Skip to main content

2019 | OriginalPaper | Buchkapitel

Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment

verfasst von : Rui Ma, Chunmiao Zheng, Chongxuan Liu

Erschienen in: Environmental Geology

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Absorption
The process in which a dissolved substance is incorporated into the interior of a solid grain.
Adsorption
The adhesion of a chemical species onto the solid surface.
Contaminant fate and transport
The ultimate state of contaminants and the processes by which the contaminants migrate through the subsurface.
Groundwater
Water that exists in liquid form beneath the land surface, filling the cracks, voids, and pore spaces in earth materials. The subsurface strata that store and transmit groundwater are referred to as aquifers.
Mass transfer
The interaction and exchange of solutes in mobile state with those in immobile state through either physical or chemical processes.
Radioactive waste
A waste product that contains radioactive material. The majority of radioactive waste is “low-level” waste, which has low levels of radioactivity per unit of mass or volume. Depending on the type and nature of radioactive wastes, it could take hours to thousands of years to diminish their radioactivity.
Reactive transport model
The mathematical model that couples hydrogeological, geochemical, and biological processes to simulate and predict the contaminant fate and transport in the subsurface.
Sorption/desorption
Sorption is a general term used to describe both adsorption and absorption by which a dissolved substance is attached to the surface or incorporated into the interior of a solid grain. The reverse process from the sorbed phase to the dissolved phase is referred to as desorption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bodvarsson GS, Boyle W, Patterson R, Williams D (1999) Overview of scientific investigations at Yucca Mountain – the potential repository for high-level nuclear waste. J Contam Hydrol 38:3–24CrossRef Bodvarsson GS, Boyle W, Patterson R, Williams D (1999) Overview of scientific investigations at Yucca Mountain – the potential repository for high-level nuclear waste. J Contam Hydrol 38:3–24CrossRef
2.
Zurück zum Zitat Gephart RE (2003) Hanford: a conversation about nuclear waste and cleanup. Battelle Press, Columbus Gephart RE (2003) Hanford: a conversation about nuclear waste and cleanup. Battelle Press, Columbus
3.
Zurück zum Zitat Ahearne JF (1997) Radioactive waste: the size of the problem. Phys Today 50(6):24–29CrossRef Ahearne JF (1997) Radioactive waste: the size of the problem. Phys Today 50(6):24–29CrossRef
4.
Zurück zum Zitat Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2:335–341CrossRef Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2:335–341CrossRef
5.
Zurück zum Zitat Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research, DOE/ER-0547T. U.S. Department of Energy, Washington, DC Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research, DOE/ER-0547T. U.S. Department of Energy, Washington, DC
6.
Zurück zum Zitat Bradley DJ, Frank CW, Mikerin Y (1996) Nuclear contamination from weapons complexes in the former Soviet Union and the United States. Phys Today 49:40–45CrossRef Bradley DJ, Frank CW, Mikerin Y (1996) Nuclear contamination from weapons complexes in the former Soviet Union and the United States. Phys Today 49:40–45CrossRef
7.
Zurück zum Zitat Whicker FW, Shaw G, Voigt G, Holm E (1999) Radioactive contamination: state of the science and its application to predictive models. Environ Pollut 100:133–149CrossRef Whicker FW, Shaw G, Voigt G, Holm E (1999) Radioactive contamination: state of the science and its application to predictive models. Environ Pollut 100:133–149CrossRef
8.
Zurück zum Zitat Abdelouas A, Lutze W, Nuttall HE (1999) Uranium contamination in the subsurface; Characterization and remediation. Rev Mineral Geochem 38:433–473 Abdelouas A, Lutze W, Nuttall HE (1999) Uranium contamination in the subsurface; Characterization and remediation. Rev Mineral Geochem 38:433–473
9.
Zurück zum Zitat Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modeling of uranium (VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68(18):3621–3641CrossRef Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modeling of uranium (VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68(18):3621–3641CrossRef
10.
Zurück zum Zitat Ewing RC (2004) Environmental impact of the nuclear fuel cycle. In: Gieré R, Stille P (eds) Energy, waste and the environment: a geochemical perspective. Geological society special publication, vol 236. The Geological Society, London, pp 7–23 Ewing RC (2004) Environmental impact of the nuclear fuel cycle. In: Gieré R, Stille P (eds) Energy, waste and the environment: a geochemical perspective. Geological society special publication, vol 236. The Geological Society, London, pp 7–23
11.
Zurück zum Zitat Lee D, Walton MR, Megio JL (2005) Biological and chemical interactions with U(VI) during anaerobic enrichment in the presence of iron oxide coated quartz. Water Res 39:4363–4374CrossRef Lee D, Walton MR, Megio JL (2005) Biological and chemical interactions with U(VI) during anaerobic enrichment in the presence of iron oxide coated quartz. Water Res 39:4363–4374CrossRef
12.
