Skip to main content
Erschienen in: Wireless Networks 5/2019

27.03.2018

Green transmission for C-RAN based on SWIPT in 5G: a review

verfasst von: Fadhil Mukhlif, Kamarul Ariffin Bin Noordin, Ali Mohammed Mansoor, Zarinah Mohd Kasirun

Erschienen in: Wireless Networks | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

C-RAN is a promising new design for the next generation, an important aspect of it in the energy efficiency consideration. Hence, it is considering an innovative candidate to use it as an alternative cellular network instead of the traditional. Investigation green transmission of mobile cloud radio access networks based on SWIPT for 5G cellular networks. Especially, with considering SWIPT as a future solution for increasing the lifetime of end-user battery’s, that’s mean this technique will improving energy efficiency (EE). Addressing SWIPT into C-RAN is a challenging and it is needed to developing a new algorithm to use it on the cellular network with many trying to ensure the success of the system performance. C-RAN as a network and SWIPT as a promising technique with the suggesting green wireless network are discussed besides the importance of energy efficiency for the next generation. Furthermore, there was a study on fifth enabling technologies that can be used for 5G with emphasis on two of them (C-RAN and energy efficiency). Lastly, research challenges and future direction that require substantial research efforts are summarized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mitra, R. N., & Agrawal, D. P. (2015). 5G mobile technology: A survey. ICT Express, 1(3), 132–137. Mitra, R. N., & Agrawal, D. P. (2015). 5G mobile technology: A survey. ICT Express, 1(3), 132–137.
2.
Zurück zum Zitat Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.
3.
Zurück zum Zitat Kong, Z., et al., (2013). eBase: A Baseband Unit Cluster Testbed to Improve Energy-Efficiency for Cloud Radio Access Network. In 2013 IEEE international conference on communications (pp. 4222–4227). New York: IEEE. Kong, Z., et al., (2013). eBase: A Baseband Unit Cluster Testbed to Improve Energy-Efficiency for Cloud Radio Access Network. In 2013 IEEE international conference on communications (pp. 4222–4227). New York: IEEE.
4.
Zurück zum Zitat Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication, 18(Part 2), 64–84. Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication, 18(Part 2), 64–84.
5.
Zurück zum Zitat Gesbert, D., et al. (2010). Multi-cell MIMO cooperative networks: A new look at interference. IEEE Journal on Selected Areas in Communications, 28(9), 1380–1408. Gesbert, D., et al. (2010). Multi-cell MIMO cooperative networks: A new look at interference. IEEE Journal on Selected Areas in Communications, 28(9), 1380–1408.
6.
Zurück zum Zitat Wu, J., et al. (2015). Cloud radio access network (C-RAN): A primer. IEEE Network, 29(1), 35–41. Wu, J., et al. (2015). Cloud radio access network (C-RAN): A primer. IEEE Network, 29(1), 35–41.
7.
Zurück zum Zitat Zhang, H., et al. (2017). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17, 1882–1892. Zhang, H., et al. (2017). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17, 1882–1892.
8.
Zurück zum Zitat Zhang, H., et al. (2016). Resource allocation in SWIPT enabled heterogeneous cloud small cell networks with incomplete CSI. Zhang, H., et al. (2016). Resource allocation in SWIPT enabled heterogeneous cloud small cell networks with incomplete CSI.
9.
Zurück zum Zitat Krikidis, I., et al. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110. Krikidis, I., et al. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.
10.
Zurück zum Zitat Zhang, H. J., et al. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947. Zhang, H. J., et al. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.
11.
Zurück zum Zitat Ma, Y. N., et al. (2016). Optimization of simultaneous wireless information and power transfer in cloud radio access networks. In 2016 IEEE 83rd vehicular technology conference. Ma, Y. N., et al. (2016). Optimization of simultaneous wireless information and power transfer in cloud radio access networks. In 2016 IEEE 83rd vehicular technology conference.
12.
Zurück zum Zitat Le, N. T., et al. (2016). Survey of promising technologies for 5G networks. Mobile Information Systems, p. 25. Le, N. T., et al. (2016). Survey of promising technologies for 5G networks. Mobile Information Systems, p. 25.
13.
Zurück zum Zitat Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.MathSciNet Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.MathSciNet
14.
Zurück zum Zitat Zhang, S., et al. (2014). 5G: Towards energy-efficient, low-latency and high-reliable communications networks. In 2014 IEEE international conference on communication systems. Zhang, S., et al. (2014). 5G: Towards energy-efficient, low-latency and high-reliable communications networks. In 2014 IEEE international conference on communication systems.
15.
Zurück zum Zitat Jia, S., et al. (2014). Analyzing and relieving the impact of FCD traffic in LTE-VANET heterogeneous network. In 2014 21st international conference on telecommunications (ICT). Jia, S., et al. (2014). Analyzing and relieving the impact of FCD traffic in LTE-VANET heterogeneous network. In 2014 21st international conference on telecommunications (ICT).
16.
Zurück zum Zitat Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35. Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.
17.
Zurück zum Zitat Heath Jr., R. W. (2013). Coverage and capacity analysis of mm wave cellular systems. In Presentation delivered at Int. conf. on communi. (ICC). Heath Jr., R. W. (2013). Coverage and capacity analysis of mm wave cellular systems. In Presentation delivered at Int. conf. on communi. (ICC).
18.
Zurück zum Zitat Alkhateeb, A., et al. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131. Alkhateeb, A., et al. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.
19.
Zurück zum Zitat Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349. Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.
20.
Zurück zum Zitat Ben-Dor, E., et al. (2011). Millimeter-wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In Global telecommunications conference (GLOBECOM 2011), 2011 IEEE. IEEE. Ben-Dor, E., et al. (2011). Millimeter-wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In Global telecommunications conference (GLOBECOM 2011), 2011 IEEE. IEEE.
21.
Zurück zum Zitat Akdeniz, M. R., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179. Akdeniz, M. R., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.
22.
Zurück zum Zitat Murdock, J. N., et al. (2012). A 38 GHz cellular outage study for an urban outdoor campus environment. In 2012 IEEE wireless communications and networking conference (WCNC). IEEE. Murdock, J. N., et al. (2012). A 38 GHz cellular outage study for an urban outdoor campus environment. In 2012 IEEE wireless communications and networking conference (WCNC). IEEE.
23.
Zurück zum Zitat Baldemair, R., et al. (2015). Ultra-dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208. Baldemair, R., et al. (2015). Ultra-dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208.
24.
Zurück zum Zitat Hwang, I., Song, B., & Soliman, S. S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27. Hwang, I., Song, B., & Soliman, S. S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27.
25.
Zurück zum Zitat Rusek, F., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60. Rusek, F., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.
26.
Zurück zum Zitat Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine, 6(1), 37–43. Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine, 6(1), 37–43.
27.
Zurück zum Zitat Chen, K., & Duan, R. (2011). C-RAN: the road towards green RAN. China mobile research institute, p. 2. Chen, K., & Duan, R. (2011). C-RAN: the road towards green RAN. China mobile research institute, p. 2.
28.
Zurück zum Zitat Hicham, M., Abghour, N., & Ouzzif, M. (2016). Cloud radio access network technology for the next fifth generation mobile networks. Journal of Theoretical and Applied Information Technology, 93(2), 375–384. Hicham, M., Abghour, N., & Ouzzif, M. (2016). Cloud radio access network technology for the next fifth generation mobile networks. Journal of Theoretical and Applied Information Technology, 93(2), 375–384.
29.
