ma, Shouhong Wang

Erschienen in: Phase Transition Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Our Earth’s atmosphere and oceans are rotating geophysical fluids that are two important components of the planet’s climate system. The atmosphere and the oceans are extremely rich in their organization and complexity, and many phenomena that they exhibit, involving a broad range of temporal and spatial scales (Charney, 1948), cannot be reproduced in the laboratory. An understanding of the complex scientific issues of geophysical fluid dynamics requires the combined efforts of scientists in many fields. The main objective of this chapter is to initiate a study of dynamic transitions and stability of large-scale atmospheric and oceanic circulations, focusing on a few typical sources of climate variability. Such variability, independently and interactively, may play a significant role in past and future climate change.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Battisti, D. S. and A. C. Hirst (1989). Interannual variability in a tropical atmosphere-ocean model. influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci. 46, 1687–1712.CrossRef Battisti, D. S. and A. C. Hirst (1989). Interannual variability in a tropical atmosphere-ocean model. influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci. 46, 1687–1712.CrossRef
Zurück zum Zitat Bjerknes, V. (1904). Das problem von der wettervorhersage, betrachtet vom standpunkt der. mechanik un der physik. Meteor. Z. 21, 1–7.MATH Bjerknes, V. (1904). Das problem von der wettervorhersage, betrachtet vom standpunkt der. mechanik un der physik. Meteor. Z. 21, 1–7.MATH
Zurück zum Zitat Branstator, G. W. (1987). A striking example of the atmosphere’s leading traveling pattern. J. Atmos. Sci. 44, 2310–2323.CrossRef Branstator, G. W. (1987). A striking example of the atmosphere’s leading traveling pattern. J. Atmos. Sci. 44, 2310–2323.CrossRef
Zurück zum Zitat Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. Dover Publications, Inc.MATH Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. Dover Publications, Inc.MATH
Zurück zum Zitat Charney, J. (1948). On the scale of atmospheric motion. Geofys. Publ. 17(2), 1–17.MathSciNet Charney, J. (1948). On the scale of atmospheric motion. Geofys. Publ. 17(2), 1–17.MathSciNet
Zurück zum Zitat Dijkstra, H. A. (2000). Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño. Dordrecht, the Netherlands: Kluwer Academic Publishers. Dijkstra, H. A. (2000). Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño. Dordrecht, the Netherlands: Kluwer Academic Publishers.
Zurück zum Zitat Dijkstra, H. A. and M. Ghil (2005). Low-frequency variability of the large-scale ocean circulations: a dynamical systems approach. Review of Geophysics 43, 1–38.CrossRef Dijkstra, H. A. and M. Ghil (2005). Low-frequency variability of the large-scale ocean circulations: a dynamical systems approach. Review of Geophysics 43, 1–38.CrossRef
Zurück zum Zitat Dijkstra, H. A. and M. J. Molemaker (1997). Symmetry breaking and overturning oscillations in thermohaline-driven flows. J. Fluid Mech. 331, 195–232.MATHCrossRef Dijkstra, H. A. and M. J. Molemaker (1997). Symmetry breaking and overturning oscillations in thermohaline-driven flows. J. Fluid Mech. 331, 195–232.MATHCrossRef
Zurück zum Zitat Dijkstra, H. A. and M. J. Molemaker (1999). Imperfections of the North-Atlantic wind-driven ocean circulation: Continental geometry and wind stress shape. J. Mar. Res. 57, 1–28.CrossRef Dijkstra, H. A. and M. J. Molemaker (1999). Imperfections of the North-Atlantic wind-driven ocean circulation: Continental geometry and wind stress shape. J. Mar. Res. 57, 1–28.CrossRef
Zurück zum Zitat Dijkstra, H. A. and J. D. Neelin (1999). Imperfections of the thermohaline circulation: Multiple equilibria and flux-correction. J. Clim. 12, 1382–1392.CrossRef Dijkstra, H. A. and J. D. Neelin (1999). Imperfections of the thermohaline circulation: Multiple equilibria and flux-correction. J. Clim. 12, 1382–1392.CrossRef
Zurück zum Zitat Dijkstra, H. A. and J. D. Neelin (2000). Imperfections of the thermohaline circulation: Latitudinal asymmetry versus asymmetric freshwater flux. J. Clim. 13, 366–382.CrossRef Dijkstra, H. A. and J. D. Neelin (2000). Imperfections of the thermohaline circulation: Latitudinal asymmetry versus asymmetric freshwater flux. J. Clim. 13, 366–382.CrossRef
Zurück zum Zitat Drazin, P. and W. Reid (1981). Hydrodynamic Stability. Cambridge University Press.MATH Drazin, P. and W. Reid (1981). Hydrodynamic Stability. Cambridge University Press.MATH
Zurück zum Zitat Ghil, M. (2000). Is our climate stable? Bifurcations, transitions and oscillations in climate dynamics, in Science for survival and sustainable development, V. I. Keilis-Borok and M. Sorondo (eds.), Pontifical Academy of Sciences. pp. 163–184. Ghil, M. (2000). Is our climate stable? Bifurcations, transitions and oscillations in climate dynamics, in Science for survival and sustainable development, V. I. Keilis-Borok and M. Sorondo (eds.), Pontifical Academy of Sciences. pp. 163–184.
