Skip to main content
Erschienen in: Neural Computing and Applications 4/2021

01.06.2020 | Original Article

GMM discriminant analysis with noisy label for each class

verfasst von: Jian-wei Liu, Zheng-ping Ren, Run-kun Lu, Xiong-lin Luo

Erschienen in: Neural Computing and Applications | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Real-world datasets often contain noisy labels, and learning from such datasets using standard classification approaches may not produce the desired performance. In this paper, we propose a Gaussian Mixture Discriminant Analysis (GMDA) with noisy label for each class. We introduce flipping probability and class probability and use EM algorithms to solve the discriminant problem with label noise. We also provide the detail proofs of convergence. Experimental results on synthetic and real-world datasets show that the proposed approach notably outperforms other four state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ttleton DF, Orriols-Puig A, Fornells A (2010) A study of the effect of different types of noise on the precision of supervised learning techniques. Artif Intell Rev, 33(4): 275-306 ttleton DF, Orriols-Puig A, Fornells A (2010) A study of the effect of different types of noise on the precision of supervised learning techniques. Artif Intell Rev, 33(4): 275-306
2.
Zurück zum Zitat Frenay B, Verleysen M (2014) Classification in the presence of label noise: a survey. IEEE Transactions on Neural Networks and Learning Systems 25(5):845–869CrossRef Frenay B, Verleysen M (2014) Classification in the presence of label noise: a survey. IEEE Transactions on Neural Networks and Learning Systems 25(5):845–869CrossRef
3.
Zurück zum Zitat Brodley CE, Friedl MA (1999) Identifying mislabeled training data. J Artif Intell Res 11(1):131–167CrossRef Brodley CE, Friedl MA (1999) Identifying mislabeled training data. J Artif Intell Res 11(1):131–167CrossRef
4.
Zurück zum Zitat Libralon GL, Carvalho ACPDLFD, Lorena AC (2009) Pre-processing for noise detection in gene expression classification data”. J Brazil Comput Soc 15(1):3–11CrossRef Libralon GL, Carvalho ACPDLFD, Lorena AC (2009) Pre-processing for noise detection in gene expression classification data”. J Brazil Comput Soc 15(1):3–11CrossRef
5.
Zurück zum Zitat Abellán J, Masegosa AR (2010) Bagging decision trees on data sets with classification noise. In: Proceedings of foundations of information and knowledge systems, 6th international symposium, FoIKS 2010, Sofia, Bulgaria, Springer, pp 248–265 Abellán J, Masegosa AR (2010) Bagging decision trees on data sets with classification noise. In: Proceedings of foundations of information and knowledge systems, 6th international symposium, FoIKS 2010, Sofia, Bulgaria, Springer, pp 248–265
7.
Zurück zum Zitat Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, New YorkCrossRef Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, New YorkCrossRef
8.
Zurück zum Zitat Bootkrajang J, Kabán A (2012) Label-noise robust logistic regression and its applications. In: Proceedings machine learning and knowledge discovery in databases - European conference, ECML PKDD 2012, Bristol, pp 143-158, 2012 Bootkrajang J, Kabán A (2012) Label-noise robust logistic regression and its applications. In: Proceedings machine learning and knowledge discovery in databases - European conference, ECML PKDD 2012, Bristol, pp 143-158, 2012
9.
Zurück zum Zitat Kearns Michael (1998) Efficient noise-tolerant learning from statistical queries. J ACM (JACM) 45(6):983–1006MathSciNetCrossRef Kearns Michael (1998) Efficient noise-tolerant learning from statistical queries. J ACM (JACM) 45(6):983–1006MathSciNetCrossRef
10.
Zurück zum Zitat Wessels Y, de Ridder LF, Reinders MJ (2007) Classification in the presence of class noise using a probabilistic kernel fisher method. Pattern Recognit 40(12):3349–3357CrossRef Wessels Y, de Ridder LF, Reinders MJ (2007) Classification in the presence of class noise using a probabilistic kernel fisher method. Pattern Recognit 40(12):3349–3357CrossRef
11.