Zurück zum Zitat Zhu C, Anderson G (2002) Environmental applications of geochemical modeling. Cambridge University Press, LondonCrossRef Zhu C, Anderson G (2002) Environmental applications of geochemical modeling. Cambridge University Press, LondonCrossRef
13.
Zurück zum Zitat Renshaw J, Butchins LJC, Livens FR, May I, Charnock JM, Lloyd JR (2005) Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environ Sci Technol 39:5657–5660CrossRef Renshaw J, Butchins LJC, Livens FR, May I, Charnock JM, Lloyd JR (2005) Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environ Sci Technol 39:5657–5660CrossRef
14.
Zurück zum Zitat Fishlock D (1994) The dirtiest place on earth. New Sci 1913:34–37 Fishlock D (1994) The dirtiest place on earth. New Sci 1913:34–37
15.
Zurück zum Zitat Zachara JM, Serne J, Freshley M, Mann F, Anderson F, Wood M, Jones T, Myers D (2007) Geochemical processes controlling migration of tank wastes in Hanford’s vadose zone. Vadose Zone J 6:985–1003CrossRef Zachara JM, Serne J, Freshley M, Mann F, Anderson F, Wood M, Jones T, Myers D (2007) Geochemical processes controlling migration of tank wastes in Hanford’s vadose zone. Vadose Zone J 6:985–1003CrossRef
16.
Zurück zum Zitat Gee GM, Oostrom M, Freshley MD, Rockhold ML, Zachara JM (2007) Hanford site vadose zone studies: an overview. Vadose Zone J 6:899–905CrossRef Gee GM, Oostrom M, Freshley MD, Rockhold ML, Zachara JM (2007) Hanford site vadose zone studies: an overview. Vadose Zone J 6:899–905CrossRef
17.
Zurück zum Zitat Um W, Serne RJ, Brown CF, Last GV (2007) U(VI) adsorption on aquifer sediments at the Hanford site. J Contam Hydrol 93:255–269CrossRef Um W, Serne RJ, Brown CF, Last GV (2007) U(VI) adsorption on aquifer sediments at the Hanford site. J Contam Hydrol 93:255–269CrossRef
18.
Zurück zum Zitat Hartman MJ, Morasch LF, Webber WD (2007) Hanford site groundwater monitoring for fiscal year 2006. Richland, Washington, Pacific Northwest National Laboratory, Richland Hartman MJ, Morasch LF, Webber WD (2007) Hanford site groundwater monitoring for fiscal year 2006. Richland, Washington, Pacific Northwest National Laboratory, Richland
19.
Zurück zum Zitat Hartman MJ, Webber WD, Fluor Hanford, Inc (2008) Hanford site groundwater monitoring for fiscal year 2007.DOE/RL-2008-01, Revision 0. Pacific Northwest National Laboratory, Richland Hartman MJ, Webber WD, Fluor Hanford, Inc (2008) Hanford site groundwater monitoring for fiscal year 2007.DOE/RL-2008-01, Revision 0. Pacific Northwest National Laboratory, Richland
20.
Zurück zum Zitat Phillips H, Watson DB, Roh Y (2007) Uranium deposition in a weathered fractured saprolite/shale. Environ Sci Technol 41:7653–7660CrossRef Phillips H, Watson DB, Roh Y (2007) Uranium deposition in a weathered fractured saprolite/shale. Environ Sci Technol 41:7653–7660CrossRef
21.
Zurück zum Zitat Wu W, Carley J, Fienen M, Mehlhorn T, Lowe K, Nyman J, Luo J, Gentile ME, Rajan R, Wagner D, Hickey RF, Gu B, Watson D, Cirpka O, Kitanidis P, Jardine J, Criddle CS (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone. Environ Sci Technol 40(12):3978–3985CrossRef Wu W, Carley J, Fienen M, Mehlhorn T, Lowe K, Nyman J, Luo J, Gentile ME, Rajan R, Wagner D, Hickey RF, Gu B, Watson D, Cirpka O, Kitanidis P, Jardine J, Criddle CS (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone. Environ Sci Technol 40(12):3978–3985CrossRef
22.
Zurück zum Zitat Wu W, Carley J, Luo J, Ginder-Vogel MA, Cardenas E, Leigh MB, Hwang C, Kelly SD, Ruan C, Wu L, Nostrand JV, Gentry T, Lowe K, Mehlhorn TL, Caroll S, Luo W, Fields MW, Gu B, Watson D, Kemner K, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle C (2007) In situ bioreduction of uranium(VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ Sci Technol 41:5716–5723CrossRef Wu W, Carley J, Luo J, Ginder-Vogel MA, Cardenas E, Leigh MB, Hwang C, Kelly SD, Ruan C, Wu L, Nostrand JV, Gentry T, Lowe K, Mehlhorn TL, Caroll S, Luo W, Fields MW, Gu B, Watson D, Kemner K, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle C (2007) In situ bioreduction of uranium(VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ Sci Technol 41:5716–5723CrossRef
23.