Zurück zum Zitat Rost, P., et al. (2014). Cloud technologies for flexible 5G radio access networks. IEEE Communications Magazine, 52(5), 68–76. Rost, P., et al. (2014). Cloud technologies for flexible 5G radio access networks. IEEE Communications Magazine, 52(5), 68–76.
30.
Zurück zum Zitat Dahrouj, H., & Yu, W. (2010). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Transactions on Wireless Communications, 9(5), 1748–1759. Dahrouj, H., & Yu, W. (2010). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Transactions on Wireless Communications, 9(5), 1748–1759.
31.
Zurück zum Zitat Li, C., Zhang, J., & Letaief, K. B. (2013). Energy efficiency analysis of small cell networks. In 2013 IEEE international conference on communications (ICC). Li, C., Zhang, J., & Letaief, K. B. (2013). Energy efficiency analysis of small cell networks. In 2013 IEEE international conference on communications (ICC).
32.
Zurück zum Zitat Tombaz, S., et al. (2011). Impact of backhauling power consumption on the deployment of heterogeneous mobile networks. In 2011 IEEE global telecommunications conference—GLOBECOM 2011. Tombaz, S., et al. (2011). Impact of backhauling power consumption on the deployment of heterogeneous mobile networks. In 2011 IEEE global telecommunications conferenceGLOBECOM 2011.
33.
Zurück zum Zitat Rao, J. B., & Fapojuwo, A. O. (2013). On the tradeoff between spectral efficiency and energy efficiency of homogeneous cellular networks with outage constraint. IEEE Transactions on Vehicular Technology, 62(4), 1801–1814. Rao, J. B., & Fapojuwo, A. O. (2013). On the tradeoff between spectral efficiency and energy efficiency of homogeneous cellular networks with outage constraint. IEEE Transactions on Vehicular Technology, 62(4), 1801–1814.
34.
Zurück zum Zitat Wu, J. (2012). Green wireless communications: from concept to reality [industry perspectives]. IEEE Wireless Communications, 19(4), 4–5. Wu, J. (2012). Green wireless communications: from concept to reality [industry perspectives]. IEEE Wireless Communications, 19(4), 4–5.
35.
Zurück zum Zitat Wang, K. Z., et al. (2016). Cost-effective resource allocation in C-RAN with mobile cloud. In 2016 IEEE international conference on communications. Wang, K. Z., et al. (2016). Cost-effective resource allocation in C-RAN with mobile cloud. In 2016 IEEE international conference on communications.
36.
Zurück zum Zitat Peng, M., et al. (2014). Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. IEEE Wireless Communications, 21(6), 126–135. Peng, M., et al. (2014). Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. IEEE Wireless Communications, 21(6), 126–135.
37.
Zurück zum Zitat Peng, M., et al. (2016). Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks. IEEE Transactions on Multimedia, 18(5), 879–892. Peng, M., et al. (2016). Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks. IEEE Transactions on Multimedia, 18(5), 879–892.
38.
Zurück zum Zitat Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication, 18, 64–84. Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication, 18, 64–84.
39.
Zurück zum Zitat Peng, M., et al. (2015). System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Network, 29(2), 6–14. Peng, M., et al. (2015). System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Network, 29(2), 6–14.
40.
Zurück zum Zitat Simeone, O., et al. (2016). Cloud radio access network: Virtualizing wireless access for dense heterogeneous systems. Journal of Communications and Networks, 18(2), 135–149. Simeone, O., et al. (2016). Cloud radio access network: Virtualizing wireless access for dense heterogeneous systems. Journal of Communications and Networks, 18(2), 135–149.
41.
Zurück zum Zitat Shi, Y., et al. (2013). Group sparse beamforming for green cloud radio access networks. In 2013 IEEE global communications conference (pp. 4662–4667). New York: IEEE. Shi, Y., et al. (2013). Group sparse beamforming for green cloud radio access networks. In 2013 IEEE global communications conference (pp. 4662–4667). New York: IEEE.
42.
Zurück zum Zitat Zhang, H. J., et al. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99. Zhang, H. J., et al. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99.
43.
Zurück zum Zitat Dahrouj, H., et al. (2015). Resource allocation in heterogeneous cloud radio access networks: Advances and challenges. IEEE Wireless Communications, 22(3), 66–73. Dahrouj, H., et al. (2015). Resource allocation in heterogeneous cloud radio access networks: Advances and challenges. IEEE Wireless Communications, 22(3), 66–73.
44.
Zurück zum Zitat Ghods, F., et al. (2015). Energy efficiency and spectrum efficiency in cooperative cloud radio access network. In 2015 IEEE pacific rim conference on communications, computers and signal processing (pp. 280–285). New York: IEEE. Ghods, F., et al. (2015). Energy efficiency and spectrum efficiency in cooperative cloud radio access network. In 2015 IEEE pacific rim conference on communications, computers and signal processing (pp. 280–285). New York: IEEE.
45.
Zurück zum Zitat Chu, Z., Johnston, M., & Le Goff, S. (2015). SWIPT for wireless cooperative networks. Electronics Letters, 51(6), 536–538. Chu, Z., Johnston, M., & Le Goff, S. (2015). SWIPT for wireless cooperative networks. Electronics Letters, 51(6), 536–538.
46.
Zurück zum Zitat Lien, S. Y., et al. (2015). Ultra-low-latency ubiquitous connections in heterogeneous cloud radio access networks. IEEE Wireless Communications, 22(3), 22–31. Lien, S. Y., et al. (2015). Ultra-low-latency ubiquitous connections in heterogeneous cloud radio access networks. IEEE Wireless Communications, 22(3), 22–31.
47.
Zurück zum Zitat Mengjun, Y., et al. (2015). Self-healing based on cooperative transmission via bender’s decomposition in cloud radio access network. China Communications, 12(11), 43–52. Mengjun, Y., et al. (2015). Self-healing based on cooperative transmission via bender’s decomposition in cloud radio access network. China Communications, 12(11), 43–52.
48.
Zurück zum Zitat Zeng, T. C., et al. (2015). Green circuit design for battery-free sensors in cloud radio access network. China Communications, 12(11), 1–11. Zeng, T. C., et al. (2015). Green circuit design for battery-free sensors in cloud radio access network. China Communications, 12(11), 1–11.
49.
Zurück zum Zitat Dai, B., & Yu, W. (2016). Energy efficiency of downlink transmission strategies for cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(4), 1037–1050. Dai, B., & Yu, W. (2016). Energy efficiency of downlink transmission strategies for cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(4), 1037–1050.
50.
Zurück zum Zitat Ghods, F., Fapojuwo, A., & Ghannouchi, F. (2016). Throughput reliability analysis of cloud-radio access networks. Wireless Communications and Mobile Computing, 16(17), 2824–2838. Ghods, F., Fapojuwo, A., & Ghannouchi, F. (2016). Throughput reliability analysis of cloud-radio access networks. Wireless Communications and Mobile Computing, 16(17), 2824–2838.
51.
Zurück zum Zitat Yu, Z., et al. (2016). Dynamic resource allocation in TDD-based heterogeneous cloud radio access networks. China Communications, 13(6), 1–11. Yu, Z., et al. (2016). Dynamic resource allocation in TDD-based heterogeneous cloud radio access networks. China Communications, 13(6), 1–11.
52.
Zurück zum Zitat Wang, Y. Y., Peng, M. G., & Zhang, K. C. (2016). Economy-efficient resource allocation in cloud radio access networks with fronthaul capacity constraints. In M. S. Obaidat, et al. (Eds.), 2016 international conference on computer, information and telecommunication systems (pp. 215–219). Wang, Y. Y., Peng, M. G., & Zhang, K. C. (2016). Economy-efficient resource allocation in cloud radio access networks with fronthaul capacity constraints. In M. S. Obaidat, et al. (Eds.), 2016 international conference on computer, information and telecommunication systems (pp. 215–219).