Zurück zum Zitat Ghil, M. and S. Childress (1987). Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics. Springer-Verlag, New York.MATHCrossRef Ghil, M. and S. Childress (1987). Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics. Springer-Verlag, New York.MATHCrossRef
Zurück zum Zitat Held, I. M. and M. J. Suarez (1974). Simple albedo feedback models of the ice caps. Tellus 26, 613–629.CrossRef Held, I. M. and M. J. Suarez (1974). Simple albedo feedback models of the ice caps. Tellus 26, 613–629.CrossRef
Zurück zum Zitat Jin, F. F. (1996). Tropical ocean-atmosphere interaction, the pacific cold tongue, and the el nino southern oscillation. Science 274, 76–78.CrossRef Jin, F. F. (1996). Tropical ocean-atmosphere interaction, the pacific cold tongue, and the el nino southern oscillation. Science 274, 76–78.CrossRef
Zurück zum Zitat Jin, F. F., D. Neelin, and M. Ghil (1996). El niño southern oscillation and the annual cycle: subharmonic frequency locking and aperiodicity. Physica D 98, 442–465.MATHCrossRef Jin, F. F., D. Neelin, and M. Ghil (1996). El niño southern oscillation and the annual cycle: subharmonic frequency locking and aperiodicity. Physica D 98, 442–465.MATHCrossRef
Zurück zum Zitat Kushnir, Y. (1987). Retrograding wintertime low-frequency disturbances over the north pacific ocean. J. Atmos. Sci. 44, 2727–2742.CrossRef Kushnir, Y. (1987). Retrograding wintertime low-frequency disturbances over the north pacific ocean. J. Atmos. Sci. 44, 2727–2742.CrossRef
Zurück zum Zitat Lions, J.-L., R. Temam, and S. Wang (1992a). New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5(2), 237–288.MathSciNetMATHCrossRef Lions, J.-L., R. Temam, and S. Wang (1992a). New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5(2), 237–288.MathSciNetMATHCrossRef
Zurück zum Zitat Lions, J.-L., R. Temam, and S. Wang (1993). Models for the coupled atmosphere and ocean. (CAO I,II). Comput. Mech. Adv. 1(1), 120. Lions, J.-L., R. Temam, and S. Wang (1993). Models for the coupled atmosphere and ocean. (CAO I,II). Comput. Mech. Adv. 1(1), 120.
Zurück zum Zitat Lorenz, E. N. (1963b). The mechanics of vacillation. J. Atmos. Sci. 20, 448–464.CrossRef Lorenz, E. N. (1963b). The mechanics of vacillation. J. Atmos. Sci. 20, 448–464.CrossRef
Zurück zum Zitat Lorenz, E. N. (1967). The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, Geneva, Switzerland. Lorenz, E. N. (1967). The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, Geneva, Switzerland.