Zurück zum Zitat Long Philip M, Servedio Rocco A (2010) Random classification noise defeats all convex potential boosters. Mach Learn 78(3):287–304MathSciNetCrossRef Long Philip M, Servedio Rocco A (2010) Random classification noise defeats all convex potential boosters. Mach Learn 78(3):287–304MathSciNetCrossRef
12.
Zurück zum Zitat van Rooyen B, Menon AK, Williamson RC (2015) Learning with symmetric label noise: the importance of being unhinged. arXiv preprint arXiv:1505.07634 van Rooyen B, Menon AK, Williamson RC (2015) Learning with symmetric label noise: the importance of being unhinged. arXiv preprint arXiv:​1505.​07634
13.
Zurück zum Zitat Du J, Cai Z (2015) Modelling class noise with symmetric and asymmetric distributions. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence, Austin, Texas, USA, AAAI Press, pp 2589–2595 Du J, Cai Z (2015) Modelling class noise with symmetric and asymmetric distributions. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence, Austin, Texas, USA, AAAI Press, pp 2589–2595
14.
Zurück zum Zitat Scott C, Blanchard G, Handy G (2013) Classification with asymmetric label noise: consistency and maximal denoising. In: Proceeding of the 26th annual conference on learning theory,, Princeton University, NJ, pp 489–511 Scott C, Blanchard G, Handy G (2013) Classification with asymmetric label noise: consistency and maximal denoising. In: Proceeding of the 26th annual conference on learning theory,, Princeton University, NJ, pp 489–511
15.
Zurück zum Zitat Scott C, Blanchard G, Handy G, et al (2013) Classification with asymmetric label noise: consistency and maximal denoising. arXiv preprint arXiv:1303.1208 Scott C, Blanchard G, Handy G, et al (2013) Classification with asymmetric label noise: consistency and maximal denoising. arXiv preprint arXiv:​1303.​1208
16.
Zurück zum Zitat Manwani N, Sastry PS (2013) Noise tolerance under risk minimization. IEEE Trans Cybern 43(3):1146–1151CrossRef Manwani N, Sastry PS (2013) Noise tolerance under risk minimization. IEEE Trans Cybern 43(3):1146–1151CrossRef
17.
Zurück zum Zitat Goldman SA, Sloan RH (1995) Can PAC learning algorithms tolerate random attribute noise? Algorithmica 14(1):70–84MathSciNetCrossRef Goldman SA, Sloan RH (1995) Can PAC learning algorithms tolerate random attribute noise? Algorithmica 14(1):70–84MathSciNetCrossRef
18.
Zurück zum Zitat Zhang W, Rekaya R, Bertrand K (2006) A method for predicting disease subtypes in presence of misclassification among training samples using gene expression: application to human breast cancer. Bioinformatics 22(3):317–325CrossRef Zhang W, Rekaya R, Bertrand K (2006) A method for predicting disease subtypes in presence of misclassification among training samples using gene expression: application to human breast cancer. Bioinformatics 22(3):317–325CrossRef
19.
Zurück zum Zitat Abu Shanab A, Khoshgoftaar TM, Wald R (2012) Robustness of threshold-based feature rankers with data sampling on noisy and imbalanced data. In: Proceedings of the twenty-fifth international florida artificial intelligence research society conference, Marco Island, Florida: AAAI Press Abu Shanab A, Khoshgoftaar TM, Wald R (2012) Robustness of threshold-based feature rankers with data sampling on noisy and imbalanced data. In: Proceedings of the twenty-fifth international florida artificial intelligence research society conference, Marco Island, Florida: AAAI Press
20.
Zurück zum Zitat Rätsch G, Onoda T, Müller K (2001) Soft margins for AdaBoost. Mach Learn 42(3):287–320CrossRef Rätsch G, Onoda T, Müller K (2001) Soft margins for AdaBoost. Mach Learn 42(3):287–320CrossRef
21.
Zurück zum Zitat Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms. Mach Learn 38(3):257–286CrossRef Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms. Mach Learn 38(3):257–286CrossRef
22.
