Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2013

01.03.2013

Grain Growth in Multiple Scales of Polycrystalline AZ31 Magnesium Alloy by Phase-Field Simulation

verfasst von: Y. Wu, B. Y. Zong, X. G. Zhang, M. T. Wang

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A multiscale phase-field model was established on the assumption of an isotropic single-phase system to simulate the realistic spatiotemporal process of grain growth for polycrystalline Mg-Al-Zn alloy AZ31, especially to determine the mechanisms for unique nanostructure evolution. The expression of the local free energy density function was improved according to different driving forces. The grain boundary range and grain boundary energy were studied in each scale to determine the correct gradient and coupling parameters, respectively. It is shown that the grain boundary energy in nanoscales is lower down to about half that in the micron scale, the time exponent n in the kinetic equation is varied from 5 to 2 from the nanograins to the micrograins, and the grain growth rate in nanoscale is much slower in an order of magnitude than that in the micron scale. These findings can be proven by the limited experimental results in the literature. Simulations expose that the solute atoms like to segregate at the grain boundaries much more severely in nanostructure than that in conventional microstructure, and this may be the reason why nanostructure shows a low boundary mobility to result in a strange low grain growth rate at up to an initial long annealing time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.W. Siegel and G.E. Fougere: Nanostruct. Mater., 1995, vol. 6 (1–4), pp. 205–16.CrossRef R.W. Siegel and G.E. Fougere: Nanostruct. Mater., 1995, vol. 6 (1–4), pp. 205–16.CrossRef
2.
Zurück zum Zitat K. Youssef, R. Scattergood, K. Murty, and C. Koch: Scripta Mater., 2006, vol. 54 (2), pp. 251–56.CrossRef K. Youssef, R. Scattergood, K. Murty, and C. Koch: Scripta Mater., 2006, vol. 54 (2), pp. 251–56.CrossRef
3.
Zurück zum Zitat K.V. Rajulapati, R.O. Scattergood, K.L. Murty, Z. Horita, T.G. Langdon, and C.C. Koch: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2528–34.CrossRef K.V. Rajulapati, R.O. Scattergood, K.L. Murty, Z. Horita, T.G. Langdon, and C.C. Koch: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2528–34.CrossRef
4.
Zurück zum Zitat A.P. Garcia, D. Sen, and M.J. Buehler: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3889–97.CrossRef A.P. Garcia, D. Sen, and M.J. Buehler: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3889–97.CrossRef
5.
Zurück zum Zitat R. Phillips: Curr. Opin. Solid State Mater. Sci., 1998, vol. 3 (6), pp. 526–32.CrossRef R. Phillips: Curr. Opin. Solid State Mater. Sci., 1998, vol. 3 (6), pp. 526–32.CrossRef
6.
Zurück zum Zitat M. Založnik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48 (1), pp. 1–10.CrossRef M. Založnik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48 (1), pp. 1–10.CrossRef
7.
