Skip to main content

2019 | OriginalPaper | Buchkapitel

Hardware architectures for the fast Fourier transform

verfasst von : Mario Garrido, Fahad Qureshi, Jarmo Takala, Oscar Gustafsson

Erschienen in: Handbook of Signal Processing Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fast Fourier transform (FFT) is a widely used algorithm in signal processing applications. FFT hardware architectures are designed to meet the requirements of the most demanding applications in terms of performance, circuit area, and/or power consumption. This chapter summarizes the research on FFT hardware architectures by presenting the FFT algorithms, the building blocks in FFT hardware architectures, the architectures themselves, and the bit reversal algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmed, T., Garrido, M., Gustafsson, O.: A 512-point 8-parallel pipelined feedforward FFT for WPAN. In: Proc. Asilomar Conf. Signals Syst. Comput., pp. 981–984 (2011) Ahmed, T., Garrido, M., Gustafsson, O.: A 512-point 8-parallel pipelined feedforward FFT for WPAN. In: Proc. Asilomar Conf. Signals Syst. Comput., pp. 981–984 (2011)
2.
Zurück zum Zitat Andraka, R.: A survey of CORDIC algorithms for FPGA based computers. In: Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 191–200. ACM (1998) Andraka, R.: A survey of CORDIC algorithms for FPGA based computers. In: Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 191–200. ACM (1998)
3.
Zurück zum Zitat Argüello, F., Bruguera, J., Doallo, R., Zapata, E.: Parallel architecture for fast transforms with trigonometric kernel. IEEE Trans. Parallel Distrib. Syst. 5(10), 1091–1099 (1994)CrossRef Argüello, F., Bruguera, J., Doallo, R., Zapata, E.: Parallel architecture for fast transforms with trigonometric kernel. IEEE Trans. Parallel Distrib. Syst. 5(10), 1091–1099 (1994)CrossRef
4.
Zurück zum Zitat Bi, G., Jones, E.: A pipelined FFT processor for word-sequential data. IEEE Trans. Acoust., Speech, Signal Process. 37(12), 1982–1985 (1989)CrossRef Bi, G., Jones, E.: A pipelined FFT processor for word-sequential data. IEEE Trans. Acoust., Speech, Signal Process. 37(12), 1982–1985 (1989)CrossRef
5.
Zurück zum Zitat Boullis, N., Tisserand, A.: Some optimizations of hardware multiplication by constant matrices. IEEE Trans. Comput. 54(10), 1271–1282 (2005)CrossRef Boullis, N., Tisserand, A.: Some optimizations of hardware multiplication by constant matrices. IEEE Trans. Comput. 54(10), 1271–1282 (2005)CrossRef
6.
Zurück zum Zitat Burrus, C., Eschenbacher, P.: An in-place, in-order prime factor FFT algorithm. Proc. IEEE Int. Symp. Circuits Syst. 29(4), 806–817 (1981)MATH Burrus, C., Eschenbacher, P.: An in-place, in-order prime factor FFT algorithm. Proc. IEEE Int. Symp. Circuits Syst. 29(4), 806–817 (1981)MATH
7.
Zurück zum Zitat Chakraborty, T.S., Chakrabarti, S.: On output reorder buffer design of bit reversed pipelined continuous data FFT architecture. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 1132–1135. IEEE (2008) Chakraborty, T.S., Chakrabarti, S.: On output reorder buffer design of bit reversed pipelined continuous data FFT architecture. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 1132–1135. IEEE (2008)
8.
Zurück zum Zitat Chan, S.C., Yiu, P.M.: An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients. IEEE Signal Process. Lett. 9(10), 322–325 (2002)CrossRef Chan, S.C., Yiu, P.M.: An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients. IEEE Signal Process. Lett. 9(10), 322–325 (2002)CrossRef
9.
Zurück zum Zitat Chang, Y.N.: An efficient VLSI architecture for normal I/O order pipeline FFT design. IEEE Trans. Circuits Syst. II 55(12), 1234–1238 (2008)CrossRef Chang, Y.N.: An efficient VLSI architecture for normal I/O order pipeline FFT design. IEEE Trans. Circuits Syst. II 55(12), 1234–1238 (2008)CrossRef
10.