Zurück zum Zitat Ma, T. and S. Wang (2004b). Dynamic bifurcation and stability in the Rayleigh-Bénard convection. Commun. Math. Sci. 2(2), 159–183.MathSciNetMATHCrossRef Ma, T. and S. Wang (2004b). Dynamic bifurcation and stability in the Rayleigh-Bénard convection. Commun. Math. Sci. 2(2), 159–183.MathSciNetMATHCrossRef
Zurück zum Zitat Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ. Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
Zurück zum Zitat Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.MATHCrossRef Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.MATHCrossRef
Zurück zum Zitat Ma, T. and S. Wang (2007a). Rayleigh-Bénard convection: dynamics and structure in the physical space. Commun. Math. Sci. 5(3), 553–574.MathSciNetMATHCrossRef Ma, T. and S. Wang (2007a). Rayleigh-Bénard convection: dynamics and structure in the physical space. Commun. Math. Sci. 5(3), 553–574.MathSciNetMATHCrossRef
Zurück zum Zitat Ma, T. and S. Wang (2010c). Tropical atmospheric circulations: dynamic stability and transitions. Discrete Contin. Dyn. Syst. 26(4), 1399–1417.MathSciNetMATH Ma, T. and S. Wang (2010c). Tropical atmospheric circulations: dynamic stability and transitions. Discrete Contin. Dyn. Syst. 26(4), 1399–1417.MathSciNetMATH
Zurück zum Zitat Ma, T. and S. Wang (2011b). El Niño southern oscillation as sporadic oscillations between metastable states. Advances in Atmospheric Sciences 28:3, 612–622.MathSciNetCrossRef Ma, T. and S. Wang (2011b). El Niño southern oscillation as sporadic oscillations between metastable states. Advances in Atmospheric Sciences 28:3, 612–622.MathSciNetCrossRef
Zurück zum Zitat Neelin, J. D. (1990a). A hybrid coupled general circulation model for el niño studies. J. Atmos. Sci. 47, 674–693.CrossRef Neelin, J. D. (1990a). A hybrid coupled general circulation model for el niño studies. J. Atmos. Sci. 47, 674–693.CrossRef
Zurück zum Zitat Neelin, J. D. (1990b). The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci. 48, 584–606.CrossRef Neelin, J. D. (1990b). The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci. 48, 584–606.CrossRef
Zurück zum Zitat Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak (1998). Enso theory. J. Geophys. Res. 103, 14261–14290.CrossRef Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak (1998). Enso theory. J. Geophys. Res. 103, 14261–14290.CrossRef
Zurück zum Zitat Pedlosky, J. (1987). Geophysical Fluid Dynamics (second ed.). New-York: Springer-Verlag.MATHCrossRef Pedlosky, J. (1987). Geophysical Fluid Dynamics (second ed.). New-York: Springer-Verlag.MATHCrossRef
Zurück zum Zitat Philander, S. G. and A. Fedorov (2003). Is el niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci. 31, 579–594.CrossRef Philander, S. G. and A. Fedorov (2003). Is el niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci. 31, 579–594.CrossRef
Zurück zum Zitat Phillips, N. A. (1956). The general circulation of the atmosphere: A numerical experiment. Quart J Roy Meteorol Soc 82, 123–164.CrossRef Phillips, N. A. (1956). The general circulation of the atmosphere: A numerical experiment. Quart J Roy Meteorol Soc 82, 123–164.CrossRef
Zurück zum Zitat Quon, C. and M. Ghil (1992). Multiple equilibria in thermosolutal convection due to salt-flux boundary conditions. J. Fluid Mech. 245, 449–484.MATHCrossRef Quon, C. and M. Ghil (1992). Multiple equilibria in thermosolutal convection due to salt-flux boundary conditions. J. Fluid Mech. 245, 449–484.MATHCrossRef
Zurück zum Zitat Quon, C. and M. Ghil (1995). Multiple equilibria and stable oscillations in thermosolutal convection at small aspect ratio. J. Fluid Mech. 291, 33–56.MathSciNetMATHCrossRef Quon, C. and M. Ghil (1995). Multiple equilibria and stable oscillations in thermosolutal convection at small aspect ratio. J. Fluid Mech. 291, 33–56.MathSciNetMATHCrossRef
Zurück zum Zitat Richardson, L. F. (1922). Weather Prediction by Numerical Process. Cambridge University Press.MATH Richardson, L. F. (1922). Weather Prediction by Numerical Process. Cambridge University Press.MATH
Zurück zum Zitat Rooth, C. (1982). Hydrology and ocean circulation. Prog. Oceanogr. 11, 131–149.CrossRef Rooth, C. (1982). Hydrology and ocean circulation. Prog. Oceanogr. 11, 131–149.CrossRef
Zurück zum Zitat Rossby, C.-G. (1926). On the solution of problems of atmospheric motion by means of model experiment. Mon. Wea. Rev. 54, 237–240.CrossRef Rossby, C.-G. (1926). On the solution of problems of atmospheric motion by means of model experiment. Mon. Wea. Rev. 54, 237–240.CrossRef
Zurück zum Zitat Salby, M. L. (1996). Fundamentals of Atmospheric Physics. Academic Press. Salby, M. L. (1996). Fundamentals of Atmospheric Physics. Academic Press.
