Skip to main content

2018 | OriginalPaper | Buchkapitel

Geostrophic Adjustment Beyond the Traditional Approximation

verfasst von : Gregory M. Reznik

Erschienen in: The Ocean in Motion

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We examine geostrophic adjustment in a model rotating ocean when the angular speed of rotation \({\varvec{\Omega}}\) does not coincide in direction with the gravity; the traditional and hydrostatic approximations are not used. Two models are considered: the barotropic one and the stably-neutrally stratified (SNS) fluid consisting of a stratified upper layer and a homogeneous lower layer. Wave spectra in the models contain gyroscopic and (in the SNS fluid) internal waves. Linear adjustment results in a tendency of any localized initial state to a geostrophically balanced steady motion parallel to the layer boundaries. In the barotropic fluid and homogeneous layer in the SNS fluid the motion is columnar, the columns are parallel to \({\varvec{\Omega}}\); in the stratified layer the geostrophic mode is not columnar. Using the perturbation theory we study the non-linear adjustment for the small Rossby number and aspect ratio. During the adjustment an arbitrary perturbation is uniquely split into slow quasi-geostrophic (QG) and fast ageostrophic components. In the barotropic model the slow component is described by the 2D fluid dynamics equation for the geostrophic streamfunction. In the SNS fluid the component is governed by two coupled nonlinear equations of QG potential vorticity in the upper and lower layers. The ageostrophic part consists of the inertial oscillations modulated by amplitude depending on coordinates and the slow time, and (in the SNS fluid) internal waves. The internal waves decay due to dispersion and the residual flow is a sum of the QG slow component and inertial oscillations coupled to the QG flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aref, H. (1984). Stirring by chaotic advection. Journal of Fluid Mechanics, 143, 1–21.CrossRef Aref, H. (1984). Stirring by chaotic advection. Journal of Fluid Mechanics, 143, 1–21.CrossRef
2.
Zurück zum Zitat Balmforth, N. J., Llewellyn Smith, S. G., & Young, W. R. (1998). Enhanced dispersion of near-inertial waves in an idealized geostrophic flow. Journal of Marine Research, 56, 1–40.CrossRef Balmforth, N. J., Llewellyn Smith, S. G., & Young, W. R. (1998). Enhanced dispersion of near-inertial waves in an idealized geostrophic flow. Journal of Marine Research, 56, 1–40.CrossRef
3.
Zurück zum Zitat Balmforth, N. J., & Young, W. R. (1999). Radiative damping of near-inertial oscillations in the mixed layer. Journal of Marine Research, 57, 561–584.CrossRef Balmforth, N. J., & Young, W. R. (1999). Radiative damping of near-inertial oscillations in the mixed layer. Journal of Marine Research, 57, 561–584.CrossRef
4.
Zurück zum Zitat Brekhovskikh, L. M., & Goncharov, V. (1994). Mechanics of continua and wave dynamics. Berlin: Springer.CrossRef Brekhovskikh, L. M., & Goncharov, V. (1994). Mechanics of continua and wave dynamics. Berlin: Springer.CrossRef
5.
Zurück zum Zitat Davidson, P. A., Staplehurst, P. J., & Dalziel, S. B. (2006). On the evolution of eddies in a rapidly rotating system. Journal of Fluid Mechanics, 557, 135–144.CrossRef Davidson, P. A., Staplehurst, P. J., & Dalziel, S. B. (2006). On the evolution of eddies in a rapidly rotating system. Journal of Fluid Mechanics, 557, 135–144.CrossRef
6.
Zurück zum Zitat Gerkema, T., Zimmerman, J. T. F., Maas, L. R. M., & van Haren, H. (2008). Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Reviews of Geophysics, 46, RG2004. Gerkema, T., Zimmerman, J. T. F., Maas, L. R. M., & van Haren, H. (2008). Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Reviews of Geophysics, 46, RG2004.
