Skip to main content

2024 | OriginalPaper | Buchkapitel

2. Graphene Nanoplatelets in Brief

verfasst von : Suprakas Sinha Ray, Lesego Tabea Temane, Jonathan Tersur Orasugh

Erschienen in: Graphene-Bearing Polymer Composites

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides a concise overview of graphene nanoplatelets (GNPs) and their significance in polymer composites. GNPs, comprising stacked graphene sheets, exhibit exceptional mechanical, thermal, and electrical properties. Their high aspect ratio and large surface area make them ideal reinforcements in polymer matrices, enhancing mechanical strength and electrical conductivity. The chapter discusses synthesis methods, dispersion techniques, and characterization approaches for GNPs. Furthermore, it explores their diverse applications in areas such as EMI shielding, flame retardancy, and beyond. By highlighting the key characteristics and applications of GNPs, this chapter is a foundational resource for understanding their role in advancing graphene-bearing polymer composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Colapinto, Material question. Graphene may be the most remarkable substance ever discovered. But what’s it for. The New Yorker 22, 29 (2014) J. Colapinto, Material question. Graphene may be the most remarkable substance ever discovered. But what’s it for. The New Yorker 22, 29 (2014)
2.
Zurück zum Zitat H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)CrossRef H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)CrossRef
3.
Zurück zum Zitat J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011)CrossRef J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011)CrossRef
4.
Zurück zum Zitat K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014)PubMedCrossRef K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014)PubMedCrossRef
5.
Zurück zum Zitat G. Armstrong, An introduction to polymer nanocomposites. Eur. J. Phys. 36(6), 063001 (2015)CrossRef G. Armstrong, An introduction to polymer nanocomposites. Eur. J. Phys. 36(6), 063001 (2015)CrossRef
6.
Zurück zum Zitat J.T. Orasugh, S.S. Ray, Functional and structural facts of effective electromagnetic interference shielding materials: a review. ACS Omega 8(9), 8134–8158 (2023)PubMedPubMedCentralCrossRef J.T. Orasugh, S.S. Ray, Functional and structural facts of effective electromagnetic interference shielding materials: a review. ACS Omega 8(9), 8134–8158 (2023)PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat J.T. Orasugh, S.S. Ray, Graphene-based electrospun fibrous materials with enhanced EMI shielding: recent developments and future perspectives. ACS Omega 7(38), 33699–33718 (2022)PubMedPubMedCentralCrossRef J.T. Orasugh, S.S. Ray, Graphene-based electrospun fibrous materials with enhanced EMI shielding: recent developments and future perspectives. ACS Omega 7(38), 33699–33718 (2022)PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Y. Shi, A. Yao, J. Han, H. Wang, Y. Feng, L. Fu, F. Yang, P. Song, Architecting fire safe hierarchical polymer nanocomposite films with excellent electromagnetic interference shielding via interface engineering. J. Colloid Interface Sci. 640, 179–191 (2023)PubMedCrossRef Y. Shi, A. Yao, J. Han, H. Wang, Y. Feng, L. Fu, F. Yang, P. Song, Architecting fire safe hierarchical polymer nanocomposite films with excellent electromagnetic interference shielding via interface engineering. J. Colloid Interface Sci. 640, 179–191 (2023)PubMedCrossRef
9.
Zurück zum Zitat A. Łapińska, N. Grochowska, K. Filak, P. Michalski, K.R. Szymański, P.A. Zaleski, K. Dydek, A. Daniszewska, K. Żerańska, A. Dużyńska, S. Kowalczyk, A. Plichta, Non-metallic multifunctional PVDF—Graphene nanoplatelets nanocomposites as an effective electromagnetic shield, thermal and electrical conductor. Mater. Today Adv. 18, 100365 (2023)CrossRef A. Łapińska, N. Grochowska, K. Filak, P. Michalski, K.R. Szymański, P.A. Zaleski, K. Dydek, A. Daniszewska, K. Żerańska, A. Dużyńska, S. Kowalczyk, A. Plichta, Non-metallic multifunctional PVDF—Graphene nanoplatelets nanocomposites as an effective electromagnetic shield, thermal and electrical conductor. Mater. Today Adv. 18, 100365 (2023)CrossRef
10.