Zurück zum Zitat Chang, Y.N.: Design of an 8192-point sequential I/O FFT chip. In: Proc. World Congress Eng. Comp. Science, vol. II (2012) Chang, Y.N.: Design of an 8192-point sequential I/O FFT chip. In: Proc. World Congress Eng. Comp. Science, vol. II (2012)
11.
Zurück zum Zitat Chen, J., Hu, J., Lee, S., Sobelman, G.E.: Hardware efficient mixed radix-25/16/9 FFT for LTE systems. IEEE Trans. VLSI Syst. 23(2), 221–229 (2015)CrossRef Chen, J., Hu, J., Lee, S., Sobelman, G.E.: Hardware efficient mixed radix-25/16/9 FFT for LTE systems. IEEE Trans. VLSI Syst. 23(2), 221–229 (2015)CrossRef
12.
Zurück zum Zitat Cheng, C., Yu, F.: An optimum architecture for continuous-flow parallel bit reversal. IEEE Signal Process. Lett. 22(12), 2334–2338 (2015)CrossRef Cheng, C., Yu, F.: An optimum architecture for continuous-flow parallel bit reversal. IEEE Signal Process. Lett. 22(12), 2334–2338 (2015)CrossRef
13.
Zurück zum Zitat Cho, S.I., Kang, K.M.: A low-complexity 128-point mixed-radix FFT processor for MB-OFDM UWB systems. ETRI J. 32(1), 1–10 (2010)CrossRef Cho, S.I., Kang, K.M.: A low-complexity 128-point mixed-radix FFT processor for MB-OFDM UWB systems. ETRI J. 32(1), 1–10 (2010)CrossRef
14.
Zurück zum Zitat Cho, S.I., Kang, K.M., Choi, S.S.: Implementation of 128-point fast Fourier transform processor for UWB systems. In: Proc. Int. Wireless Comm. Mobile Comp. Conf., pp. 210–213 (2008) Cho, S.I., Kang, K.M., Choi, S.S.: Implementation of 128-point fast Fourier transform processor for UWB systems. In: Proc. Int. Wireless Comm. Mobile Comp. Conf., pp. 210–213 (2008)
15.
Zurück zum Zitat Cohen, D.: Simplified control of FFT hardware. IEEE Trans. Acoust., Speech, Signal Process. 24(6), 577–579 (1976)CrossRef Cohen, D.: Simplified control of FFT hardware. IEEE Trans. Acoust., Speech, Signal Process. 24(6), 577–579 (1976)CrossRef
16.
Zurück zum Zitat Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetCrossRef Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetCrossRef
17.
Zurück zum Zitat Cortés, A., Vélez, I., Sevillano, J.F.: Radix r k FFTs: Matricial representation and SDC/SDF pipeline implementation. IEEE Trans. Signal Process. 57(7), 2824–2839 (2009)MathSciNetCrossRef Cortés, A., Vélez, I., Sevillano, J.F.: Radix r k FFTs: Matricial representation and SDC/SDF pipeline implementation. IEEE Trans. Signal Process. 57(7), 2824–2839 (2009)MathSciNetCrossRef
18.
Zurück zum Zitat Dempster, A.G., Macleod, M.D.: Multiplication by two integers using the minimum number of adders. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1814–1817 (2005) Dempster, A.G., Macleod, M.D.: Multiplication by two integers using the minimum number of adders. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1814–1817 (2005)
19.
Zurück zum Zitat Despain, A.M.: Fourier transform computers using CORDIC iterations. IEEE Trans. Comput. C-23, 993–1001 (1974)CrossRef Despain, A.M.: Fourier transform computers using CORDIC iterations. IEEE Trans. Comput. C-23, 993–1001 (1974)CrossRef
20.
Zurück zum Zitat Duhamel, P., Hollmann, H.: ’Split radix’ FFT algorithm. Electron. Lett. 20(1), 14–16 (1984)CrossRef Duhamel, P., Hollmann, H.: ’Split radix’ FFT algorithm. Electron. Lett. 20(1), 14–16 (1984)CrossRef
21.