Zurück zum Zitat Carlton WH (1997) Assessment of neptunium, americium, and curium in the Savannah River Site Environment. Westinghouse Savannah River Co., Aiken, WSRC-TR-97-00266CrossRef Carlton WH (1997) Assessment of neptunium, americium, and curium in the Savannah River Site Environment. Westinghouse Savannah River Co., Aiken, WSRC-TR-97-00266CrossRef
24.
Zurück zum Zitat Dai M, Kelley JM, Buesseler KO (2002) Sources and migration of plutonium in groundwater at the Savannah River site. Environ Sci Technol 36:3690–3699CrossRef Dai M, Kelley JM, Buesseler KO (2002) Sources and migration of plutonium in groundwater at the Savannah River site. Environ Sci Technol 36:3690–3699CrossRef
25.
Zurück zum Zitat Westinghouse Savannah River Co (1998) The Savannah River Site’s groundwater monitoring program: third quarter 1997. U.S. Department of Energy, Washington, DC, ESH-EMS-970490 Westinghouse Savannah River Co (1998) The Savannah River Site’s groundwater monitoring program: third quarter 1997. U.S. Department of Energy, Washington, DC, ESH-EMS-970490
27.
Zurück zum Zitat Yabusaki SB, Fang Y, Long PE, Resch CT, Peacock AD, Komlos J, Jaffed PR, Morrison SJ, Dayvault RD, White DC, Anderson RT (2007) Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes. J Contam Hydrol 93:216–235CrossRef Yabusaki SB, Fang Y, Long PE, Resch CT, Peacock AD, Komlos J, Jaffed PR, Morrison SJ, Dayvault RD, White DC, Anderson RT (2007) Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes. J Contam Hydrol 93:216–235CrossRef
28.
Zurück zum Zitat Read D, Ross D, Sims RJ (1998) The migration of uranium through Clashach sandstone: the role of low molecular weight organics in enhancing radionuclide transport. J Contam Hydrol 35:235–248CrossRef Read D, Ross D, Sims RJ (1998) The migration of uranium through Clashach sandstone: the role of low molecular weight organics in enhancing radionuclide transport. J Contam Hydrol 35:235–248CrossRef
29.
Zurück zum Zitat Bethke CM, Brady PV (2000) How the Kd approach undermines group water cleanup. Ground Water 38(3):435–443CrossRef Bethke CM, Brady PV (2000) How the Kd approach undermines group water cleanup. Ground Water 38(3):435–443CrossRef
30.
Zurück zum Zitat Glynn PD (2003) Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities; implications for reactive transport modeling and performance assessments of nuclear waste disposal sites; reactive transport modeling in the geosciences. Comput Geosci 29(3):331–349CrossRef Glynn PD (2003) Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities; implications for reactive transport modeling and performance assessments of nuclear waste disposal sites; reactive transport modeling in the geosciences. Comput Geosci 29(3):331–349CrossRef
31.
Zurück zum Zitat Zhu C (2003) A case against Kd-based transport models: natural attenuation at a mill tailings site; reactive transport modeling in the geosciences. Comput Geosci 29(3):351–359CrossRef Zhu C (2003) A case against Kd-based transport models: natural attenuation at a mill tailings site; reactive transport modeling in the geosciences. Comput Geosci 29(3):351–359CrossRef
32.
Zurück zum Zitat Bond DL, Davis JA, Zachara JM (2008) Uranium(VI) release from contaminated vadose zone sediments: estimation of potential contributions from dissolution and desorption, Chapter 14. In: Barnett MO, Kent DB (eds) Adsorption of metals to Geomedia II. Elsevier, Amsterdam, pp 375–416 Bond DL, Davis JA, Zachara JM (2008) Uranium(VI) release from contaminated vadose zone sediments: estimation of potential contributions from dissolution and desorption, Chapter 14. In: Barnett MO, Kent DB (eds) Adsorption of metals to Geomedia II. Elsevier, Amsterdam, pp 375–416
33.
Zurück zum Zitat Catalano JG, Mckinley JP, Zachara JM, Heald SM, Smith SC, Brown GE (2006) Changes in uranium speciation through a depth sequence of contaminated Hanford sediments. Environ Sci Technol 40(8):2517–2524CrossRef Catalano JG, Mckinley JP, Zachara JM, Heald SM, Smith SC, Brown GE (2006) Changes in uranium speciation through a depth sequence of contaminated Hanford sediments. Environ Sci Technol 40(8):2517–2524CrossRef
35.