53.
Zurück zum Zitat Sigwele, T., et al. (2017). Energy-efficient cloud radio access networks by cloud based workload consolidation for 5G. Journal of Network and Computer Applications, 78, 1–8. Sigwele, T., et al. (2017). Energy-efficient cloud radio access networks by cloud based workload consolidation for 5G. Journal of Network and Computer Applications, 78, 1–8.
54.
Zurück zum Zitat Luo, S. X., Zhang, R., & Lim, T. J. (2015). Downlink and uplink energy minimization through user association and beamforming in C-RAN. IEEE Transactions on Wireless Communications, 14(1), 494–508. Luo, S. X., Zhang, R., & Lim, T. J. (2015). Downlink and uplink energy minimization through user association and beamforming in C-RAN. IEEE Transactions on Wireless Communications, 14(1), 494–508.
55.
Zurück zum Zitat Miyanabe, K., et al. (2015). A cloud radio access network with power over fiber toward 5G networks: QoE-guaranteed design and operation. IEEE Wireless Communications, 22(4), 58–64. Miyanabe, K., et al. (2015). A cloud radio access network with power over fiber toward 5G networks: QoE-guaranteed design and operation. IEEE Wireless Communications, 22(4), 58–64.
56.
Zurück zum Zitat Yoon, C., & Cho, D. H. (2015). Energy efficient beamforming and power allocation in dynamic TDD based C-RAN system. IEEE Communications Letters, 19(10), 1806–1809. Yoon, C., & Cho, D. H. (2015). Energy efficient beamforming and power allocation in dynamic TDD based C-RAN system. IEEE Communications Letters, 19(10), 1806–1809.
57.
Zurück zum Zitat Alhumaima, R. S., & Al-Raweshidy, H. S. (2016). Evaluating the energy efficiency of software defined-based cloud radio access networks. IET Communications, 10(8), 987–994. Alhumaima, R. S., & Al-Raweshidy, H. S. (2016). Evaluating the energy efficiency of software defined-based cloud radio access networks. IET Communications, 10(8), 987–994.
58.
Zurück zum Zitat Liu, Z., et al. (2016). Research on load balancing in C-RAN with femtocells. Telkomnika (Telecommunication Computing Electronics and Control), 14(1), 86–90. Liu, Z., et al. (2016). Research on load balancing in C-RAN with femtocells. Telkomnika (Telecommunication Computing Electronics and Control), 14(1), 86–90.
59.
Zurück zum Zitat Alhumaima, R. S., Khan, M., & Al-Raweshidy, H. S. (2016). Component and parameterised power model for cloud radio access network. IET Communications, 10(7), 745–752. Alhumaima, R. S., Khan, M., & Al-Raweshidy, H. S. (2016). Component and parameterised power model for cloud radio access network. IET Communications, 10(7), 745–752.
60.
Zurück zum Zitat Checko, A., et al. (2016). Evaluating C-RAN fronthaul functional splits in terms of network level energy and cost savings. Journal of Communications and Networks, 18(2), 162–172. Checko, A., et al. (2016). Evaluating C-RAN fronthaul functional splits in terms of network level energy and cost savings. Journal of Communications and Networks, 18(2), 162–172.
61.
Zurück zum Zitat Douik, A., et al. (2016). Coordinated scheduling and power control in cloud-radio access networks. IEEE Transactions on Wireless Communications, 15(4), 2523–2536. Douik, A., et al. (2016). Coordinated scheduling and power control in cloud-radio access networks. IEEE Transactions on Wireless Communications, 15(4), 2523–2536.
62.
Zurück zum Zitat Li, J., et al. (2016). Queue-aware energy-efficient joint remote radio head activation and beamforming in cloud radio access networks. IEEE Transactions on Wireless Communications, 15(6), 3880–3894. Li, J., et al. (2016). Queue-aware energy-efficient joint remote radio head activation and beamforming in cloud radio access networks. IEEE Transactions on Wireless Communications, 15(6), 3880–3894.
63.
Zurück zum Zitat Vu, T. X., Nguyen, T. V., & Quek, T. Q. S. (2016). Power optimization with BLER constraint for wireless fronthauls in C-RAN. IEEE Communications Letters, 20(3), 602–605. Vu, T. X., Nguyen, T. V., & Quek, T. Q. S. (2016). Power optimization with BLER constraint for wireless fronthauls in C-RAN. IEEE Communications Letters, 20(3), 602–605.
64.
Zurück zum Zitat Zhao, Z. Y., et al. (2016). Cluster content caching: An energy-efficient approach to improve quality of service in cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(5), 1207–1221. Zhao, Z. Y., et al. (2016). Cluster content caching: An energy-efficient approach to improve quality of service in cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(5), 1207–1221.
65.
Zurück zum Zitat Zhou, Y., & Yu, W. (2016). Fronthaul compression and transmit beamforming optimization for multi-antenna uplink C-RAN. IEEE Transactions on Signal Processing, 64(16), 4138–4151.MathSciNetMATH Zhou, Y., & Yu, W. (2016). Fronthaul compression and transmit beamforming optimization for multi-antenna uplink C-RAN. IEEE Transactions on Signal Processing, 64(16), 4138–4151.MathSciNetMATH
66.
Zurück zum Zitat Qiao, G. H., et al. (2016). Multiple time-scale energy scheduling with energy harvesting aided heterogeneous cloud radio access networks. In 2016 IEEE/Cic international conference on communications in China (Iccc). Qiao, G. H., et al. (2016). Multiple time-scale energy scheduling with energy harvesting aided heterogeneous cloud radio access networks. In 2016 IEEE/Cic international conference on communications in China (Iccc).
67.
Zurück zum Zitat Patel, M., et al. (2014). Mobile-edge computing introductory technical white paper. White Paper, Mobile-edge Computing (MEC) industry initiative. Patel, M., et al. (2014). Mobile-edge computing introductory technical white paper. White Paper, Mobile-edge Computing (MEC) industry initiative.
68.
Zurück zum Zitat Chih-Lin, I., et al. (2014). Toward green and soft: a 5G perspective. IEEE Communications Magazine, 52(2), 66–73. Chih-Lin, I., et al. (2014). Toward green and soft: a 5G perspective. IEEE Communications Magazine, 52(2), 66–73.
69.
Zurück zum Zitat Fan, C., Zhang, Y. J. A., & Yuan, X. (2016). Advances and challenges toward a scalable cloud radio access network. IEEE Communications Magazine, 54(6), 29–35. Fan, C., Zhang, Y. J. A., & Yuan, X. (2016). Advances and challenges toward a scalable cloud radio access network. IEEE Communications Magazine, 54(6), 29–35.
70.
Zurück zum Zitat Xu, X. D., et al. (2016). A frameless network architecture for the way forward of C-RAN. China Communications, 13(6), 154–166. Xu, X. D., et al. (2016). A frameless network architecture for the way forward of C-RAN. China Communications, 13(6), 154–166.
71.
Zurück zum Zitat Sundaresan, K., et al. (2016). FluidNet: A flexible cloud-based radio access network for small cells. IEEE/ACM Transactions on Networking, 24(2), 915–928. Sundaresan, K., et al. (2016). FluidNet: A flexible cloud-based radio access network for small cells. IEEE/ACM Transactions on Networking, 24(2), 915–928.
72.