Zurück zum Zitat Edelman, A., Heller, S., Johnsson, L.: Index transformation algorithms in a linear algebra framework. IEEE Trans. Parallel Distrib. Syst. 5(12), 1302–1309 (1994)CrossRef Edelman, A., Heller, S., Johnsson, L.: Index transformation algorithms in a linear algebra framework. IEEE Trans. Parallel Distrib. Syst. 5(12), 1302–1309 (1994)CrossRef
22.
Zurück zum Zitat Fraser, D.: Array permutation by index-digit permutation. J. Assoc. Comp. Machinery (ACM) 23(2), 298–309 (1976)MathSciNetCrossRef Fraser, D.: Array permutation by index-digit permutation. J. Assoc. Comp. Machinery (ACM) 23(2), 298–309 (1976)MathSciNetCrossRef
23.
Zurück zum Zitat Garrido, M.: Efficient hardware architectures for the computation of the FFT and other related signal processing algorithms in real time. Ph.D. thesis, Universidad Politécnica de Madrid (2009) Garrido, M.: Efficient hardware architectures for the computation of the FFT and other related signal processing algorithms in real time. Ph.D. thesis, Universidad Politécnica de Madrid (2009)
24.
Zurück zum Zitat Garrido, M.: A new representation of FFT algorithms using triangular matrices. IEEE Trans. Circuits Syst. I 63(10), 1737–1745 (2016)MathSciNetCrossRef Garrido, M.: A new representation of FFT algorithms using triangular matrices. IEEE Trans. Circuits Syst. I 63(10), 1737–1745 (2016)MathSciNetCrossRef
25.
Zurück zum Zitat Garrido, M., Acevedo, M., Ehliar, A., Gustafsson, O.: Challenging the limits of FFT performance on FPGAs. In: Int. Symp. Integrated Circuits, pp. 172–175 (2014) Garrido, M., Acevedo, M., Ehliar, A., Gustafsson, O.: Challenging the limits of FFT performance on FPGAs. In: Int. Symp. Integrated Circuits, pp. 172–175 (2014)
26.
Zurück zum Zitat Garrido, M., Andersson, R., Qureshi, F., Gustafsson, O.: Multiplierless unity-gain SDF FFTs. IEEE Trans. VLSI Syst. 24(9), 3003–3007 (2016)CrossRef Garrido, M., Andersson, R., Qureshi, F., Gustafsson, O.: Multiplierless unity-gain SDF FFTs. IEEE Trans. VLSI Syst. 24(9), 3003–3007 (2016)CrossRef
27.
Zurück zum Zitat Garrido, M., Grajal, J.: Efficient memoryless CORDIC for FFT computation. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 2, pp. 113–116 (2007) Garrido, M., Grajal, J.: Efficient memoryless CORDIC for FFT computation. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 2, pp. 113–116 (2007)
28.
Zurück zum Zitat Garrido, M., Grajal, J., Gustafsson, O.: Optimum circuits for bit reversal. IEEE Trans. Circuits Syst. II 58(10), 657–661 (2011)CrossRef Garrido, M., Grajal, J., Gustafsson, O.: Optimum circuits for bit reversal. IEEE Trans. Circuits Syst. II 58(10), 657–661 (2011)CrossRef
29.
Zurück zum Zitat Garrido, M., Grajal, J., Sánchez, M.A., Gustafsson, O.: Pipelined radix-2k feedforward FFT architectures. IEEE Trans. VLSI Syst. 21(1), 23–32 (2013)CrossRef Garrido, M., Grajal, J., Sánchez, M.A., Gustafsson, O.: Pipelined radix-2k feedforward FFT architectures. IEEE Trans. VLSI Syst. 21(1), 23–32 (2013)CrossRef
30.
