Skip to main content

2013 | OriginalPaper | Buchkapitel

21. GPU Implementation of Multigrid Solver for Stokes Equation with Strongly Variable Viscosity

verfasst von : Liang Zheng, Taras Gerya, Matthew Knepley, David A. Yuen, Huai Zhang, Yaolin Shi

Erschienen in: GPU Solutions to Multi-scale Problems in Science and Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solving Stokes flow problem is commonplace for numerical modeling of geodynamic processes, because the lithosphere and mantle can be always regarded as incompressible flow for long geological time scales. For Stokes flow, the Reynold Number is effectively zero so that one can ignore the advective transport of momentum equation thus resulting in the slowly creeping flow. Because of the ill-conditioned matrix due to the saddle points problem that coupling mass and momentum partial differential equations together, it is still extremely to efficiently solve this elliptic PDE system, especially with the strongly variable coefficients due to rheological structure of the earth. However, since NVIDIA issued the CUDA programming framework in 2007, scientists can use commodity CPU-GPU system to do such geodynamic simulation efficiently with the advantage of CPU and GPU respectively. In this paper, we try to implement a GPU solver for Stokes Equations with variable viscosity based on CUDA using geometric multigrid methods on the staggered grids. For 2D version, we used a mixture of Jacobi and Gauss-Seidel iteration with conservative finite difference as the smoother. For 3D version, we called the GPU smoother which is rewritten with the Red-Black Gauss-Seidel updating method to avoid the problem of disordered threads with Matlab 2010b.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alik I-Z, Tackley PJ (2010) Computationalmethods for geodynamics. Cambridge University Press, Cambridge Alik I-Z, Tackley PJ (2010) Computationalmethods for geodynamics. Cambridge University Press, Cambridge
Zurück zum Zitat Deubelbeiss Y, Kaus BJP (2008) Comparison of Eulerian and Lagrangian numerical techniques for the Stokes equations in the presence of strongly varying viscosity. Phys Earth Planet Inter 171:92–111CrossRef Deubelbeiss Y, Kaus BJP (2008) Comparison of Eulerian and Lagrangian numerical techniques for the Stokes equations in the presence of strongly varying viscosity. Phys Earth Planet Inter 171:92–111CrossRef
Zurück zum Zitat Gerya TV (2010) Introduction to numerical geodynamic modelling. Cambridge University Press, CambridgeMATH Gerya TV (2010) Introduction to numerical geodynamic modelling. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Komatitsch D, Erlebacher G, Göddeke D, Michéa D (2010) High-order finite element seismic wave propagation modeling with MPI on a large GPU cluster. J Comput Phys 229:7692–7714MathSciNetMATHCrossRef Komatitsch D, Erlebacher G, Göddeke D, Michéa D (2010) High-order finite element seismic wave propagation modeling with MPI on a large GPU cluster. J Comput Phys 229:7692–7714MathSciNetMATHCrossRef
Zurück zum Zitat LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations steady state and time dependent problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations steady state and time dependent problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia.
Zurück zum Zitat May DA, Moresi L (2008) Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Phys Earth Planet Inter 171:33–47CrossRef May DA, Moresi L (2008) Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Phys Earth Planet Inter 171:33–47CrossRef
Zurück zum Zitat Michea D, Komatitsch D (2010) Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards. Geophys J Int 182:389–402 Michea D, Komatitsch D (2010) Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards. Geophys J Int 182:389–402
Zurück zum Zitat Tolke J, Baldwin C et al (2010) Computer simulations of fluid flow in sediment: from images to permeability. Lead Edge 29:68–74CrossRef Tolke J, Baldwin C et al (2010) Computer simulations of fluid flow in sediment: from images to permeability. Lead Edge 29:68–74CrossRef
Zurück zum Zitat Tolke J, Krafczyk M (2008) TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int J Comput Fluid Dynamics 7:443–456CrossRef Tolke J, Krafczyk M (2008) TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int J Comput Fluid Dynamics 7:443–456CrossRef
Zurück zum Zitat Trompert RA, Hansen U (1996) The application of a finite volume multigrid method to three-dimensional flow problems in highly viscous fluid with a variable viscosity. Geophys Astrophys Fluid Dyn 83:261–291CrossRef Trompert RA, Hansen U (1996) The application of a finite volume multigrid method to three-dimensional flow problems in highly viscous fluid with a variable viscosity. Geophys Astrophys Fluid Dyn 83:261–291CrossRef
Zurück zum Zitat Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, New YorkCrossRef Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, New YorkCrossRef
Zurück zum Zitat Walsha SDC, Saara MO, Bailey P, Lilja DJ (2009) Accelerating geoscience and engineering system simulations on graphics hardware. Comput Geosci 35:2353–2364CrossRef Walsha SDC, Saara MO, Bailey P, Lilja DJ (2009) Accelerating geoscience and engineering system simulations on graphics hardware. Comput Geosci 35:2353–2364CrossRef
Zurück zum Zitat Wallin D, Lof H, Hagersten E, Holmgren S (2006) Multigrid and GaussSeidel smoothers Revisited: Parallelization on chip multiprocessors. ICS06 June 2830, Cairns, Queensland, Australia. Wallin D, Lof H, Hagersten E, Holmgren S (2006) Multigrid and GaussSeidel smoothers Revisited: Parallelization on chip multiprocessors. ICS06 June 2830, Cairns, Queensland, Australia.
Metadaten
Titel
GPU Implementation of Multigrid Solver for Stokes Equation with Strongly Variable Viscosity
verfasst von
Liang Zheng
Taras Gerya
Matthew Knepley
David A. Yuen
Huai Zhang
Yaolin Shi
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-16405-7_21

Premium Partner