Zurück zum Zitat Samelson, R. M. (2008). Time-periodic flows in geophysical and classical fluid dynamics. in: Handbook of numerical analysis, special volume on computational methods for the ocean and the atmosphere. R. Temam and J. Tribbia, eds. Elsevier, New York. To appear. Samelson, R. M. (2008). Time-periodic flows in geophysical and classical fluid dynamics. in: Handbook of numerical analysis, special volume on computational methods for the ocean and the atmosphere. R. Temam and J. Tribbia, eds. Elsevier, New York. To appear.
Zurück zum Zitat Sardeshmukh, P. D., G. P. Compo, and C. Penland (2000). Changes of probability associated with el niño. Journal of Climate, 4268–4286.CrossRef Sardeshmukh, P. D., G. P. Compo, and C. Penland (2000). Changes of probability associated with el niño. Journal of Climate, 4268–4286.CrossRef
Zurück zum Zitat Schneider, E. K., B. P. Kirtman, D. G. DeWitt, A. Rosati, L. Ji, and J. J. Tribbia (2003). Retrospective ENSO forecasts: Sensitivity to atmospheric model and ocean resolution. Monthly Weather Review 131:12, 3038–3060.CrossRef Schneider, E. K., B. P. Kirtman, D. G. DeWitt, A. Rosati, L. Ji, and J. J. Tribbia (2003). Retrospective ENSO forecasts: Sensitivity to atmospheric model and ocean resolution. Monthly Weather Review 131:12, 3038–3060.CrossRef
Zurück zum Zitat Schopf, P. S. and M. J. Suarez (1987). Vacillations in a coupled ocean-atmosphere model. J. Atmos. Sci. 45, 549–566.CrossRef Schopf, P. S. and M. J. Suarez (1987). Vacillations in a coupled ocean-atmosphere model. J. Atmos. Sci. 45, 549–566.CrossRef
Zurück zum Zitat Stern, M. E. (1960). The “salt fountain” and thermohaline convection. Tellus 12, 172–175. Stern, M. E. (1960). The “salt fountain” and thermohaline convection. Tellus 12, 172–175.
Zurück zum Zitat Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230.CrossRef Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230.CrossRef
Zurück zum Zitat Thual, O. and J. C. McWilliams (1992). The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models. Geophys. Astrophys. Fluid Dyn. 64, 67–95.CrossRef Thual, O. and J. C. McWilliams (1992). The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models. Geophys. Astrophys. Fluid Dyn. 64, 67–95.CrossRef
Zurück zum Zitat Tziperman, E. (1997). Inherently unstable climate behavior due to weak thermohaline ocean circulation. Nature 386, 592–595.CrossRef Tziperman, E. (1997). Inherently unstable climate behavior due to weak thermohaline ocean circulation. Nature 386, 592–595.CrossRef
Zurück zum Zitat Tziperman, E., J. R. Toggweiler, Y. Feliks, and K. Bryan (1994). Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models? J. Phys. Oceanogr. 24, 217–232.CrossRef Tziperman, E., J. R. Toggweiler, Y. Feliks, and K. Bryan (1994). Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models? J. Phys. Oceanogr. 24, 217–232.CrossRef
Zurück zum Zitat Veronis, G. (1963). An analysis of wind-driven ocean circulation with a limited Fourier components. J. Atmos. Sci. 20, 577–593.CrossRef Veronis, G. (1963). An analysis of wind-driven ocean circulation with a limited Fourier components. J. Atmos. Sci. 20, 577–593.CrossRef
Zurück zum Zitat Veronis, G. (1966). Wind-driven ocean circulation, part ii: Numerical solution of the nonlinear problem. Deep-Sea Res. 13, 31–55. Veronis, G. (1966). Wind-driven ocean circulation, part ii: Numerical solution of the nonlinear problem. Deep-Sea Res. 13, 31–55.
Zurück zum Zitat von Neumann, J. (1960). Some remarks on the problem of forecasting climatic fluctuations. In R. L. Pfeffer (Ed.), Dynamics of climate, pp. 9–12. Pergamon Press. von Neumann, J. (1960). Some remarks on the problem of forecasting climatic fluctuations. In R. L. Pfeffer (Ed.), Dynamics of climate, pp. 9–12. Pergamon Press.
Zurück zum Zitat Zebiak, S. E. and M. A. Cane (1987). A model el nino southern oscillation. Mon. Wea. Rev. 115, 2262–2278.CrossRef Zebiak, S. E. and M. A. Cane (1987). A model el nino southern oscillation. Mon. Wea. Rev. 115, 2262–2278.CrossRef
Metadaten
Titel
Geophysical Fluid Dynamics and Climate Dynamics
verfasst von
Tian Ma
Shouhong Wang
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-29260-7_5

Premium Partner