Zurück zum Zitat B. Lee, U. Hwang, J. Kim, S.-H. Kim, K. Choi, I.-K. Park, C. Choi, J. Suhr, J.-D. Nam, Highly dispersed graphene nanoplatelets in polypropylene composites by employing high-shear stress for enhanced dielectric properties and frequency-selective electromagnetic interference shielding capability. Compos. Commun. 37, 101409 (2023)CrossRef B. Lee, U. Hwang, J. Kim, S.-H. Kim, K. Choi, I.-K. Park, C. Choi, J. Suhr, J.-D. Nam, Highly dispersed graphene nanoplatelets in polypropylene composites by employing high-shear stress for enhanced dielectric properties and frequency-selective electromagnetic interference shielding capability. Compos. Commun. 37, 101409 (2023)CrossRef
11.
Zurück zum Zitat W. Xu, X. Wang, Y. Wu, W. Li, C. Chen, Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 363, 138–151 (2019)PubMedCrossRef W. Xu, X. Wang, Y. Wu, W. Li, C. Chen, Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 363, 138–151 (2019)PubMedCrossRef
12.
Zurück zum Zitat F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R. Rep. 63(3), 100–125 (2009)CrossRef F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R. Rep. 63(3), 100–125 (2009)CrossRef
13.
Zurück zum Zitat M.N. Uddin, L. Le, R. Nair, R. Asmatulu, Effects of graphene oxide thin films and nanocomposite coatings on flame retardancy and thermal stability of aircraft composites: a comparative study. J. Eng. Mater. Technol. 141(3), 031004 (2019)CrossRef M.N. Uddin, L. Le, R. Nair, R. Asmatulu, Effects of graphene oxide thin films and nanocomposite coatings on flame retardancy and thermal stability of aircraft composites: a comparative study. J. Eng. Mater. Technol. 141(3), 031004 (2019)CrossRef
14.
Zurück zum Zitat S. Ran, F. Fang, Z. Guo, P. Song, Y. Cai, Z. Fang, H. Wang, Synthesis of decorated graphene with P, N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid. Compos. B Eng. 170, 41–50 (2019)CrossRef S. Ran, F. Fang, Z. Guo, P. Song, Y. Cai, Z. Fang, H. Wang, Synthesis of decorated graphene with P, N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid. Compos. B Eng. 170, 41–50 (2019)CrossRef
15.
Zurück zum Zitat X. Wang, E.N. Kalali, D.-Y. Wang, Two-dimensional inorganic nanomaterials: a solution to flame retardant polymers. Nano Adv 1, 155 (2016) X. Wang, E.N. Kalali, D.-Y. Wang, Two-dimensional inorganic nanomaterials: a solution to flame retardant polymers. Nano Adv 1, 155 (2016)
16.
Zurück zum Zitat S.S. Ray, A. Geberekrstos, T.S. Muzata, J.T. Orasugh, in Process-Induced Phase Separation in Polymer Blends: Materials, Characterization, Properties, and Applications (Carl Hanser Verlag GmbH Co KG, 2023) S.S. Ray, A. Geberekrstos, T.S. Muzata, J.T. Orasugh, in Process-Induced Phase Separation in Polymer Blends: Materials, Characterization, Properties, and Applications (Carl Hanser Verlag GmbH Co KG, 2023)
17.
Zurück zum Zitat K. Malkappa, J. Bandyopadhyay, V. Ojijo, S.S. Ray, Superior flame retardancy, antidripping, and thermomechanical properties of polyamide nanocomposites with graphene-based hybrid flame retardant. J. Appl. Polym. Sci. 139(37), e52867 (2022)CrossRef K. Malkappa, J. Bandyopadhyay, V. Ojijo, S.S. Ray, Superior flame retardancy, antidripping, and thermomechanical properties of polyamide nanocomposites with graphene-based hybrid flame retardant. J. Appl. Polym. Sci. 139(37), e52867 (2022)CrossRef
18.