Zurück zum Zitat Luo J, Weber F, Cirpka OA, Wu W, Nyman JL, Carley J, Jardine PM, Criddle CS, Kitanidis PK (2007) Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria. J Contam Hydrol 92:129–148CrossRef Luo J, Weber F, Cirpka OA, Wu W, Nyman JL, Carley J, Jardine PM, Criddle CS, Kitanidis PK (2007) Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria. J Contam Hydrol 92:129–148CrossRef
36.
Zurück zum Zitat Keeney-Kennicutt WL, Morse JW (1985) The redox chemistry of Pu(V)O2+ interaction with common mineral surfaces in dilute solutions and seawater. Geochim Cosmochim Acta 49(12):2577–2588CrossRef Keeney-Kennicutt WL, Morse JW (1985) The redox chemistry of Pu(V)O2+ interaction with common mineral surfaces in dilute solutions and seawater. Geochim Cosmochim Acta 49(12):2577–2588CrossRef
37.
Zurück zum Zitat Sanchez AL, Murray JW, Sibley TH (1985) The adsorption of plutonium on goethite. Geochim Cosmochim Acta 49:2297–2307CrossRef Sanchez AL, Murray JW, Sibley TH (1985) The adsorption of plutonium on goethite. Geochim Cosmochim Acta 49:2297–2307CrossRef
38.
Zurück zum Zitat Duff MC, Hunter DB, Triay IR, Bertsch PM, Reed DT, Sutton SR, Shea-McCarthy G, Kitten J, Eng P, Chipera SJ, Vaniman DT (1999) Mineral associations and average oxidation states of Sorbed Pu on Tuff. Environ Sci Technol 33:2163–2169CrossRef Duff MC, Hunter DB, Triay IR, Bertsch PM, Reed DT, Sutton SR, Shea-McCarthy G, Kitten J, Eng P, Chipera SJ, Vaniman DT (1999) Mineral associations and average oxidation states of Sorbed Pu on Tuff. Environ Sci Technol 33:2163–2169CrossRef
39.
Zurück zum Zitat Novikov P, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314:638–641CrossRef Novikov P, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314:638–641CrossRef
40.
Zurück zum Zitat Kim JI (1993) The chemical behavior of transuranium elements and barrier functions in natural aquifer systems. Mater Res Soc Symp Proc 294:3–21CrossRef Kim JI (1993) The chemical behavior of transuranium elements and barrier functions in natural aquifer systems. Mater Res Soc Symp Proc 294:3–21CrossRef
41.
Zurück zum Zitat Kim JI (1994) Actinide colloids in natural aquifer systems. Mater Res Soc Bull 19:47–53CrossRef Kim JI (1994) Actinide colloids in natural aquifer systems. Mater Res Soc Bull 19:47–53CrossRef
42.
Zurück zum Zitat Braithwaite A, Livens FR, Richardson S, Howe MT (1997) Kinetically controlled release of uranium from soils. Eur J Soil Sci 48:661–673CrossRef Braithwaite A, Livens FR, Richardson S, Howe MT (1997) Kinetically controlled release of uranium from soils. Eur J Soil Sci 48:661–673CrossRef
43.
Zurück zum Zitat Barnett MO, Jardine PM, Brooks SC, Selim HM (2000) Adsorption and transport of uranium(VI) in subsurface media. Soil Sci Soc Am J 64:908–917CrossRef Barnett MO, Jardine PM, Brooks SC, Selim HM (2000) Adsorption and transport of uranium(VI) in subsurface media. Soil Sci Soc Am J 64:908–917CrossRef
44.
Zurück zum Zitat Baik MH, Cho WJ, Hahn PS (2004) Sorption of U(VI) onto granite surfaces: a kinetic approach. J Radioanal Nucl Chem 260:495–502CrossRef Baik MH, Cho WJ, Hahn PS (2004) Sorption of U(VI) onto granite surfaces: a kinetic approach. J Radioanal Nucl Chem 260:495–502CrossRef
45.
Zurück zum Zitat Qafoku NP, Zachara JM, Liu C, Gassman PL, Qafoku OS, Smith SC (2005) Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment. Environ Sci Technol 39:3157–3165CrossRef Qafoku NP, Zachara JM, Liu C, Gassman PL, Qafoku OS, Smith SC (2005) Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment. Environ Sci Technol 39:3157–3165CrossRef
47.