Zurück zum Zitat Sauer, M., Kobyakov, A., & Ng’Oma, A. (2009). Radio over fiber for picocellular network architectures. In 2009 IEEE LEOS annual meeting conference proceedings. Sauer, M., Kobyakov, A., & Ng’Oma, A. (2009). Radio over fiber for picocellular network architectures. In 2009 IEEE LEOS annual meeting conference proceedings.
73.
Zurück zum Zitat Monteiro, P. P., & Gameiro, A. (2014). Hybrid Fibre infrastructures for cloud radio access networks. In M. Jaworski, & M. Marciniak (Eds.), 2014 16th international conference on transparent optical networks, New York: IEEE. Monteiro, P. P., & Gameiro, A. (2014). Hybrid Fibre infrastructures for cloud radio access networks. In M. Jaworski, & M. Marciniak (Eds.), 2014 16th international conference on transparent optical networks, New York: IEEE.
74.
Zurück zum Zitat Pengyu, L., et al. (2014). The study of C-RAN application on broadband wireless access for high-speed railway. In Wireless communications, networking and mobile computing (WiCOM 2014), 10th international conference on. Pengyu, L., et al. (2014). The study of C-RAN application on broadband wireless access for high-speed railway. In Wireless communications, networking and mobile computing (WiCOM 2014), 10th international conference on.
75.
Zurück zum Zitat Kim, S. (2016). News-vendor game-based resource allocation scheme for next-generation C-RAN systems. Eurasip Journal on Wireless Communications and Networking, 2016(1), 158. Kim, S. (2016). News-vendor game-based resource allocation scheme for next-generation C-RAN systems. Eurasip Journal on Wireless Communications and Networking, 2016(1), 158.
76.
Zurück zum Zitat Kim, S. (2016). Dynamic C-RAN resource sharing scheme based on a hierarchical game approach. Eurasip Journal on Wireless Communications and Networking, 2016(1), 1–12. Kim, S. (2016). Dynamic C-RAN resource sharing scheme based on a hierarchical game approach. Eurasip Journal on Wireless Communications and Networking, 2016(1), 1–12.
77.
Zurück zum Zitat Fehske, A., et al. (2011). The global footprint of mobile communications: The ecological and economic perspective. IEEE Communications Magazine, 49(8), 55–62. Fehske, A., et al. (2011). The global footprint of mobile communications: The ecological and economic perspective. IEEE Communications Magazine, 49(8), 55–62.
78.
Zurück zum Zitat Auer, G., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49. Auer, G., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49.
79.
Zurück zum Zitat Wu, G., et al. (2015). Recent advances in energy-efficient networks and their application in 5G systems. IEEE Wireless Communications, 22(2), 145–151. Wu, G., et al. (2015). Recent advances in energy-efficient networks and their application in 5G systems. IEEE Wireless Communications, 22(2), 145–151.
80.
Zurück zum Zitat Buzzi, S., et al. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 34(4), 697–709. Buzzi, S., et al. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 34(4), 697–709.
81.
Zurück zum Zitat Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 93–100. Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 93–100.
82.
Zurück zum Zitat Chen, Y., et al. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37. Chen, Y., et al. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.
83.
Zurück zum Zitat Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101. Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101.
84.
Zurück zum Zitat Zappone, A., & Jorswieck, E. A. (2017). Energy-efficient resource allocation in future wireless networks by sequential fractional programming. Digital Signal Processing, 60, 324–337. Zappone, A., & Jorswieck, E. A. (2017). Energy-efficient resource allocation in future wireless networks by sequential fractional programming. Digital Signal Processing, 60, 324–337.
85.
Zurück zum Zitat Ericsson, L. (2011). More than 50 billion connected devices. White Paper, 2011. Ericsson, L. (2011). More than 50 billion connected devices. White Paper, 2011.
86.
Zurück zum Zitat Yousafzai, A., et al. (2017). Cloud resource allocation schemes: review, taxonomy, and opportunities. Knowledge and Information Systems, 50(2), 347–381. Yousafzai, A., et al. (2017). Cloud resource allocation schemes: review, taxonomy, and opportunities. Knowledge and Information Systems, 50(2), 347–381.
87.
Zurück zum Zitat Awoyemi, B. S., Maharaj, B. T. J., & Alfa, A. S. (2016). Solving resource allocation problems in cognitive radio networks: a survey. Eurasip Journal on Wireless Communications and Networking, 2016(1), 176. Awoyemi, B. S., Maharaj, B. T. J., & Alfa, A. S. (2016). Solving resource allocation problems in cognitive radio networks: a survey. Eurasip Journal on Wireless Communications and Networking, 2016(1), 176.
88.
Zurück zum Zitat Zappone, A., & Jorswieck, E. (2015). Energy efficiency in wireless networks via fractional programming theory. Foundations and Trends in Communications and Information Theory, 11(3–4), 185–396.MATH Zappone, A., & Jorswieck, E. (2015). Energy efficiency in wireless networks via fractional programming theory. Foundations and Trends in Communications and Information Theory, 11(3–4), 185–396.MATH
89.
Zurück zum Zitat Zhang, H., et al. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications, PP(99), 1. Zhang, H., et al. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications, PP(99), 1.
90.
Zurück zum Zitat Zhang, H., et al. (2016). Secure communications in NOMA system: Subcarrier assignment and power allocation. arXiv preprint arXiv:1801.04441, 2018. Zhang, H., et al. (2016). Secure communications in NOMA system: Subcarrier assignment and power allocation. arXiv preprint arXiv:​1801.​04441, 2018.
91.
Zurück zum Zitat Mumford, R. (2016). 5G manifesto for deployment of 5G in Europe. Norwood: Horizon House Publications Inc. Mumford, R. (2016). 5G manifesto for deployment of 5G in Europe. Norwood: Horizon House Publications Inc.
92.
Zurück zum Zitat Hassan, H. A. H., Nuaymi, L., & Pelov, A. (2013). Renewable energy in cellular networks: A survey. In 2013 IEEE online conference on green communications (OnlineGreenComm). Hassan, H. A. H., Nuaymi, L., & Pelov, A. (2013). Renewable energy in cellular networks: A survey. In 2013 IEEE online conference on green communications (OnlineGreenComm).
93.
Zurück zum Zitat Ulukus, S., et al. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381. Ulukus, S., et al. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.
94.
Zurück zum Zitat Lu, X., et al. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.MathSciNet Lu, X., et al. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.MathSciNet
95.
Zurück zum Zitat Visser, H. J., & Vullers, R. J. M. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410–1423. Visser, H. J., & Vullers, R. J. M. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410–1423.
96.
Zurück zum Zitat Liu, L., Zhang, R., & Chua, K.-C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications, 12(1), 288–300. Liu, L., Zhang, R., & Chua, K.-C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications, 12(1), 288–300.
97.
Zurück zum Zitat Gurakan, B., et al. (2013). Energy cooperation in energy harvesting communications. IEEE Transactions on Communications, 61(12), 4884–4898. Gurakan, B., et al. (2013). Energy cooperation in energy harvesting communications. IEEE Transactions on Communications, 61(12), 4884–4898.
98.
Zurück zum Zitat Chia, Y. K., Sun, S. M., & Zhang, R. (2014). Energy cooperation in cellular networks with renewable powered base stations. IEEE Transactions on Wireless Communications, 13(12), 6996–7010. Chia, Y. K., Sun, S. M., & Zhang, R. (2014). Energy cooperation in cellular networks with renewable powered base stations. IEEE Transactions on Wireless Communications, 13(12), 6996–7010.
99.
Zurück zum Zitat Huang, K. B., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.MathSciNetMATH Huang, K. B., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.MathSciNetMATH
100.