Zurück zum Zitat B.S. Singu, K.R. Yoon, Exfoliated graphene-manganese oxide nanocomposite electrode materials for supercapacitor. J. Alloy. Compd. 770, 1189–1199 (2019)CrossRef B.S. Singu, K.R. Yoon, Exfoliated graphene-manganese oxide nanocomposite electrode materials for supercapacitor. J. Alloy. Compd. 770, 1189–1199 (2019)CrossRef
19.
Zurück zum Zitat W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRef W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRef
20.
Zurück zum Zitat L.T. Temane, J.T. Orasugh, S.S. Ray, Adsorptive removal of pollutants using graphene-based materials for water purification, in Two-Dimensional Materials for Environmental Applications. ed. by N. Kumar, R. Gusain, S. Sinha Ray (Springer International Publishing, Cham, 2023), pp.179–244CrossRef L.T. Temane, J.T. Orasugh, S.S. Ray, Adsorptive removal of pollutants using graphene-based materials for water purification, in Two-Dimensional Materials for Environmental Applications. ed. by N. Kumar, R. Gusain, S. Sinha Ray (Springer International Publishing, Cham, 2023), pp.179–244CrossRef
21.
Zurück zum Zitat J.T. Orasugh, V. Saasa, S.S. Ray, B. Mwakikunga, Supersensitive metal free in-situ synthesized graphene oxide@cellulose nanocrystals acetone sensitive bioderived sensors. Int. J. Biol. Macromol. 241, 124514 (2023)PubMedCrossRef J.T. Orasugh, V. Saasa, S.S. Ray, B. Mwakikunga, Supersensitive metal free in-situ synthesized graphene oxide@cellulose nanocrystals acetone sensitive bioderived sensors. Int. J. Biol. Macromol. 241, 124514 (2023)PubMedCrossRef
22.
Zurück zum Zitat J.T. Orasugh, S.S. Ray, Nanocellulose-graphene oxide-based nanocomposite for adsorptive water treatment, in Functional Polymer Nanocomposites for Wastewater Treatment. ed. by M.J. Hato, S. Sinha Ray (Springer International Publishing, Cham, 2022), pp.1–53 J.T. Orasugh, S.S. Ray, Nanocellulose-graphene oxide-based nanocomposite for adsorptive water treatment, in Functional Polymer Nanocomposites for Wastewater Treatment. ed. by M.J. Hato, S. Sinha Ray (Springer International Publishing, Cham, 2022), pp.1–53
23.
Zurück zum Zitat A. Zaman, J.T. Orasugh, P. Banerjee, S. Dutta, M.S. Ali, D. Das, A. Bhattacharya, D. Chattopadhyay, Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohyd. Polym. 246, 116661 (2020)CrossRef A. Zaman, J.T. Orasugh, P. Banerjee, S. Dutta, M.S. Ali, D. Das, A. Bhattacharya, D. Chattopadhyay, Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohyd. Polym. 246, 116661 (2020)CrossRef
24.
Zurück zum Zitat N. Kumar, J.R. Rodriguez, V.G. Pol, A. Sen, Facile synthesis of 2D graphene oxide sheet enveloping ultrafine 1D LiMn2O4 as interconnected framework to enhance cathodic property for Li-ion battery. Appl. Surf. Sci. 463, 132–140 (2019)CrossRef N. Kumar, J.R. Rodriguez, V.G. Pol, A. Sen, Facile synthesis of 2D graphene oxide sheet enveloping ultrafine 1D LiMn2O4 as interconnected framework to enhance cathodic property for Li-ion battery. Appl. Surf. Sci. 463, 132–140 (2019)CrossRef
25.