Zurück zum Zitat W. Cai, V.V. Bulatov, J. Chang, J. Li, and S. Yip: Phys. Rev. Lett., 2001, vol. 86 (25), pp. 5727–30.CrossRef W. Cai, V.V. Bulatov, J. Chang, J. Li, and S. Yip: Phys. Rev. Lett., 2001, vol. 86 (25), pp. 5727–30.CrossRef
8.
Zurück zum Zitat Y.P. Zong, W. Guo, G. Wang, and F. Zhang: J. Guangdong Non-Ferrous Met., 2005, vol. 15 (2), pp. 117–23. Y.P. Zong, W. Guo, G. Wang, and F. Zhang: J. Guangdong Non-Ferrous Met., 2005, vol. 15 (2), pp. 117–23.
9.
Zurück zum Zitat E.B. Tadmor, M. Ortiz, and R. Phillips: Phil. Mag. A, 1996, vol. 73 (6), pp. 1529–63.CrossRef E.B. Tadmor, M. Ortiz, and R. Phillips: Phil. Mag. A, 1996, vol. 73 (6), pp. 1529–63.CrossRef
10.
Zurück zum Zitat V. Vaithyanathan, C. Wolverton, and L.Q. Chen: Phys. Rev. Lett., 2002, vol. 88 (12), p. 125503.CrossRef V. Vaithyanathan, C. Wolverton, and L.Q. Chen: Phys. Rev. Lett., 2002, vol. 88 (12), p. 125503.CrossRef
11.
Zurück zum Zitat P. Hohenberg and W. Kohn: Phys. Rev., 1964, vol. 136 (3B), pp. B864–B871.CrossRef P. Hohenberg and W. Kohn: Phys. Rev., 1964, vol. 136 (3B), pp. B864–B871.CrossRef
12.
Zurück zum Zitat B.J. Alder and T. Wainwright: J. Chem. Phys., 1959, vol. 31, pp. 459–66.CrossRef B.J. Alder and T. Wainwright: J. Chem. Phys., 1959, vol. 31, pp. 459–66.CrossRef
13.
Zurück zum Zitat N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller: J. Chem. Phys., 1953, vol. 21, pp. 1087–92.CrossRef N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller: J. Chem. Phys., 1953, vol. 21, pp. 1087–92.CrossRef
14.
Zurück zum Zitat H. Frost, C. Thompson, and D. Walton: Acta Metall. Mater., 1990, vol. 38 (8), pp. 1455–62.CrossRef H. Frost, C. Thompson, and D. Walton: Acta Metall. Mater., 1990, vol. 38 (8), pp. 1455–62.CrossRef
15.
Zurück zum Zitat Z.S. Yu, P. Liu, and Y.Q. Long: Mater. Heat Treat., 2008, vol. 37, pp. 94–98. Z.S. Yu, P. Liu, and Y.Q. Long: Mater. Heat Treat., 2008, vol. 37, pp. 94–98.
16.
Zurück zum Zitat A. Karma and W.J. Rappel: Phys. Rev. E, 1996, vol. 53 (4), pp. 3017–20. A. Karma and W.J. Rappel: Phys. Rev. E, 1996, vol. 53 (4), pp. 3017–20.
17.
Zurück zum Zitat A. Karma and W.J. Rappel: Phys. Rev. E, 1998, vol. 57 (4), pp. 4323–49. A. Karma and W.J. Rappel: Phys. Rev. E, 1998, vol. 57 (4), pp. 4323–49.
18.
Zurück zum Zitat Y.U. Wang, Y.M. Jin, A.M. Cuitino, and A.G. Khachaturyan: Acta Mater., 2001, vol. 49 (10), pp. 1847–57.CrossRef Y.U. Wang, Y.M. Jin, A.M. Cuitino, and A.G. Khachaturyan: Acta Mater., 2001, vol. 49 (10), pp. 1847–57.CrossRef
19.
Zurück zum Zitat Y. Wen, B. Wang, J. Simmons, and Y. Wang: Acta Mater., 2006, vol. 54 (8), pp. 2087–99.CrossRef Y. Wen, B. Wang, J. Simmons, and Y. Wang: Acta Mater., 2006, vol. 54 (8), pp. 2087–99.CrossRef
20.
Zurück zum Zitat B. Böttger, J. Eiken, M. Ohno, G. Klaus, M. Fehlbier, R. Schmid Fetzer, I. Steinbach, and A. Bührig Polaczek: Adv. Eng. Mater., 2006, vol. 8 (4), pp. 241–47.CrossRef B. Böttger, J. Eiken, M. Ohno, G. Klaus, M. Fehlbier, R. Schmid Fetzer, I. Steinbach, and A. Bührig Polaczek: Adv. Eng. Mater., 2006, vol. 8 (4), pp. 241–47.CrossRef