7.
Zurück zum Zitat Gerkema, T., & Shrira, V. I. (2005). Near-inertial waves in the ocean: Beyond the traditional approximation. Journal of Fluid Mechanics, 529, 195–219.CrossRef Gerkema, T., & Shrira, V. I. (2005). Near-inertial waves in the ocean: Beyond the traditional approximation. Journal of Fluid Mechanics, 529, 195–219.CrossRef
8.
Zurück zum Zitat Greenspan, H. P. (1968). Theory of rotating fluids. Cambridge University Press. Greenspan, H. P. (1968). Theory of rotating fluids. Cambridge University Press.
9.
Zurück zum Zitat Il’in, A. M. (1970). Asymptotic properties of a solution of a boundary-value problem. Mathematical Notes, 8, 625–632. Il’in, A. M. (1970). Asymptotic properties of a solution of a boundary-value problem. Mathematical Notes, 8, 625–632.
10.
Zurück zum Zitat Il’in, A. M. (1972). On the behaviour of the solution of a boundary-value problem when t → ∞. Mathematics of the USSR-Sbornik, 16, 545–572. Il’in, A. M. (1972). On the behaviour of the solution of a boundary-value problem when t → ∞. Mathematics of the USSR-Sbornik, 16, 545–572.
11.
Zurück zum Zitat Kamenkovich, V. M. (1977). Fundamentals of ocean dynamics. Amsterdam: Elsevier. Kamenkovich, V. M. (1977). Fundamentals of ocean dynamics. Amsterdam: Elsevier.
12.
Zurück zum Zitat Kamenkovich, V. M., & Kamenkovich, I. V. (1993). On the evolution of Rossby waves, generated by wind stress in a closed basin, incorporating total mass conservation. Dynamics of Atmospheres and Oceans, 18, 67–103.CrossRef Kamenkovich, V. M., & Kamenkovich, I. V. (1993). On the evolution of Rossby waves, generated by wind stress in a closed basin, incorporating total mass conservation. Dynamics of Atmospheres and Oceans, 18, 67–103.CrossRef
13.
Zurück zum Zitat Kasahara, A. (2003). The roles of the horizontal component of the Earth’s angular velocity in nonhydrostatic linear models. Journal of the Atmospheric Sciences, 60, 1085–1095.CrossRef Kasahara, A. (2003). The roles of the horizontal component of the Earth’s angular velocity in nonhydrostatic linear models. Journal of the Atmospheric Sciences, 60, 1085–1095.CrossRef
14.
Zurück zum Zitat Klein, P., & Llewellyn-Smith, S. (2001). Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. Journal of Marine Research, 59, 697–723.CrossRef Klein, P., & Llewellyn-Smith, S. (2001). Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. Journal of Marine Research, 59, 697–723.CrossRef
15.
Zurück zum Zitat Klein, P., Llewellyn-Smith, S., & Lapeyre, G. (2004). Organization of near-inertial energy by an eddy field. Quarterly Journal of the Royal Meteorological Society, 130, 1153–1166.CrossRef Klein, P., Llewellyn-Smith, S., & Lapeyre, G. (2004). Organization of near-inertial energy by an eddy field. Quarterly Journal of the Royal Meteorological Society, 130, 1153–1166.CrossRef
16.
Zurück zum Zitat Kochin, N. E., Kibel, L. A., & Rose, N. V. (1964). Theoretical hydromechanics. New York: Wiley-Interscience. Kochin, N. E., Kibel, L. A., & Rose, N. V. (1964). Theoretical hydromechanics. New York: Wiley-Interscience.
17.
Zurück zum Zitat Kunze, E. (1985). Near-inertial wave propagation in geostrophic shear. Journal of Physical Oceanography, 15, 544–565.CrossRef Kunze, E. (1985). Near-inertial wave propagation in geostrophic shear. Journal of Physical Oceanography, 15, 544–565.CrossRef
18.
Zurück zum Zitat LeBlond, P. H., & Mysak, L. A. (1978). Waves in the ocean. Amsterdam: Elsevier. LeBlond, P. H., & Mysak, L. A. (1978). Waves in the ocean. Amsterdam: Elsevier.
19.
Zurück zum Zitat Miropol’sky, Y. Z. (2001). Dynamics of internal gravity waves in the ocean. Dordrecht: Kluwer. Miropol’sky, Y. Z. (2001). Dynamics of internal gravity waves in the ocean. Dordrecht: Kluwer.