Zurück zum Zitat S. Sadhukhan, A. Bhattacharyya, D. Rana, T.K. Ghosh, J.T. Orasugh, S. Khatua, K. Acharya, D. Chattopadhyay, Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater. Chem. Phys. 247, 122906 (2020)CrossRef S. Sadhukhan, A. Bhattacharyya, D. Rana, T.K. Ghosh, J.T. Orasugh, S. Khatua, K. Acharya, D. Chattopadhyay, Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater. Chem. Phys. 247, 122906 (2020)CrossRef
26.
Zurück zum Zitat R. Joshi, A. De Adhikari, A. Dey, I. Lahiri, Green reduction of graphene oxide as a substitute of acidic reducing agents for supercapacitor applications. Mater. Sci. Eng. B 287, 116128 (2023)CrossRef R. Joshi, A. De Adhikari, A. Dey, I. Lahiri, Green reduction of graphene oxide as a substitute of acidic reducing agents for supercapacitor applications. Mater. Sci. Eng. B 287, 116128 (2023)CrossRef
27.
Zurück zum Zitat A.T. Lawal, Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 141, 111384 (2019)PubMedCrossRef A.T. Lawal, Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 141, 111384 (2019)PubMedCrossRef
28.
Zurück zum Zitat I. Freestone, N. Meeks, M. Sax, C. Higgitt, The Lycurgus cup—a roman nanotechnology. Gold bulletin 40, 270–277 (2007)CrossRef I. Freestone, N. Meeks, M. Sax, C. Higgitt, The Lycurgus cup—a roman nanotechnology. Gold bulletin 40, 270–277 (2007)CrossRef
29.
Zurück zum Zitat J. Bandyopadhyay, S.S. Ray, Are nanoclay-containing polymer composites safe for food packaging applications?—An overview. J. Appl. Polym. Sci. 136(12), 47214 (2019)CrossRef J. Bandyopadhyay, S.S. Ray, Are nanoclay-containing polymer composites safe for food packaging applications?—An overview. J. Appl. Polym. Sci. 136(12), 47214 (2019)CrossRef
30.
Zurück zum Zitat D.I. Bower, in An Introduction to Polymer Physics (American Association of Physics Teachers, 2003) D.I. Bower, in An Introduction to Polymer Physics (American Association of Physics Teachers, 2003)
32.
Zurück zum Zitat J.C. Huang, EMI shielding plastics: a review. Adv. Polym. Technol. J. Polym. Process. Inst. 14(2), 137–150 (1995)CrossRef J.C. Huang, EMI shielding plastics: a review. Adv. Polym. Technol. J. Polym. Process. Inst. 14(2), 137–150 (1995)CrossRef
33.
Zurück zum Zitat A. Polak, J. Margolis, Conducting Polymers and Plastics (Chapman & Hall, New York, 1989), p.4 A. Polak, J. Margolis, Conducting Polymers and Plastics (Chapman & Hall, New York, 1989), p.4
34.
Zurück zum Zitat S.A. Schelkunoff, Electromagnetic Waves (1943) S.A. Schelkunoff, Electromagnetic Waves (1943)
35.
Zurück zum Zitat Weibler, J.; Enclosures, L., Properties of Metals used for RF shielding. EMC Test and Design 1993, 100. Weibler, J.; Enclosures, L., Properties of Metals used for RF shielding. EMC Test and Design 1993, 100.
36.
Zurück zum Zitat J.T. Orasugh, C. Pal, M.S. Ali, D. Chattopadhyay, Electromagnetic interference shielding property of polymer-graphene composites, in Polymer Nanocomposites Containing Graphene, ed. by M. Rahaman, L. Nayak, I.A. Hussein, N.C. Das (Woodhead Publishing, 2022), pp. 211–243 J.T. Orasugh, C. Pal, M.S. Ali, D. Chattopadhyay, Electromagnetic interference shielding property of polymer-graphene composites, in Polymer Nanocomposites Containing Graphene, ed. by M. Rahaman, L. Nayak, I.A. Hussein, N.C. Das (Woodhead Publishing, 2022), pp. 211–243
37.