Zurück zum Zitat Ng, D. W. K., Lo, E. S., & Schober, R. (2013). Wireless information and power transfer: Energy efficiency optimization in OFDMA systems. IEEE Transactions on Wireless Communications, 12(12), 6352–6370. Ng, D. W. K., Lo, E. S., & Schober, R. (2013). Wireless information and power transfer: Energy efficiency optimization in OFDMA systems. IEEE Transactions on Wireless Communications, 12(12), 6352–6370.
101.
Zurück zum Zitat Sun, Q., Li, L., & Mao, J. (2014). Simultaneous information and power transfer scheme for energy efficient MIMO systems. IEEE Communications Letters, 18(4), 600–603. Sun, Q., Li, L., & Mao, J. (2014). Simultaneous information and power transfer scheme for energy efficient MIMO systems. IEEE Communications Letters, 18(4), 600–603.
102.
Zurück zum Zitat Guo, S., et al. (2015). Energy-efficient cooperative T for simultaneous wireless information and power transfer in clustered wireless sensor networks. IEEE Transactions on Communications, 63(11), 4405–4417. Guo, S., et al. (2015). Energy-efficient cooperative T for simultaneous wireless information and power transfer in clustered wireless sensor networks. IEEE Transactions on Communications, 63(11), 4405–4417.
103.
Zurück zum Zitat Yang, W., et al. (2016). Energy efficiency analysis and enhancement for secure transmission in SWIPT systems exploiting full duplex techniques. IET Communications, 10(14), 1712–1720. Yang, W., et al. (2016). Energy efficiency analysis and enhancement for secure transmission in SWIPT systems exploiting full duplex techniques. IET Communications, 10(14), 1712–1720.
104.
Zurück zum Zitat Ng, D. W. K., & Schober, R. (2015). Secure and green SWIPT in distributed antenna networks with limited backhaul capacity. IEEE Transactions on Wireless Communications, 14(9), 5082–5097. Ng, D. W. K., & Schober, R. (2015). Secure and green SWIPT in distributed antenna networks with limited backhaul capacity. IEEE Transactions on Wireless Communications, 14(9), 5082–5097.
105.
Zurück zum Zitat Akbar, S., et al. (2016). Simulatneous wireless information and power transfer in K-tier heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 15(8), 5804–5818. Akbar, S., et al. (2016). Simulatneous wireless information and power transfer in K-tier heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 15(8), 5804–5818.
106.
Zurück zum Zitat Dong, Y., Hossain, M. J., & Cheng, J. (2016). Joint power control and time switching for SWIPT systems with heterogeneous QoS requirements. IEEE Communications Letters, 20(2), 328–331. Dong, Y., Hossain, M. J., & Cheng, J. (2016). Joint power control and time switching for SWIPT systems with heterogeneous QoS requirements. IEEE Communications Letters, 20(2), 328–331.
107.
Zurück zum Zitat Huang, G., Zhang, Q., & Qin, J. (2015). Joint time switching and power allocation for multicarrier decode-and-forward relay networks with SWIPT. IEEE Signal Processing Letters, 22(12), 2284–2288. Huang, G., Zhang, Q., & Qin, J. (2015). Joint time switching and power allocation for multicarrier decode-and-forward relay networks with SWIPT. IEEE Signal Processing Letters, 22(12), 2284–2288.
108.
Zurück zum Zitat Lee, K., & Hong, J. P. (2016). Energy-efficient resource allocation for simultaneous information and energy transfer with imperfect channel estimation. IEEE Transactions on Vehicular Technology, 65(4), 2775–2780. Lee, K., & Hong, J. P. (2016). Energy-efficient resource allocation for simultaneous information and energy transfer with imperfect channel estimation. IEEE Transactions on Vehicular Technology, 65(4), 2775–2780.
109.
Zurück zum Zitat Sheng, M., et al. (2016). Energy efficient beamforming in MISO heterogeneous cellular networks with wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 954–968. Sheng, M., et al. (2016). Energy efficient beamforming in MISO heterogeneous cellular networks with wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 954–968.
110.
Zurück zum Zitat Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.
111.
Zurück zum Zitat Ikhlef, A. (2014). Optimal MIMO multicast transceiver design for simultaneous information and power transfer. IEEE Communications Letters, 18(12), 2153–2156. Ikhlef, A. (2014). Optimal MIMO multicast transceiver design for simultaneous information and power transfer. IEEE Communications Letters, 18(12), 2153–2156.
112.
Zurück zum Zitat Zhao, S., et al. (2014). Antenna selection for simultaneous wireless information and power transfer in MIMO systems. IEEE Communications Letters, 18(5), 789–792. Zhao, S., et al. (2014). Antenna selection for simultaneous wireless information and power transfer in MIMO systems. IEEE Communications Letters, 18(5), 789–792.
113.
Zurück zum Zitat Fang, B., et al. (2015). AN-aided secrecy precoding for SWIPT in cognitive MIMO broadcast channels. IEEE Communications Letters, 19(9), 1632–1635. Fang, B., et al. (2015). AN-aided secrecy precoding for SWIPT in cognitive MIMO broadcast channels. IEEE Communications Letters, 19(9), 1632–1635.
114.
Zurück zum Zitat Timotheou, S., et al. (2015). Spatial domain simultaneous information and power transfer for MIMO channels. IEEE Transactions on Wireless Communications, 14(8), 4115–4128. Timotheou, S., et al. (2015). Spatial domain simultaneous information and power transfer for MIMO channels. IEEE Transactions on Wireless Communications, 14(8), 4115–4128.
115.
Zurück zum Zitat Wang, S., & Wang, B. (2015). Robust secure transmit design in MIMO channels with simultaneous wireless information and power transfer. IEEE Signal Processing Letters, 22(11), 2147–2151. Wang, S., & Wang, B. (2015). Robust secure transmit design in MIMO channels with simultaneous wireless information and power transfer. IEEE Signal Processing Letters, 22(11), 2147–2151.
116.
Zurück zum Zitat Wu, W., & Wang, B. (2015). Efficient transmission solutions for MIMO wiretap channels with SWIPT. IEEE Communications Letters, 19(9), 1548–1551. Wu, W., & Wang, B. (2015). Efficient transmission solutions for MIMO wiretap channels with SWIPT. IEEE Communications Letters, 19(9), 1548–1551.
117.
Zurück zum Zitat Amarasuriya, G., Larsson, E. G., & Poor, H. V. (2016). Wireless information and power transfer in multiway massive MIMO relay networks. IEEE Transactions on Wireless Communications, 15(6), 3837–3855. Amarasuriya, G., Larsson, E. G., & Poor, H. V. (2016). Wireless information and power transfer in multiway massive MIMO relay networks. IEEE Transactions on Wireless Communications, 15(6), 3837–3855.
118.
Zurück zum Zitat Wen, Z., et al. (2016). Joint source and relay beamforming design for full-duplex MIMO AF relay SWIPT systems. IEEE Communications Letters, 20(2), 320–323. Wen, Z., et al. (2016). Joint source and relay beamforming design for full-duplex MIMO AF relay SWIPT systems. IEEE Communications Letters, 20(2), 320–323.
119.
Zurück zum Zitat Xiao, J., et al. (2016). Robust transceiver design for two-user MIMO interference channel with simultaneous wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3823–3828. Xiao, J., et al. (2016). Robust transceiver design for two-user MIMO interference channel with simultaneous wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3823–3828.
120.