Zurück zum Zitat Brodley CE, Friedl MA (1996) Identifying and eliminating mislabeled training instances. In: Proceedings of the thirteenth national conference on artificial intelligence and eighth innovative applications of artificial intelligence conference, AAAI 96, Portland, Oregon: AAAI Press, pp. 799–805 Brodley CE, Friedl MA (1996) Identifying and eliminating mislabeled training instances. In: Proceedings of the thirteenth national conference on artificial intelligence and eighth innovative applications of artificial intelligence conference, AAAI 96, Portland, Oregon: AAAI Press, pp. 799–805
23.
Zurück zum Zitat Bootkrajang J (2013) Supervised learning with random labelling errors. University of Birmingham, Birmingham Bootkrajang J (2013) Supervised learning with random labelling errors. University of Birmingham, Birmingham
24.
Zurück zum Zitat Moon TK (1996) The expectation-maximization algorithm. IEEE Signal Process Mag 13(6):47–60CrossRef Moon TK (1996) The expectation-maximization algorithm. IEEE Signal Process Mag 13(6):47–60CrossRef
25.
Zurück zum Zitat Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. J R Stat Soc Ser B 39(1):1–38MathSciNetMATH Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. J R Stat Soc Ser B 39(1):1–38MathSciNetMATH
26.
Zurück zum Zitat Jiří G (1982) On numerical evaluation of maximum-likelihood estimates for finite mixtures of distributions. Kybernetika (Prague) 18(3):173–190MathSciNetMATH Jiří G (1982) On numerical evaluation of maximum-likelihood estimates for finite mixtures of distributions. Kybernetika (Prague) 18(3):173–190MathSciNetMATH
27.
Zurück zum Zitat Lathuiliere S, Mesejo P, Alameda-Pineda X, Horaud R (2018) DeepGUM: learning deep robust regression with a gaussian-uniform mixture model. arXiv:1808.09211v1 Lathuiliere S, Mesejo P, Alameda-Pineda X, Horaud R (2018) DeepGUM: learning deep robust regression with a gaussian-uniform mixture model. arXiv:​1808.​09211v1
28.
Zurück zum Zitat Anonymous authors (2020) DIVIDEMIX: learning with noisy labels as semi-supervised learning. Under review as a conference paper at ICLR 2020 Anonymous authors (2020) DIVIDEMIX: learning with noisy labels as semi-supervised learning. Under review as a conference paper at ICLR 2020
30.
Zurück zum Zitat Lawrence ND, Scholkopf B (2012) Estimating a kernel fisher discriminant in the presence of label noise. In: Proceedings of the 29th international conference on machine learning, ICML 2012, Edinburgh, Scotland, UK:Omnipress, 306–313,2012 Lawrence ND, Scholkopf B (2012) Estimating a kernel fisher discriminant in the presence of label noise. In: Proceedings of the 29th international conference on machine learning, ICML 2012, Edinburgh, Scotland, UK:Omnipress, 306–313,2012
31.
Zurück zum Zitat Melnykov V, Melnykov I (2012) Initializing the EM algorithm in Gaussian mixture models with an unknown number of components. Comput Stat Data Anal 56(6):1381–1395MathSciNetCrossRef Melnykov V, Melnykov I (2012) Initializing the EM algorithm in Gaussian mixture models with an unknown number of components. Comput Stat Data Anal 56(6):1381–1395MathSciNetCrossRef
32.
Zurück zum Zitat Dasgupta S (1999) Learning mixtures of Gaussians. In: Proceedings of 40th annual symposium on foundations of computer science, FOCS ‘99, New York, USA, IEEE, pp 634–644 Dasgupta S (1999) Learning mixtures of Gaussians. In: Proceedings of 40th annual symposium on foundations of computer science, FOCS ‘99, New York, USA, IEEE, pp 634–644
33.
Zurück zum Zitat Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, New YorkMATH Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, New YorkMATH
34.
Zurück zum Zitat Ji S, Ye J (2008) Generalized linear discriminant analysis: a unified framework and efficient model selection. IEEE Trans. Neural Netw. 19(10):1768–1782CrossRef Ji S, Ye J (2008) Generalized linear discriminant analysis: a unified framework and efficient model selection. IEEE Trans. Neural Netw. 19(10):1768–1782CrossRef
35.