21.
Zurück zum Zitat B. Böttger, J. Eiken, and I. Steinbach: Acta Mater., 2006, vol. 54 (10), pp. 2697–2704.CrossRef B. Böttger, J. Eiken, and I. Steinbach: Acta Mater., 2006, vol. 54 (10), pp. 2697–2704.CrossRef
22.
Zurück zum Zitat Y.P. Zong, M.T. Wang, and W. Guo: Acta Phys. Sin.-Chin. Ed., 2009, vol. 58, pp. S161–S168. Y.P. Zong, M.T. Wang, and W. Guo: Acta Phys. Sin.-Chin. Ed., 2009, vol. 58, pp. S161–S168.
23.
Zurück zum Zitat M. Wang, B.Y. Zong, and G. Wang: Comput. Mater. Sci., 2009, vol. 45 (2), pp. 217–22.CrossRef M. Wang, B.Y. Zong, and G. Wang: Comput. Mater. Sci., 2009, vol. 45 (2), pp. 217–22.CrossRef
24.
Zurück zum Zitat X.G. Zhang, Y.P. Zong, M.T. Wang, and Y. Wu: Acta Phys. Sin.-Chin. Ed., 2011, vol. 60 (6), pp. 755–63. X.G. Zhang, Y.P. Zong, M.T. Wang, and Y. Wu: Acta Phys. Sin.-Chin. Ed., 2011, vol. 60 (6), pp. 755–63.
25.
Zurück zum Zitat Y. Wu, B. Zong, and M. Wang: Mater. Sci. Forum, 2010, vol. 633, pp. 697–705.CrossRef Y. Wu, B. Zong, and M. Wang: Mater. Sci. Forum, 2010, vol. 633, pp. 697–705.CrossRef
26.
Zurück zum Zitat X.G. Zhang, Y.P. Zong, and Y. Wu: Acta Phys. Sin.-Chin. Ed., 2012, vol. 21 (8), pp. 088104-1–088104-9. X.G. Zhang, Y.P. Zong, and Y. Wu: Acta Phys. Sin.-Chin. Ed., 2012, vol. 21 (8), pp. 088104-1–088104-9.
27.
Zurück zum Zitat S.M. Allen and J.W. Cahn: Acta Metall., 1979, vol. 27 (6), pp. 1085–95.CrossRef S.M. Allen and J.W. Cahn: Acta Metall., 1979, vol. 27 (6), pp. 1085–95.CrossRef
28.
Zurück zum Zitat J.W. Cahn and J.E. Hilliard: J. Chem. Phys., 1958, vol. 28 (2), pp. 258–67.CrossRef J.W. Cahn and J.E. Hilliard: J. Chem. Phys., 1958, vol. 28 (2), pp. 258–67.CrossRef
29.
30.
Zurück zum Zitat A. Kazaryan, Y. Wang, S. Dregia, and B.R. Patton: Phys. Rev. B, 2001, vol. 63 (18), pp. 184102-1–184102-11.CrossRef A. Kazaryan, Y. Wang, S. Dregia, and B.R. Patton: Phys. Rev. B, 2001, vol. 63 (18), pp. 184102-1–184102-11.CrossRef
31.
Zurück zum Zitat Y. Wen, J. Simmons, C. Shen, C. Woodward, and Y. Wang: Acta Mater., 2003, vol. 51 (4), pp. 1123–32.CrossRef Y. Wen, J. Simmons, C. Shen, C. Woodward, and Y. Wang: Acta Mater., 2003, vol. 51 (4), pp. 1123–32.CrossRef
32.
Zurück zum Zitat S.G. Kim, D.I. Kim, W.T. Kim, and Y.B. Park: Phys. Rev. E, 2006, vol. 74 (6), p. 061605.CrossRef S.G. Kim, D.I. Kim, W.T. Kim, and Y.B. Park: Phys. Rev. E, 2006, vol. 74 (6), p. 061605.CrossRef
33.
Zurück zum Zitat Q. Chen, N. Ma, K. Wu, and Y. Wang: Scripta Mater., 2004, vol. 50 (4), pp. 471–76.CrossRef Q. Chen, N. Ma, K. Wu, and Y. Wang: Scripta Mater., 2004, vol. 50 (4), pp. 471–76.CrossRef
34.
Zurück zum Zitat C. Shen, Q. Chen, Y. Wen, J. Simmons, and Y. Wang: Scripta Mater., 2004, vol. 50 (7), pp. 1023–28 and pp. 1029–34. C. Shen, Q. Chen, Y. Wen, J. Simmons, and Y. Wang: Scripta Mater., 2004, vol. 50 (7), pp. 1023–28 and pp. 1029–34.
35.
Zurück zum Zitat S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E, 1998, vol. 58 (3), pp. 3316–22. S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E, 1998, vol. 58 (3), pp. 3316–22.