Zurück zum Zitat Zhang, J., et al. (2016). Large system secrecy rate analysis for SWIPT MIMO wiretap channels. IEEE Transactions on Information Forensics and Security, 11(1), 74–85. Zhang, J., et al. (2016). Large system secrecy rate analysis for SWIPT MIMO wiretap channels. IEEE Transactions on Information Forensics and Security, 11(1), 74–85.
121.
Zurück zum Zitat Zong, Z. Y., et al. (2016). Optimal transceiver design for SWIPT in K-user MIMO interference channels. IEEE Transactions on Wireless Communications, 15(1), 430–445. Zong, Z. Y., et al. (2016). Optimal transceiver design for SWIPT in K-user MIMO interference channels. IEEE Transactions on Wireless Communications, 15(1), 430–445.
122.
Zurück zum Zitat Lam, T. T., Di Renzo, M., & Coon, J. P. (2016). System-level analysis of SWIPT MIMO cellular networks. IEEE Communications Letters, 20(10), 2015–2018. Lam, T. T., Di Renzo, M., & Coon, J. P. (2016). System-level analysis of SWIPT MIMO cellular networks. IEEE Communications Letters, 20(10), 2015–2018.
123.
Zurück zum Zitat Khandaker, M. R. A., & Wong, K. K. (2014). SWIPT in MISO multicasting systems. IEEE Wireless Communications Letters, 3(3), 277–280. Khandaker, M. R. A., & Wong, K. K. (2014). SWIPT in MISO multicasting systems. IEEE Wireless Communications Letters, 3(3), 277–280.
124.
Zurück zum Zitat Liu, L., Zhang, R., & Chua, K. C. (2014). Secrecy wireless information and power transfer with MISO beamforming. IEEE Transactions on Signal Processing, 62(7), 1850–1863.MathSciNetMATH Liu, L., Zhang, R., & Chua, K. C. (2014). Secrecy wireless information and power transfer with MISO beamforming. IEEE Transactions on Signal Processing, 62(7), 1850–1863.MathSciNetMATH
125.
Zurück zum Zitat Shi, Q., et al. (2014). Joint transmit beamforming and receive power splitting for MISO SWIPT systems. IEEE Transactions on Wireless Communications, 13(6), 3269–3280. Shi, Q., et al. (2014). Joint transmit beamforming and receive power splitting for MISO SWIPT systems. IEEE Transactions on Wireless Communications, 13(6), 3269–3280.
126.
Zurück zum Zitat Shi, Q., et al. (2014). Joint beamforming and power splitting for MISO interference channel with SWIPT: An SOCP relaxation and decentralized algorithm. IEEE Transactions on Signal Processing, 62(23), 6194–6208.MathSciNetMATH Shi, Q., et al. (2014). Joint beamforming and power splitting for MISO interference channel with SWIPT: An SOCP relaxation and decentralized algorithm. IEEE Transactions on Signal Processing, 62(23), 6194–6208.MathSciNetMATH
127.
Zurück zum Zitat Xu, J., Liu, L., & Zhang, R. (2014). Multiuser miso beamforming for simultaneous wireless information and power transfer. IEEE Transactions on Signal Processing, 62(18), 4798–4810.MathSciNetMATH Xu, J., Liu, L., & Zhang, R. (2014). Multiuser miso beamforming for simultaneous wireless information and power transfer. IEEE Transactions on Signal Processing, 62(18), 4798–4810.MathSciNetMATH
128.
Zurück zum Zitat Feng, R., et al. (2015). Robust secure transmission in MISO simultaneous wireless information and power transfer system. IEEE Transactions on Vehicular Technology, 64(1), 400–405. Feng, R., et al. (2015). Robust secure transmission in MISO simultaneous wireless information and power transfer system. IEEE Transactions on Vehicular Technology, 64(1), 400–405.
129.
Zurück zum Zitat Lee, H., et al. (2015). Optimal Beamforming designs for wireless information and power transfer in MISO interference channels. IEEE Transactions on Wireless Communications, 14(9), 4810–4821. Lee, H., et al. (2015). Optimal Beamforming designs for wireless information and power transfer in MISO interference channels. IEEE Transactions on Wireless Communications, 14(9), 4810–4821.
130.
Zurück zum Zitat Luo, S., et al. (2015). Capacity region of MISO broadcast channel for simultaneous wireless information and power transfer. IEEE Transactions on Communications, 63(10), 3856–3868. Luo, S., et al. (2015). Capacity region of MISO broadcast channel for simultaneous wireless information and power transfer. IEEE Transactions on Communications, 63(10), 3856–3868.
131.
Zurück zum Zitat Tian, M., et al. (2015). Robust AN-aided secure transmission scheme in MISO channels with simultaneous wireless information and power transfer. IEEE Signal Processing Letters, 22(6), 723–727. Tian, M., et al. (2015). Robust AN-aided secure transmission scheme in MISO channels with simultaneous wireless information and power transfer. IEEE Signal Processing Letters, 22(6), 723–727.
132.
Zurück zum Zitat Wang, F., et al. (2015). Robust transceiver optimization for power-splitting based downlink MISO SWIPT systems. IEEE Signal Processing Letters, 22(9), 1492–1496. Wang, F., et al. (2015). Robust transceiver optimization for power-splitting based downlink MISO SWIPT systems. IEEE Signal Processing Letters, 22(9), 1492–1496.
133.
Zurück zum Zitat Zhang, H., et al. (2015). Secure beamforming for SWIPT in multiuser MISO broadcast channel with confidential messages. IEEE Communications Letters, 19(8), 1347–1350. Zhang, H., et al. (2015). Secure beamforming for SWIPT in multiuser MISO broadcast channel with confidential messages. IEEE Communications Letters, 19(8), 1347–1350.
134.
Zurück zum Zitat Zhang, Q., et al. (2015). Cooperative jamming aided robust secure transmission for wireless information and power transfer in MISO channels. IEEE Transactions on Communications, 63(3), 906–915. Zhang, Q., et al. (2015). Cooperative jamming aided robust secure transmission for wireless information and power transfer in MISO channels. IEEE Transactions on Communications, 63(3), 906–915.
135.
Zurück zum Zitat Zhao, X., et al. (2015). Joint optimization of AN-aided transmission and power splitting for MISO secure communications with SWIPT. IEEE Communications Letters, 19(11), 1969–1972. Zhao, X., et al. (2015). Joint optimization of AN-aided transmission and power splitting for MISO secure communications with SWIPT. IEEE Communications Letters, 19(11), 1969–1972.
136.
Zurück zum Zitat Chu, Z., et al. (2016). Robust beamforming and power splitting design in MISO SWIPT downlink system. IET Communications, 10(6), 691–698. Chu, Z., et al. (2016). Robust beamforming and power splitting design in MISO SWIPT downlink system. IET Communications, 10(6), 691–698.
137.
Zurück zum Zitat Shi, Q., et al. (2016). Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming. IEEE Transactions on Signal Processing, 64(4), 842–854.MathSciNetMATH Shi, Q., et al. (2016). Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming. IEEE Transactions on Signal Processing, 64(4), 842–854.MathSciNetMATH
138.
Zurück zum Zitat Fang, Z., Yuan, X., & Wang, X. (2014). Distributed energy beamforming for simultaneous wireless information and power transfer in the two-way relay channel. IEEE Signal Processing Letters, 22(6), 656–660. Fang, Z., Yuan, X., & Wang, X. (2014). Distributed energy beamforming for simultaneous wireless information and power transfer in the two-way relay channel. IEEE Signal Processing Letters, 22(6), 656–660.
139.
