Skip to main content

2020 | OriginalPaper | Buchkapitel

Guaranteed Output Delivery Comes Free in Honest Majority MPC

verfasst von : Vipul Goyal, Yifan Song, Chenzhi Zhu

Erschienen in: Advances in Cryptology – CRYPTO 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the communication complexity of unconditionally secure MPC with guaranteed output delivery over point-to-point channels for corruption threshold \(t < n/2\), assuming the existence of a public broadcast channel. We ask the question: “is it possible to construct MPC in this setting s.t. the communication complexity per multiplication gate is linear in the number of parties?” While a number of works have focused on reducing the communication complexity in this setting, the answer to the above question has remained elusive until now. We also focus on the concrete communication complexity of evaluating each multiplication gate.
We resolve the above question in the affirmative by providing an MPC with communication complexity \(O(Cn\phi )\) bits (ignoring fixed terms which are independent of the circuit) where \(\phi \) is the length of an element in the field, C is the size of the (arithmetic) circuit, n is the number of parties. This is the first construction where the asymptotic communication complexity matches the best-known semi-honest protocol. This represents a strict improvement over the previously best-known communication complexity of \(O(C(n\phi \,+\,\kappa )\,+\,D_Mn^2\kappa )\) bits, where \(\kappa \) is the security parameter and \(D_M\) is the multiplicative depth of the circuit. Furthermore, the concrete communication complexity per multiplication gate is 5.5 field elements per party in the best case and 7.5 field elements in the worst case when one or more corrupted parties have been identified. This also roughly matches the best-known semi-honest protocol, which requires 5.5 field elements per gate.
The above also yields the first secure-with-abort MPC protocol with the same cost per multiplication gate as the best-known semi-honest protocol. Our main result is obtained by compiling the secure-with-abort MPC protocol into a fully secure one.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
[ABF+17]
Zurück zum Zitat Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries breaking the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 843–862. IEEE (2017) Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries breaking the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 843–862. IEEE (2017)
[BGIN19]
Zurück zum Zitat Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party computation via sublinear distributed zero-knowledge proofs. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, pp. 869–886. Association for Computing Machinery, New York (2019) Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party computation via sublinear distributed zero-knowledge proofs. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, pp. 869–886. Association for Computing Machinery, New York (2019)
[BOGW88]
Zurück zum Zitat Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988) Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)
[CCD88]
Zurück zum Zitat Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM (1988) Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM (1988)
[CDVdG87]
[FLNW17]
[GIP+14]
Zurück zum Zitat Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014, pp. 495–504. ACM, New York (2014) Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014, pp. 495–504. ACM, New York (2014)
[GLOS20]
Zurück zum Zitat Goyal, V., Li, H., Ostrovsky, R., Song, Y.: Fast honest-majority MPC protocols. Manuscript (2020) Goyal, V., Li, H., Ostrovsky, R., Song, Y.: Fast honest-majority MPC protocols. Manuscript (2020)
[GMW87]
Zurück zum Zitat Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987) Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)
[LN17]
Zurück zum Zitat Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 259–276. ACM (2017) Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 259–276. ACM (2017)
[RBO89]
Zurück zum Zitat Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM (1989) Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM (1989)
[Yao82]
Zurück zum Zitat Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, 1982, SFCS’08, pp. 160–164. IEEE (1982) Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, 1982, SFCS’08, pp. 160–164. IEEE (1982)
Metadaten
Titel
Guaranteed Output Delivery Comes Free in Honest Majority MPC
verfasst von
Vipul Goyal
Yifan Song
Chenzhi Zhu
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-56880-1_22

Premium Partner