Zurück zum Zitat Durrant RJ, Kaban A (2012) Error bounds for kernel Fisher linear discriminant in Gaussian Hilbert space. In: Proceedings of the fifteenth international conference on artificial intelligence and statistics, AISTATS 2012, La Palma, Canary Islands: JMLR.org, pp 337–345 Durrant RJ, Kaban A (2012) Error bounds for kernel Fisher linear discriminant in Gaussian Hilbert space. In: Proceedings of the fifteenth international conference on artificial intelligence and statistics, AISTATS 2012, La Palma, Canary Islands: JMLR.org, pp 337–345
36.
Zurück zum Zitat Angluin Dana, Laird Philip (1988) Learning from noisy examples. Mach Learn 2(4):343–370 Angluin Dana, Laird Philip (1988) Learning from noisy examples. Mach Learn 2(4):343–370
37.
Zurück zum Zitat Natarajan N, Dhillon I, Ravikumar P, Tewari A (2013) Learning with noisy labels. In: Proceedings of 27th annual conference on neural information processing systems, Lake Tahoe, Nevada, United States, pp 1196–1204 Natarajan N, Dhillon I, Ravikumar P, Tewari A (2013) Learning with noisy labels. In: Proceedings of 27th annual conference on neural information processing systems, Lake Tahoe, Nevada, United States, pp 1196–1204
38.
Zurück zum Zitat Gómez-Verdejo Vanessa, Ortega-Moral Manuel, Arenas-García Jerónimo, Figueiras-Vidal Aníbal R (2006) Boosting by weighting critical and erroneous samples. Neurocomputing 69(7-9):679–685CrossRef Gómez-Verdejo Vanessa, Ortega-Moral Manuel, Arenas-García Jerónimo, Figueiras-Vidal Aníbal R (2006) Boosting by weighting critical and erroneous samples. Neurocomputing 69(7-9):679–685CrossRef
39.
Zurück zum Zitat Khoshgoftaar Taghi M, Hulse JV, Napolitano A (2010) Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors. IEEE Trans Neural Netw 21(5):813–830CrossRef Khoshgoftaar Taghi M, Hulse JV, Napolitano A (2010) Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors. IEEE Trans Neural Netw 21(5):813–830CrossRef
40.
Zurück zum Zitat Lee WS, Liu B (2003) Learning with positive and unlabeled examples using weighted logistic regression. In: Proceedings of the twentieth international conference (ICML 2003), Washington, DC, USA, AAAI Press, pp 448 –455 Lee WS, Liu B (2003) Learning with positive and unlabeled examples using weighted logistic regression. In: Proceedings of the twentieth international conference (ICML 2003), Washington, DC, USA, AAAI Press, pp 448 –455
42.
Zurück zum Zitat Menon A, Rooyen BV, Ong CS, et al (2015) Learning from corrupted binary labels via class-probability estimation. In: Proceedings of the 32nd international conference on machine learning, ICML 2015, Lille, France, vol 37, pp 125-134 Menon A, Rooyen BV, Ong CS, et al (2015) Learning from corrupted binary labels via class-probability estimation. In: Proceedings of the 32nd international conference on machine learning, ICML 2015, Lille, France, vol 37, pp 125-134
43.
Zurück zum Zitat Scott C (2015) A rate of convergence for mixture proportion estimation, with application to learning from noisy labels. In: Proceedings of the eighteenth international conference on artificial intelligence and statistics. San Diego, California, USA, pp 838–846 Scott C (2015) A rate of convergence for mixture proportion estimation, with application to learning from noisy labels. In: Proceedings of the eighteenth international conference on artificial intelligence and statistics. San Diego, California, USA, pp 838–846
46.
Zurück zum Zitat Bouveyron JC, Girard S (2009) Robust supervised classification with mixture models: learning from data with uncertain labels. Pattern Recognit 42(11):2649–2658CrossRef Bouveyron JC, Girard S (2009) Robust supervised classification with mixture models: learning from data with uncertain labels. Pattern Recognit 42(11):2649–2658CrossRef
Metadaten
Titel
GMM discriminant analysis with noisy label for each class
verfasst von
Jian-wei Liu
Zheng-ping Ren
Run-kun Lu
Xiong-lin Luo
Publikationsdatum
01.06.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 4/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05038-8

Weitere Artikel der Ausgabe 4/2021

Neural Computing and Applications 4/2021 Zur Ausgabe