Zurück zum Zitat J.T. Orasugh, C. Pal, A.P. Samanta, D. Chattopadhyay, Carbon nanotube and nanofiber reinforced polymer composites, in Encyclopedia of Materials: Plastics and Polymers. ed. by M.S.J. Hashmi (Elsevier, Oxford, 2022), pp.837–859CrossRef J.T. Orasugh, C. Pal, A.P. Samanta, D. Chattopadhyay, Carbon nanotube and nanofiber reinforced polymer composites, in Encyclopedia of Materials: Plastics and Polymers. ed. by M.S.J. Hashmi (Elsevier, Oxford, 2022), pp.837–859CrossRef
38.
Zurück zum Zitat N. Brushlinsky, S. Sergei, P. Wagner, B. Messerschmidt, World Fire Statistics (2022) N. Brushlinsky, S. Sergei, P. Wagner, B. Messerschmidt, World Fire Statistics (2022)
39.
Zurück zum Zitat T. Kashiwagi, iPolymer combustion and flammability—Role of the condensed phase, in Symposium (International) on Combustion (Elsevier, 1994), pp. 1423–1437 T. Kashiwagi, iPolymer combustion and flammability—Role of the condensed phase, in Symposium (International) on Combustion (Elsevier, 1994), pp. 1423–1437
41.
Zurück zum Zitat W. He, P. Song, B. Yu, Z. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 114, 100687 (2020)CrossRef W. He, P. Song, B. Yu, Z. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 114, 100687 (2020)CrossRef
42.
Zurück zum Zitat H. Macskásy, G. Palyi, in Plastics: Their Behaviour in Fires (Elsevier, 2012) H. Macskásy, G. Palyi, in Plastics: Their Behaviour in Fires (Elsevier, 2012)
43.
Zurück zum Zitat A. Boudenne, L. Ibos, Y. Candau, S. Thomas, Handbook of Multiphase Polymer Systems (Wiley & Sons, 2011) A. Boudenne, L. Ibos, Y. Candau, S. Thomas, Handbook of Multiphase Polymer Systems (Wiley & Sons, 2011)
44.
Zurück zum Zitat A.I. Al-Mosawi, Flame retardants, their beginning, types, and environmental impact: a review. ÉPÍTŐANYAG: A SZILIKÁTIPARI TUDOMÁNYOS EGYESÜLET LAPJA 74(1), 2–8 (2022) A.I. Al-Mosawi, Flame retardants, their beginning, types, and environmental impact: a review. ÉPÍTŐANYAG: A SZILIKÁTIPARI TUDOMÁNYOS EGYESÜLET LAPJA 74(1), 2–8 (2022)
45.
Zurück zum Zitat R.R. Hindersinn, Historical Aspects of Polymer Fire Retardance (ACS Publications, 1990) R.R. Hindersinn, Historical Aspects of Polymer Fire Retardance (ACS Publications, 1990)
46.
Zurück zum Zitat S. Bayen, J.P. Obbard, G.O. Thomas, Chlorinated paraffins: a review of analysis and environmental occurrence. Environ. Int. 32(7), 915–929 (2006)PubMedCrossRef S. Bayen, J.P. Obbard, G.O. Thomas, Chlorinated paraffins: a review of analysis and environmental occurrence. Environ. Int. 32(7), 915–929 (2006)PubMedCrossRef
47.
Zurück zum Zitat A. Dey, S. Mandal, S. Bhandari, C. Pal, J.T. Orasugh, D. Chattopadhyay, Characterization methods, in Fiber-Reinforced Nanocomposites: Fundamentals and Applications (Elsevier, 2020), pp. 7–67 A. Dey, S. Mandal, S. Bhandari, C. Pal, J.T. Orasugh, D. Chattopadhyay, Characterization methods, in Fiber-Reinforced Nanocomposites: Fundamentals and Applications (Elsevier, 2020), pp. 7–67
49.
Zurück zum Zitat M. Alaee, P. Arias, A. Sjödin, Å. Bergman, An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 29(6), 683–689 (2003)PubMedCrossRef M. Alaee, P. Arias, A. Sjödin, Å. Bergman, An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 29(6), 683–689 (2003)PubMedCrossRef
50.