Zurück zum Zitat Liu C, Shi S, Zachara JM (2009) Kinetics of uranium(VI) desorption from contaminated sediments: effect of geochemical conditions and model evaluation. Environ Sci Technol 43(17):6560–6566CrossRef Liu C, Shi S, Zachara JM (2009) Kinetics of uranium(VI) desorption from contaminated sediments: effect of geochemical conditions and model evaluation. Environ Sci Technol 43(17):6560–6566CrossRef
48.
Zurück zum Zitat Arai Y, Marcus MA, Tamura N, Davis JA, Zachara JM (2007) Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site. Environ Sci Technol 41:4633–4639CrossRef Arai Y, Marcus MA, Tamura N, Davis JA, Zachara JM (2007) Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site. Environ Sci Technol 41:4633–4639CrossRef
49.
Zurück zum Zitat Stubbs JE, Veblen LA, Elbert DC, Zachara JM, Davis JA, Veblen DR (2009) Newly recognized hosts for uranium in the Hanford site vadose zone. Geochim Cosmochim Acta 73(6):1563–1576CrossRef Stubbs JE, Veblen LA, Elbert DC, Zachara JM, Davis JA, Veblen DR (2009) Newly recognized hosts for uranium in the Hanford site vadose zone. Geochim Cosmochim Acta 73(6):1563–1576CrossRef
50.
Zurück zum Zitat Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium (VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58(24):5465–5478CrossRef Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium (VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58(24):5465–5478CrossRef
51.
Zurück zum Zitat Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70:1379–1387CrossRef Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70:1379–1387CrossRef
52.
Zurück zum Zitat Dong W, Ball WP, Liu C, Wang Z, Stone AT, Bai J, Zachara JM (2005) Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment. Environ Sci Technol 39:7949–7955CrossRef Dong W, Ball WP, Liu C, Wang Z, Stone AT, Bai J, Zachara JM (2005) Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment. Environ Sci Technol 39:7949–7955CrossRef
54.
Zurück zum Zitat Liu C, Zachara JM, Qafoku OS, McKinley JP, Heald SM, Wang Z (2004) Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site, WA. Geochim Cosmochim Acta 68:4519–4537CrossRef Liu C, Zachara JM, Qafoku OS, McKinley JP, Heald SM, Wang Z (2004) Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site, WA. Geochim Cosmochim Acta 68:4519–4537CrossRef
55.
Zurück zum Zitat McKinley JP, Zachara JM, Liu C, Heald SM (2006) Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford site, Washington. Geochim Cosmochim Acta 70:1873–1887CrossRef McKinley JP, Zachara JM, Liu C, Heald SM (2006) Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford site, Washington. Geochim Cosmochim Acta 70:1873–1887CrossRef
56.
Zurück zum Zitat Gόmez P, Garralόn A, Buil B, Turrero MJ, Sánchez L, de la Cruz B (2006) Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Sci Total Environ 366:295–309CrossRef Gόmez P, Garralόn A, Buil B, Turrero MJ, Sánchez L, de la Cruz B (2006) Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Sci Total Environ 366:295–309CrossRef
57.
Zurück zum Zitat Abdelouas A, Lutze W, Nuttall E (1998) Chemical reactions of uranium in ground water at a mill tailings site. J Contam Hydrol 34:343–361CrossRef Abdelouas A, Lutze W, Nuttall E (1998) Chemical reactions of uranium in ground water at a mill tailings site. J Contam Hydrol 34:343–361CrossRef
58.
Zurück zum Zitat Abdelouas A, Lutze W, Gong W, Nuttall EH, Strietelmeier BA, Travis BJ (2000) Biological reduction of uranium in groundwater and subsurface soil. Sci Total Environ 250:21–35CrossRef Abdelouas A, Lutze W, Gong W, Nuttall EH, Strietelmeier BA, Travis BJ (2000) Biological reduction of uranium in groundwater and subsurface soil. Sci Total Environ 250:21–35CrossRef
59.
Zurück zum Zitat Ohnuki T, Kozai N, Samadfam M, Yasuda R, Yamamoto S, Narumi K, Naramoto H, Murakami T (2004) The formation of autunite (Ca(UO2)2(PO4)2·nH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite. Chem Geol 211:1–14CrossRef Ohnuki T, Kozai N, Samadfam M, Yasuda R, Yamamoto S, Narumi K, Naramoto H, Murakami T (2004) The formation of autunite (Ca(UO2)2(PO4)2·nH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite. Chem Geol 211:1–14CrossRef
60.
Zurück zum Zitat Martin AJ, Crusius J, Jay McNee J, Yanful EK (2003) The mobility of radium-226 and trace metals in pre-oxidized subaqueous uranium mill tailings. Appl Geochem 18:1095–1110CrossRef Martin AJ, Crusius J, Jay McNee J, Yanful EK (2003) The mobility of radium-226 and trace metals in pre-oxidized subaqueous uranium mill tailings. Appl Geochem 18:1095–1110CrossRef
61.