Zurück zum Zitat Li, G., et al. (2014). High-rate relay beamforming for simultaneous wireless information and power transfer. Electronics Letters, 50(23), 1759–1761. Li, G., et al. (2014). High-rate relay beamforming for simultaneous wireless information and power transfer. Electronics Letters, 50(23), 1759–1761.
140.
Zurück zum Zitat Li, Q., Zhang, Q., & Qin, J. (2014). Beamforming in non-regenerative two-way multi-antenna relay networks for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 13(10), 5509–5520. Li, Q., Zhang, Q., & Qin, J. (2014). Beamforming in non-regenerative two-way multi-antenna relay networks for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 13(10), 5509–5520.
141.
Zurück zum Zitat Li, Q., Zhang, Q., & Qin, J. (2014). Secure relay beamforming for simultaneous wireless information and power transfer in nonregenerative relay networks. IEEE Transactions on Vehicular Technology, 63(5), 2462–2467. Li, Q., Zhang, Q., & Qin, J. (2014). Secure relay beamforming for simultaneous wireless information and power transfer in nonregenerative relay networks. IEEE Transactions on Vehicular Technology, 63(5), 2462–2467.
142.
Zurück zum Zitat Chen, H., et al. (2015). Distributed power splitting for SWIPT in relay interference channels using game theory. IEEE Transactions on Wireless Communications, 14(1), 410–420. Chen, H., et al. (2015). Distributed power splitting for SWIPT in relay interference channels using game theory. IEEE Transactions on Wireless Communications, 14(1), 410–420.
143.
Zurück zum Zitat Ding, K., Yu, Y., & Lin, H. (2015). Analysis of RWPT relays for intermediate-range simultaneous wireless information and power transfer system. Progress in Electromagnetics Research Letters, 57, 111–116. Ding, K., Yu, Y., & Lin, H. (2015). Analysis of RWPT relays for intermediate-range simultaneous wireless information and power transfer system. Progress in Electromagnetics Research Letters, 57, 111–116.
144.
Zurück zum Zitat Song, M., et al. (2015). Probabilistic-constrained simultaneous wireless information and power transfer for multiple-relay networks. Journal of Communications, 10(7), 497–502. Song, M., et al. (2015). Probabilistic-constrained simultaneous wireless information and power transfer for multiple-relay networks. Journal of Communications, 10(7), 497–502.
145.
Zurück zum Zitat Di, X., et al. (2016). Simultaneous wireless information and power transfer in two-hop OFDM decode-and-forward relay networks. KSII Transactions on Internet and Information Systems, 10(1), 152–167. Di, X., et al. (2016). Simultaneous wireless information and power transfer in two-hop OFDM decode-and-forward relay networks. KSII Transactions on Internet and Information Systems, 10(1), 152–167.
146.
Zurück zum Zitat Huang, G., & Tang, D. (2016). Wireless information and power transfer in two-way OFDM amplify-and-forward relay networks. IEEE Communications Letters, 20(8), 1563–1566. Huang, G., & Tang, D. (2016). Wireless information and power transfer in two-way OFDM amplify-and-forward relay networks. IEEE Communications Letters, 20(8), 1563–1566.
147.
Zurück zum Zitat Liu, Y. (2016). Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Communications Letters, 20(4), 784–787. Liu, Y. (2016). Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Communications Letters, 20(4), 784–787.
148.
Zurück zum Zitat Yang, Z., et al. (2016). Outage performance of cognitive relay networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3828–3833. Yang, Z., et al. (2016). Outage performance of cognitive relay networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3828–3833.
149.
Zurück zum Zitat Zhang, D., et al. (2016). Two-hop co-located robust precoding design in radio SWIPT relay networks. Journal of Communications, 11(1), 71–76. Zhang, D., et al. (2016). Two-hop co-located robust precoding design in radio SWIPT relay networks. Journal of Communications, 11(1), 71–76.
150.
Zurück zum Zitat Zhang, G., et al. (2016). Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multipleoutput relaying systems. IET Communications, 10(7), 796–804. Zhang, G., et al. (2016). Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multipleoutput relaying systems. IET Communications, 10(7), 796–804.
151.
Zurück zum Zitat Ding, Z. G., & Poor, H. V. (2016). Multi-user SWIPT cooperative networks: Is the max-min criterion still diversity-optimal? IEEE Transactions on Wireless Communications, 15(1), 553–567. Ding, Z. G., & Poor, H. V. (2016). Multi-user SWIPT cooperative networks: Is the max-min criterion still diversity-optimal? IEEE Transactions on Wireless Communications, 15(1), 553–567.
152.
Zurück zum Zitat Liu, Y., et al. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953. Liu, Y., et al. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.
153.
Zurück zum Zitat Mishra, D., De, S., & Chiasserini, C. F. (2016). Joint optimization schemes for cooperative wireless information and power transfer over rician channels. IEEE Transactions on Communications, 64(2), 554–571. Mishra, D., De, S., & Chiasserini, C. F. (2016). Joint optimization schemes for cooperative wireless information and power transfer over rician channels. IEEE Transactions on Communications, 64(2), 554–571.
154.
Zurück zum Zitat Mohjazi, L., Muhaidat, S., & Dianati, M. (2016). Performance analysis of differential modulation in SWIPT cooperative networks. IEEE Signal Processing Letters, 23(5), 620–624. Mohjazi, L., Muhaidat, S., & Dianati, M. (2016). Performance analysis of differential modulation in SWIPT cooperative networks. IEEE Signal Processing Letters, 23(5), 620–624.
155.
Zurück zum Zitat Boshkovska, E., et al. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19(12), 2082–2085. Boshkovska, E., et al. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19(12), 2082–2085.
156.
Zurück zum Zitat Ng, D. W. K., Lo, E. S., & Schober, R. (2016). Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3166–3184. Ng, D. W. K., Lo, E. S., & Schober, R. (2016). Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3166–3184.
157.
Zurück zum Zitat Yin, S., & Qu, Z. (2016). Resource allocation in multiuser OFDM systems with wireless information and power transfer. IEEE Communications Letters, 20(3), 594–597. Yin, S., & Qu, Z. (2016). Resource allocation in multiuser OFDM systems with wireless information and power transfer. IEEE Communications Letters, 20(3), 594–597.
158.
Zurück zum Zitat Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In 2010 IEEE international symposium on information theory. Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In 2010 IEEE international symposium on information theory.
159.
Zurück zum Zitat Ding, Z., et al. (2015). Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Communications Magazine, 53(4), 86–93. Ding, Z., et al. (2015). Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Communications Magazine, 53(4), 86–93.
160.
Zurück zum Zitat Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.
161.
Zurück zum Zitat Zhang, R., Maunder, R. G., & Hanzo, L. (2015). Wireless information and power transfer: From scientific hypothesis to engineering practice. IEEE Communications Magazine, 53(8), 99–105. Zhang, R., Maunder, R. G., & Hanzo, L. (2015). Wireless information and power transfer: From scientific hypothesis to engineering practice. IEEE Communications Magazine, 53(8), 99–105.
162.
Zurück zum Zitat Zheng, G., et al. (2014). Information and energy cooperation in cognitive radio networks. IEEE Transactions on Signal Processing, 62(9), 2290–2303.MathSciNetMATH Zheng, G., et al. (2014). Information and energy cooperation in cognitive radio networks. IEEE Transactions on Signal Processing, 62(9), 2290–2303.MathSciNetMATH
163.
Zurück zum Zitat Krikidis, I., et al. (2014). A low complexity antenna switching for joint wireless information and energy transfer in MIMO relay channels. IEEE Transactions on Communications, 62(5), 1577–1587. Krikidis, I., et al. (2014). A low complexity antenna switching for joint wireless information and energy transfer in MIMO relay channels. IEEE Transactions on Communications, 62(5), 1577–1587.