Zurück zum Zitat E. Hoh, Zhu, R.A. Hites, Dechlorane plus, a chlorinated flame retardant, in the Great Lakes. Environ. Sci. Technol. 40(4), 1184–1189 (2006) E. Hoh, Zhu, R.A. Hites, Dechlorane plus, a chlorinated flame retardant, in the Great Lakes. Environ. Sci. Technol. 40(4), 1184–1189 (2006)
51.
Zurück zum Zitat R. Hou, Y. Xu, Z. Wang, Review of OPFRs in animals and humans: absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere 153, 78–90 (2016)PubMedCrossRef R. Hou, Y. Xu, Z. Wang, Review of OPFRs in animals and humans: absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere 153, 78–90 (2016)PubMedCrossRef
52.
Zurück zum Zitat A. Covaci, S. Harrad, M.A.-E. Abdallah, N. Ali, R.J. Law, D. Herzke, C.A. de Wit, Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ. Int. 37(2), 532–556 (2011)PubMedCrossRef A. Covaci, S. Harrad, M.A.-E. Abdallah, N. Ali, R.J. Law, D. Herzke, C.A. de Wit, Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ. Int. 37(2), 532–556 (2011)PubMedCrossRef
53.
Zurück zum Zitat R.J. Law, C.R. Allchin, J. De Boer, A. Covaci, D. Herzke, P. Lepom, S. Morris, J. Tronczynski, C.A. De Wit, Levels and trends of brominated flame retardants in the European environment. Chemosphere 64(2), 187–208 (2006)PubMedCrossRef R.J. Law, C.R. Allchin, J. De Boer, A. Covaci, D. Herzke, P. Lepom, S. Morris, J. Tronczynski, C.A. De Wit, Levels and trends of brominated flame retardants in the European environment. Chemosphere 64(2), 187–208 (2006)PubMedCrossRef
54.
Zurück zum Zitat F. Tao, M.A.-E. Abdallah, D.C. Ashworth, P. Douglas, M.B. Toledano, S. Harrad, Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use of PBDEs and HBCDD. Environ. Int. 105, 95–104 (2017)PubMedCrossRef F. Tao, M.A.-E. Abdallah, D.C. Ashworth, P. Douglas, M.B. Toledano, S. Harrad, Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use of PBDEs and HBCDD. Environ. Int. 105, 95–104 (2017)PubMedCrossRef
55.
Zurück zum Zitat S. Lee, H.-J. Cho, W. Choi, H.-B. Moon, Organophosphate flame retardants (OPFRs) in water and sediment: occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea. Marine Pollut0 Bull. 130, 105–112 (2018)CrossRef S. Lee, H.-J. Cho, W. Choi, H.-B. Moon, Organophosphate flame retardants (OPFRs) in water and sediment: occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea. Marine Pollut0 Bull. 130, 105–112 (2018)CrossRef
56.
Zurück zum Zitat G. Chen, Y. Jin, Y. Wu, L. Liu, Z. Fu, Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption. Environ. Toxicol. Pharmacol. 40(1), 310–318 (2015)PubMedCrossRef G. Chen, Y. Jin, Y. Wu, L. Liu, Z. Fu, Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption. Environ. Toxicol. Pharmacol. 40(1), 310–318 (2015)PubMedCrossRef
57.
Zurück zum Zitat H. Vahabi, F. Laoutid, M. Mehrpouya, M.R. Saeb, P. Dubois, Flame retardant polymer materials: an update and the future for 3D printing developments. Mater. Sci. Eng. R. Rep. 144, 100604 (2021)CrossRef H. Vahabi, F. Laoutid, M. Mehrpouya, M.R. Saeb, P. Dubois, Flame retardant polymer materials: an update and the future for 3D printing developments. Mater. Sci. Eng. R. Rep. 144, 100604 (2021)CrossRef
Metadaten
Titel
Graphene Nanoplatelets in Brief
verfasst von
Suprakas Sinha Ray
Lesego Tabea Temane
Jonathan Tersur Orasugh
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-51924-6_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.