Zurück zum Zitat Landa ER (2004) Uranium mill tailings: nuclear waste and natural laboratory for geochemical and radioecological investigations. J Environ Radioact 77:1–27CrossRef Landa ER (2004) Uranium mill tailings: nuclear waste and natural laboratory for geochemical and radioecological investigations. J Environ Radioact 77:1–27CrossRef
62.
Zurück zum Zitat Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289CrossRef Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289CrossRef
63.
Zurück zum Zitat Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing Bacteria. Biotechnol Bioeng 80(6):637–649CrossRef Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing Bacteria. Biotechnol Bioeng 80(6):637–649CrossRef
64.
Zurück zum Zitat Wu W, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Carroll S, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Watson D, Cirpka OA, Fendorf S, Zhou J, Kitanidis P, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2: U(VI) reduction and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995CrossRef Wu W, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Carroll S, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Watson D, Cirpka OA, Fendorf S, Zhou J, Kitanidis P, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2: U(VI) reduction and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995CrossRef
65.
Zurück zum Zitat Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microb 69(10):5884–5891CrossRef Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microb 69(10):5884–5891CrossRef
66.
Zurück zum Zitat Zhong L, Liu C, Zachara JM, Kennedy DW, Szecsody JE, Wood BD (2005) Oxidative remobilization of biogenic uranium (IV) precipitates: effects of Iron (II) and pH. J Environ Qual 34(5):1763–1771CrossRef Zhong L, Liu C, Zachara JM, Kennedy DW, Szecsody JE, Wood BD (2005) Oxidative remobilization of biogenic uranium (IV) precipitates: effects of Iron (II) and pH. J Environ Qual 34(5):1763–1771CrossRef
67.
Zurück zum Zitat Wan J, Tokunaga TK, Brodie E, Wang Z, Zheng Z, Herman D, Hazen T, Firestone MK, Sutton SR (2005) Reoxidation of bioreduced uranium under reducing conditions. Environ Sci Technol 39:6162–6169CrossRef Wan J, Tokunaga TK, Brodie E, Wang Z, Zheng Z, Herman D, Hazen T, Firestone MK, Sutton SR (2005) Reoxidation of bioreduced uranium under reducing conditions. Environ Sci Technol 39:6162–6169CrossRef
68.
Zurück zum Zitat Zheng C, Wang PP (1999) MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. U.S. Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, 202 pp. http://hydro.geo.ua.edu/mt3d/ Zheng C, Wang PP (1999) MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. U.S. Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, 202 pp. http://​hydro.​geo.​ua.​edu/​mt3d/​
69.
Zurück zum Zitat Prommer H, Barry DA, Zheng C (2003) MODFLOW/MT3DMS based reactive multicomponent transport modeling. Ground Water 41(2):247–257CrossRef Prommer H, Barry DA, Zheng C (2003) MODFLOW/MT3DMS based reactive multicomponent transport modeling. Ground Water 41(2):247–257CrossRef
71.
Zurück zum Zitat Parkhurst DL, Kipp KL, Engesgaard P, Charlton SC (2004) PHAST – a program for simulating ground-water flow, solute transport and multicomponent geochemical reactions. USGS Tech Methods 6-A8:154 pp Parkhurst DL, Kipp KL, Engesgaard P, Charlton SC (2004) PHAST – a program for simulating ground-water flow, solute transport and multicomponent geochemical reactions. USGS Tech Methods 6-A8:154 pp
72.
Zurück zum Zitat Davis JA, Payne TE, Waite TD (2002) Simulating the pH and pCO2 dependence of uranium(VI) adsorption by a weathered schist with surface complexation models. In: Geochemistry of soil radionuclides. Soil Science Society of America Inc., Madison, pp 61–68 Davis JA, Payne TE, Waite TD (2002) Simulating the pH and pCO2 dependence of uranium(VI) adsorption by a weathered schist with surface complexation models. In: Geochemistry of soil radionuclides. Soil Science Society of America Inc., Madison, pp 61–68
73.
Zurück zum Zitat Ma R, Zheng C, Prommer H, Greskowiak J, Liu C, Zachara J, Rockhold M (2010) A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions. Water Resour Res 46:W05509. https://doi.org/10.1029/2009WR008168CrossRef Ma R, Zheng C, Prommer H, Greskowiak J, Liu C, Zachara J, Rockhold M (2010) A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions. Water Resour Res 46:W05509. https://​doi.​org/​10.​1029/​2009WR008168CrossRef
74.