36.
Zurück zum Zitat S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E, 1999, vol. 60 (6), pp. 7186–97. S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E, 1999, vol. 60 (6), pp. 7186–97.
37.
Zurück zum Zitat T. Nishizawa and S.M. Hao: Thermodynamics of Microstructure, 1st ed., Chemical Industry Press, Beijing, 2006, pp. 135–136. T. Nishizawa and S.M. Hao: Thermodynamics of Microstructure, 1st ed., Chemical Industry Press, Beijing, 2006, pp. 135–136.
38.
Zurück zum Zitat C. Shek, J. Lai, and G. Lin: Nanostruct. Mater., 1999, vol. 11 (7), pp. 887–93.CrossRef C. Shek, J. Lai, and G. Lin: Nanostruct. Mater., 1999, vol. 11 (7), pp. 887–93.CrossRef
39.
Zurück zum Zitat J.Q. Wang, P. Geng, M.G. Zeng, B.J. Zhang, and C.F. Qian: Chin. J. Mater. Res., 1997, vol. 11, pp. 316–18. J.Q. Wang, P. Geng, M.G. Zeng, B.J. Zhang, and C.F. Qian: Chin. J. Mater. Res., 1997, vol. 11, pp. 316–18.
40.
Zurück zum Zitat Y. Zhang, N. Tao, and K. Lu: Acta Mater., 2008, vol. 56 (11), pp. 2429–40.CrossRef Y. Zhang, N. Tao, and K. Lu: Acta Mater., 2008, vol. 56 (11), pp. 2429–40.CrossRef
41.
Zurück zum Zitat C. Deng: Fabrication of Ultra-Fine Grain Magnesium Alloy by Powder Metallurgy and Research on the Microstructure and Property, Harbin Institute of Technology, Harbin, 2009, p. 24. C. Deng: Fabrication of Ultra-Fine Grain Magnesium Alloy by Powder Metallurgy and Research on the Microstructure and Property, Harbin Institute of Technology, Harbin, 2009, p. 24.
42.
43.
Zurück zum Zitat R.C. Liu, L.Y. Wang, L.G. Gu, and G.S. Huang: Light Alloy Fabric Technol., 2004, vol. 32, pp. 22–25. R.C. Liu, L.Y. Wang, L.G. Gu, and G.S. Huang: Light Alloy Fabric Technol., 2004, vol. 32, pp. 22–25.
44.
45.
Zurück zum Zitat B. Färber, E. Cadel, A. Menand, G. Schmitz, and R. Kirchheim: Acta Mater., 2000, vol. 48 (3), pp. 789–96.CrossRef B. Färber, E. Cadel, A. Menand, G. Schmitz, and R. Kirchheim: Acta Mater., 2000, vol. 48 (3), pp. 789–96.CrossRef
46.
47.
Zurück zum Zitat A. Michels, C. Krill, H. Ehrhardt, R. Birringer, and D. Wu: Acta Mater., 1999, vol. 47 (7), pp. 2143–52.CrossRef A. Michels, C. Krill, H. Ehrhardt, R. Birringer, and D. Wu: Acta Mater., 1999, vol. 47 (7), pp. 2143–52.CrossRef
Metadaten
Titel
Grain Growth in Multiple Scales of Polycrystalline AZ31 Magnesium Alloy by Phase-Field Simulation
verfasst von
Y. Wu
B. Y. Zong
X. G. Zhang
M. T. Wang
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2013
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1478-9

Weitere Artikel der Ausgabe 3/2013

Metallurgical and Materials Transactions A 3/2013 Zur Ausgabe

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

Symposium: Environmental Damage in Structural Materials Under Static/Dynamic Loads at Ambient Temperature

Evolution of Grain Boundary Precipitates in Al 7075 Upon Aging and Correlation with Stress Corrosion Cracking Behavior

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.