20.
Zurück zum Zitat Reznik, G. M. (2013). Linear dynamics of a stably-neutrally stratified ocean. Journal of Marine Research, 71, 253–288.CrossRef Reznik, G. M. (2013). Linear dynamics of a stably-neutrally stratified ocean. Journal of Marine Research, 71, 253–288.CrossRef
21.
Zurück zum Zitat Reznik, G. M. (2014). Geostrophic adjustment with gyroscopic waves: Barotropic fluid without traditional approximation. Journal of Fluid Mechanics, 743, 585–605.CrossRef Reznik, G. M. (2014). Geostrophic adjustment with gyroscopic waves: Barotropic fluid without traditional approximation. Journal of Fluid Mechanics, 743, 585–605.CrossRef
22.
Zurück zum Zitat Reznik, G. M. (2014). Geostrophic adjustment with gyroscopic waves: stably-neutrally stratified fluid without the traditional approximation. Journal of Fluid Mechanics, 747, 605–634.CrossRef Reznik, G. M. (2014). Geostrophic adjustment with gyroscopic waves: stably-neutrally stratified fluid without the traditional approximation. Journal of Fluid Mechanics, 747, 605–634.CrossRef
23.
Zurück zum Zitat Reznik, G. M. (2015). Wave adjustment: general concept and examples. Journal of Fluid Mechanics, 779, 514–543.CrossRef Reznik, G. M. (2015). Wave adjustment: general concept and examples. Journal of Fluid Mechanics, 779, 514–543.CrossRef
24.
Zurück zum Zitat Reznik, G. M., Zeitlin, V., & Ben Jelloul, M. (2001). Nonlinear theory of geostrophic adjustment. Part 1 rotating shallow-water model. Journal of Fluid Mechanics, 445, 93–120.CrossRef Reznik, G. M., Zeitlin, V., & Ben Jelloul, M. (2001). Nonlinear theory of geostrophic adjustment. Part 1 rotating shallow-water model. Journal of Fluid Mechanics, 445, 93–120.CrossRef
25.
Zurück zum Zitat Staplehurst, P. J., Davidson, P. A., & Dalziel, S. B. (2008). Structure formation in homogeneous freely decaying turbulence. Journal of Fluid Mechanics, 598, 81–105.CrossRef Staplehurst, P. J., Davidson, P. A., & Dalziel, S. B. (2008). Structure formation in homogeneous freely decaying turbulence. Journal of Fluid Mechanics, 598, 81–105.CrossRef
26.
Zurück zum Zitat Timmermans, M. L., Melling, H., & Rainville, L. (2007). Dynamics in the Deep Canada Basin, Arctic Ocean, inferred by thermistor chain time series. Journal of Physical Oceanography, 37, 1066–1076.CrossRef Timmermans, M. L., Melling, H., & Rainville, L. (2007). Dynamics in the Deep Canada Basin, Arctic Ocean, inferred by thermistor chain time series. Journal of Physical Oceanography, 37, 1066–1076.CrossRef
27.
Zurück zum Zitat van Haren, H., & Millot, C. (2005). Gyroscopic waves in the Mediterranean Sea. Geophysical Research Letters, 32, L24614.CrossRef van Haren, H., & Millot, C. (2005). Gyroscopic waves in the Mediterranean Sea. Geophysical Research Letters, 32, L24614.CrossRef
28.
Zurück zum Zitat Young, W. R., & Ben Jelloul, M. (1997). Propagation of near-inertial oscillations through a geostrophic flow. Journal of Marine Research, 55, 735–766.CrossRef Young, W. R., & Ben Jelloul, M. (1997). Propagation of near-inertial oscillations through a geostrophic flow. Journal of Marine Research, 55, 735–766.CrossRef
29.
Zurück zum Zitat Zeitlin, V., Reznik, G. M., & Ben Jelloul, M. (2003). Nonlinear theory of geostrophic adjustment. Part 2. Two-layer and continuously stratified primitive equations. Journal of Fluid Mechanics, 491, 207–228.CrossRef Zeitlin, V., Reznik, G. M., & Ben Jelloul, M. (2003). Nonlinear theory of geostrophic adjustment. Part 2. Two-layer and continuously stratified primitive equations. Journal of Fluid Mechanics, 491, 207–228.CrossRef
Metadaten
Titel
Geostrophic Adjustment Beyond the Traditional Approximation
verfasst von
Gregory M. Reznik
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-71934-4_20