Zurück zum Zitat Greskowiak J, Prommer H, Liu C, Post VEA, Ma R, Zheng C, Zachara JM (2010) Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system. Water Resour Res 46:W09509. https://doi.org/10.1029/2009WR008781 Greskowiak J, Prommer H, Liu C, Post VEA, Ma R, Zheng C, Zachara JM (2010) Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system. Water Resour Res 46:W09509. https://​doi.​org/​10.​1029/​2009WR008781
75.
Zurück zum Zitat Fang Y, Yabusaki SB, Morrison SJ, Amonette JP, Long PE (2009) Multicomponent reactive transport modeling of uranium bioremediation field experiments. Geochim Cosmochim Acta 73:6029–6051CrossRef Fang Y, Yabusaki SB, Morrison SJ, Amonette JP, Long PE (2009) Multicomponent reactive transport modeling of uranium bioremediation field experiments. Geochim Cosmochim Acta 73:6029–6051CrossRef
76.
Zurück zum Zitat Gelhar LW (1986) Stochastic subsurface hydrology – from theory to applications. Water Resour Res 22(9):135S–145SCrossRef Gelhar LW (1986) Stochastic subsurface hydrology – from theory to applications. Water Resour Res 22(9):135S–145SCrossRef
77.
Zurück zum Zitat Dagan G (1989) Flow and transport in porous formations. Springer, New YorkCrossRef Dagan G (1989) Flow and transport in porous formations. Springer, New YorkCrossRef
78.
Zurück zum Zitat Barber LB (1994) Sorption of chlorobenzenes to Cape Cod aquifer sediments. Environ Sci Technol 28:890–897CrossRef Barber LB (1994) Sorption of chlorobenzenes to Cape Cod aquifer sediments. Environ Sci Technol 28:890–897CrossRef
79.
Zurück zum Zitat Friedly JC, Davis JA, Kent DB (1995) Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments. Water Resour Res 31:2783–2794CrossRef Friedly JC, Davis JA, Kent DB (1995) Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments. Water Resour Res 31:2783–2794CrossRef
80.
Zurück zum Zitat Kleineidam S, Rugner H, Grathwohl P (1999) Impact of grain scale heterogeneity on slow sorption kinetics. Environ Toxicol Chem 18:1673–1678CrossRef Kleineidam S, Rugner H, Grathwohl P (1999) Impact of grain scale heterogeneity on slow sorption kinetics. Environ Toxicol Chem 18:1673–1678CrossRef
82.
Zurück zum Zitat Descourvières C, Hartog N, Patterson BM, Oldham C, Prommer H (2010) Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer. Appl Geochem 25:261–275CrossRef Descourvières C, Hartog N, Patterson BM, Oldham C, Prommer H (2010) Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer. Appl Geochem 25:261–275CrossRef
83.
Zurück zum Zitat Liu C, Zachara JM, Smith SC, McKinley JP, Ainsworth CC (2003) Desorption kinetics of radiocesium from the subsurface sediments at Hanford site, USA. Geochim Cosmochim Acta 67:2893–2912CrossRef Liu C, Zachara JM, Smith SC, McKinley JP, Ainsworth CC (2003) Desorption kinetics of radiocesium from the subsurface sediments at Hanford site, USA. Geochim Cosmochim Acta 67:2893–2912CrossRef
84.
Zurück zum Zitat McKinley JP, Zachara JM, Smith SC, Liu C (2007) Cation exchange reactions controlling desorption of 90Sr2+ from coarse-grained contaminated sediments from the Hanford formation, Washington. Geochim Cosmochim Acta 71(2):305–325CrossRef McKinley JP, Zachara JM, Smith SC, Liu C (2007) Cation exchange reactions controlling desorption of 90Sr2+ from coarse-grained contaminated sediments from the Hanford formation, Washington. Geochim Cosmochim Acta 71(2):305–325CrossRef
85.
Zurück zum Zitat Zachara JM, Ainsworth CC, Brown GE Jr, Catalano JG, McKinley JP, Qafoku O, Smith SC, Szecsody JE, Traina SJ, Warner JA (2004) Chromium speciation and mobility in a high level nuclear waste vadose zone plume. Geochim Cosmochim Acta 68(1):13–30CrossRef Zachara JM, Ainsworth CC, Brown GE Jr, Catalano JG, McKinley JP, Qafoku O, Smith SC, Szecsody JE, Traina SJ, Warner JA (2004) Chromium speciation and mobility in a high level nuclear waste vadose zone plume. Geochim Cosmochim Acta 68(1):13–30CrossRef
86.
Zurück zum Zitat Zheng C, Gorelick SM (2003) Analysis of solute transport in flow fields influenced by preferential flow paths at the decimeter scale. Ground Water 41(2):142–155CrossRef Zheng C, Gorelick SM (2003) Analysis of solute transport in flow fields influenced by preferential flow paths at the decimeter scale. Ground Water 41(2):142–155CrossRef
87.