164.
Zurück zum Zitat Timotheou, S., & Krikidis, I. (2013). Joint information and energy transfer in the spatial domain with channel estimation error. In 2013 IEEE online conference on green communications (OnlineGreenComm). Timotheou, S., & Krikidis, I. (2013). Joint information and energy transfer in the spatial domain with channel estimation error. In 2013 IEEE online conference on green communications (OnlineGreenComm).
165.
Zurück zum Zitat Larsson, E. G., et al. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195. Larsson, E. G., et al. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.
166.
Zurück zum Zitat Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144. Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144.
167.
Zurück zum Zitat Soh, Y. S., et al. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 840–850. Soh, Y. S., et al. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 840–850.
168.
Zurück zum Zitat Björnson, E., Sanguinetti, L., & Kountouris, M. (2016). Deploying dense networks for maximal energy efficiency: Small cells meet massive MIMO. IEEE Journal on Selected Areas in Communications, 34(4), 832–847. Björnson, E., Sanguinetti, L., & Kountouris, M. (2016). Deploying dense networks for maximal energy efficiency: Small cells meet massive MIMO. IEEE Journal on Selected Areas in Communications, 34(4), 832–847.
169.
Zurück zum Zitat Niu, Z., et al. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Communications Magazine, 48(11), 74–79. Niu, Z., et al. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Communications Magazine, 48(11), 74–79.
170.
Zurück zum Zitat Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12(5), 2126–2136. Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12(5), 2126–2136.
171.
Zurück zum Zitat Alaba, F. A., et al. (2017). Internet of things security: A survey. Journal of Network and Computer Applications, 88, 10–28. Alaba, F. A., et al. (2017). Internet of things security: A survey. Journal of Network and Computer Applications, 88, 10–28.
172.
Zurück zum Zitat Wang, F., et al. (2017). Recent advances in the internet of things: Multiple perspectives. Iete Technical Review, 34(2), 122–132. Wang, F., et al. (2017). Recent advances in the internet of things: Multiple perspectives. Iete Technical Review, 34(2), 122–132.
173.
Zurück zum Zitat Friess, P. (2013). Internet of things: Converging technologies for smart environments and integrated ecosystems. River Publishers. Friess, P. (2013). Internet of things: Converging technologies for smart environments and integrated ecosystems. River Publishers.
174.
Zurück zum Zitat Evans, D. (2012). The internet of things how the next evolution of the internet is changing everything (April 2011). White Paper by Cisco Internet Business Solutions Group (IBSG). Evans, D. (2012). The internet of things how the next evolution of the internet is changing everything (April 2011). White Paper by Cisco Internet Business Solutions Group (IBSG).
175.
Zurück zum Zitat Ejaz, W., ul Hasan, N., & Kim, H. S. (2011). Spectrum sensing in cognitive radio mobile ad hoc networks: A survey. 한국통신학회 학술대회논문집, pp. 376–377. Ejaz, W., ul Hasan, N., & Kim, H. S. (2011). Spectrum sensing in cognitive radio mobile ad hoc networks: A survey. 한국통신학회 학술대회논문집, pp. 376–377.
176.
Zurück zum Zitat Cheng, P., et al. (2012). Resource allocation for cognitive networks with D2D communication: An evolutionary approach. In 2012 IEEE wireless communications and networking conference (WCNC). Cheng, P., et al. (2012). Resource allocation for cognitive networks with D2D communication: An evolutionary approach. In 2012 IEEE wireless communications and networking conference (WCNC).
177.
Zurück zum Zitat Gandotra, P., Kumar Jha, R., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29. Gandotra, P., Kumar Jha, R., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29.
178.
Zurück zum Zitat Sedidi, R., & Kumar, A. (2016). Key exchange protocols for secure device-to-device (D2D) communication in 5G. In A. L. Beylot et al. (Eds.), 2016 wireless days. Sedidi, R., & Kumar, A. (2016). Key exchange protocols for secure device-to-device (D2D) communication in 5G. In A. L. Beylot et al. (Eds.), 2016 wireless days.
179.
Zurück zum Zitat Wang, C. X., et al. (2016). Recent advances and future challenges for massive MIMO channel measurements and models. Science China-Information Sciences, 59(2), 16. Wang, C. X., et al. (2016). Recent advances and future challenges for massive MIMO channel measurements and models. Science China-Information Sciences, 59(2), 16.
180.
Zurück zum Zitat Ali, E., et al. (2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering, 18(6), 753–772. Ali, E., et al. (2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering, 18(6), 753–772.
181.
Zurück zum Zitat Nam, J., et al. (2012). Joint spatial division and multiplexing: Realizing massive MIMO gains with limited channel state information. In 2012 46th annual conference on information sciences and systems (CISS). Nam, J., et al. (2012). Joint spatial division and multiplexing: Realizing massive MIMO gains with limited channel state information. In 2012 46th annual conference on information sciences and systems (CISS).
182.
Zurück zum Zitat Ku, Y. J., et al. (2017). 5G radio access network design with the fog paradigm: Confluence of communications and computing. IEEE Communications Magazine, 55(4), 46–52. Ku, Y. J., et al. (2017). 5G radio access network design with the fog paradigm: Confluence of communications and computing. IEEE Communications Magazine, 55(4), 46–52.
183.
Zurück zum Zitat Kim, S. (2017). Fog radio access network system control scheme based on the embedded game model. Eurasip Journal on Wireless Communications and Networking, 2017(1), 113. Kim, S. (2017). Fog radio access network system control scheme based on the embedded game model. Eurasip Journal on Wireless Communications and Networking, 2017(1), 113.
184.
Zurück zum Zitat Peng, M. G., & Zhang, K. C. (2016). Recent advances in fog radio access networks: performance analysis and radio resource allocation. IEEE Access, 4, 5003–5009. Peng, M. G., & Zhang, K. C. (2016). Recent advances in fog radio access networks: performance analysis and radio resource allocation. IEEE Access, 4, 5003–5009.
185.
Zurück zum Zitat Zhang, H. J., et al. (2017). Fog radio access networks: mobility management, interference mitigation, and resource optimization. IEEE Wireless Communications, 24(6), 120–127. Zhang, H. J., et al. (2017). Fog radio access networks: mobility management, interference mitigation, and resource optimization. IEEE Wireless Communications, 24(6), 120–127.
186.
Zurück zum Zitat Islam, S. M. R., et al. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742. Islam, S. M. R., et al. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742.
187.
Zurück zum Zitat Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, E98B(3), 403–414. Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, E98B(3), 403–414.
188.
189.
Zurück zum Zitat Zhang, H., et al. Resource allocation in NOMA based fog radio access networks. Zhang, H., et al. Resource allocation in NOMA based fog radio access networks.
190.
Zurück zum Zitat Marotta, M. A., et al. (2015). Resource sharing in heterogeneous cloud radio access networks. IEEE Wireless Communications, 22(3), 74–82. Marotta, M. A., et al. (2015). Resource sharing in heterogeneous cloud radio access networks. IEEE Wireless Communications, 22(3), 74–82.
Metadaten
Titel
Green transmission for C-RAN based on SWIPT in 5G: a review
verfasst von
Fadhil Mukhlif
Kamarul Ariffin Bin Noordin
Ali Mohammed Mansoor
Zarinah Mohd Kasirun
Publikationsdatum
27.03.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1718-z

Weitere Artikel der Ausgabe 5/2019

Wireless Networks 5/2019 Zur Ausgabe

Neuer Inhalt