Zurück zum Zitat Zachara J, Freshley M, Andersen G, DePaolo D, Fredrickson J, Haggerty R, Kent D, Konopka A, Lichtner P, Liu C, McKinley J, Rockhold M, Rubin Y, Szecsody J, Versteeg R, Ward A, Williams B, Zheng C (2007) Integrated Field-Scale Subsurface Research Challenge, Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: an IFC Focused on Hanford’s 300 Area Uranium Plume. Proposal to the U.S. Department of Energy Office of Biological and Environmental Research LAB 06-16 – Environmental Remediation Science Program. Pacific Northwest National Laboratory, Richland, Washington Zachara J, Freshley M, Andersen G, DePaolo D, Fredrickson J, Haggerty R, Kent D, Konopka A, Lichtner P, Liu C, McKinley J, Rockhold M, Rubin Y, Szecsody J, Versteeg R, Ward A, Williams B, Zheng C (2007) Integrated Field-Scale Subsurface Research Challenge, Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: an IFC Focused on Hanford’s 300 Area Uranium Plume. Proposal to the U.S. Department of Energy Office of Biological and Environmental Research LAB 06-16 – Environmental Remediation Science Program. Pacific Northwest National Laboratory, Richland, Washington
88.
Zurück zum Zitat Morrison SJ, Tripathi VS, Spangler RR (1995) Coupled reaction/transport of a chemical barrier for controlling U(VI) contamination in groundwater. J Contam Hydrol 17:347–363CrossRef Morrison SJ, Tripathi VS, Spangler RR (1995) Coupled reaction/transport of a chemical barrier for controlling U(VI) contamination in groundwater. J Contam Hydrol 17:347–363CrossRef
89.
Zurück zum Zitat Zhu C, Hu FQ, Burden DS (2001) Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site. J Contam Hydrol 52:85–108CrossRef Zhu C, Hu FQ, Burden DS (2001) Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site. J Contam Hydrol 52:85–108CrossRef
90.
Zurück zum Zitat Bain JG, Mayer KU, Blowes DW, Frind EO, Molson JWH, Kahnt R, Jenk U (2001) Modeling the closure-related geochemical evolution of groundwater at a former uranium mine. J Contam Hydrol 52:109–135CrossRef Bain JG, Mayer KU, Blowes DW, Frind EO, Molson JWH, Kahnt R, Jenk U (2001) Modeling the closure-related geochemical evolution of groundwater at a former uranium mine. J Contam Hydrol 52:109–135CrossRef
92.
Zurück zum Zitat Feehley CE, Zheng C, Molz FJ (2000) A dual-domain mass transfer approach for modeling solute mass transfer in heterogeneous porous media, application to the MADE site. Water Resour Res 36:2501–2515CrossRef Feehley CE, Zheng C, Molz FJ (2000) A dual-domain mass transfer approach for modeling solute mass transfer in heterogeneous porous media, application to the MADE site. Water Resour Res 36:2501–2515CrossRef
95.
Zurück zum Zitat Zheng C, Bianchi M, Gorelick SM (2011) Lessons learned from 25 years of research at the MADE site. Ground Water 49(5): 649-662CrossRef Zheng C, Bianchi M, Gorelick SM (2011) Lessons learned from 25 years of research at the MADE site. Ground Water 49(5): 649-662CrossRef
96.
Zurück zum Zitat Seeboonruang U, Ginn TR (2006) Upscaling heterogeneity in aquifer reactivity via exposure-time concept: forward model. J Contam Hydrol 84:127–154CrossRef Seeboonruang U, Ginn TR (2006) Upscaling heterogeneity in aquifer reactivity via exposure-time concept: forward model. J Contam Hydrol 84:127–154CrossRef
98.
Zurück zum Zitat Heβe F, Radu FA, Thullner M, Attinger S (2009) Upscaling of the advection–diffusion–reaction equation with Monod reaction. Adv Water Resour 32:1336–1351CrossRef Heβe F, Radu FA, Thullner M, Attinger S (2009) Upscaling of the advection–diffusion–reaction equation with Monod reaction. Adv Water Resour 32:1336–1351CrossRef
100.
Zurück zum Zitat Wang F, Bright J (2004) Scale effect and calibration of contaminant transport models. Ground Water 42(5):760–766CrossRef Wang F, Bright J (2004) Scale effect and calibration of contaminant transport models. Ground Water 42(5):760–766CrossRef
Metadaten
Titel
Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment
verfasst von
Rui Ma
Chunmiao Zheng
Chongxuan Liu
Copyright-Jahr
2019
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4939-8787-0_203