Zurück zum Zitat Garrido, M., Gustafsson, O., Grajal, J.: Accurate rotations based on coefficient scaling. IEEE Trans. Circuits Syst. II 58(10), 662–666 (2011)CrossRef Garrido, M., Gustafsson, O., Grajal, J.: Accurate rotations based on coefficient scaling. IEEE Trans. Circuits Syst. II 58(10), 662–666 (2011)CrossRef
31.
Zurück zum Zitat Garrido, M., Huang, S.J., Chen, S.G.: Feedforward FFT hardware architectures based on rotator allocation. IEEE Trans. Circuits Syst. I 65(2), 581–592 (2018)CrossRef Garrido, M., Huang, S.J., Chen, S.G.: Feedforward FFT hardware architectures based on rotator allocation. IEEE Trans. Circuits Syst. I 65(2), 581–592 (2018)CrossRef
32.
Zurück zum Zitat Garrido, M., Huang, S.J., Chen, S.G., Gustafsson, O.: The serial commutator (SC) FFT. IEEE Trans. Circuits Syst. II 63(10), 974–978 (2016)CrossRef Garrido, M., Huang, S.J., Chen, S.G., Gustafsson, O.: The serial commutator (SC) FFT. IEEE Trans. Circuits Syst. II 63(10), 974–978 (2016)CrossRef
33.
Zurück zum Zitat Garrido, M., Källström, P., Kumm, M., Gustafsson, O.: CORDIC II: A new improved CORDIC algorithm. IEEE Trans. Circuits Syst. II 63(2), 186–190 (2016)CrossRef Garrido, M., Källström, P., Kumm, M., Gustafsson, O.: CORDIC II: A new improved CORDIC algorithm. IEEE Trans. Circuits Syst. II 63(2), 186–190 (2016)CrossRef
34.
Zurück zum Zitat Garrido, M., Qureshi, F., Gustafsson, O.: Low-complexity multiplierless constant rotators based on combined coefficient selection and shift-and-add implementation (CCSSI). IEEE Trans. Circuits Syst. I 61(7), 2002–2012 (2014)CrossRef Garrido, M., Qureshi, F., Gustafsson, O.: Low-complexity multiplierless constant rotators based on combined coefficient selection and shift-and-add implementation (CCSSI). IEEE Trans. Circuits Syst. I 61(7), 2002–2012 (2014)CrossRef
35.
Zurück zum Zitat Garrido, M., Sánchez, M., López-Vallejo, M., Grajal, J.: A 4096-point radix-4 memory-based FFT using DSP slices. IEEE Trans. VLSI Syst. 25(1), 375–379 (2017)CrossRef Garrido, M., Sánchez, M., López-Vallejo, M., Grajal, J.: A 4096-point radix-4 memory-based FFT using DSP slices. IEEE Trans. VLSI Syst. 25(1), 375–379 (2017)CrossRef
36.
Zurück zum Zitat Glittas, A.X., Sellathurai, M., Lakshminarayanan, G.: A normal I/O order radix-2 FFT architecture to process twin data streams for MIMO. IEEE Trans. VLSI Syst. 24(6), 2402–2406 (2016)CrossRef Glittas, A.X., Sellathurai, M., Lakshminarayanan, G.: A normal I/O order radix-2 FFT architecture to process twin data streams for MIMO. IEEE Trans. VLSI Syst. 24(6), 2402–2406 (2016)CrossRef
37.
Zurück zum Zitat Gold, B., Rader, C.M.: Digital Processing of Signals. New York: McGraw Hill (1969)MATH Gold, B., Rader, C.M.: Digital Processing of Signals. New York: McGraw Hill (1969)MATH
38.
Zurück zum Zitat Good, I.J.: The interaction algorithm and practical Fourier analysis. J. Royal Statistical Society B 20(2), 361–372 (1958)MathSciNetMATH Good, I.J.: The interaction algorithm and practical Fourier analysis. J. Royal Statistical Society B 20(2), 361–372 (1958)MathSciNetMATH
39.
Zurück zum Zitat Granata, J., Conner, M., Tolimieri, R.: Recursive fast algorithm and the role of the tensor product. IEEE Trans. Signal Process. 40(12), 2921–2930 (1992)CrossRef Granata, J., Conner, M., Tolimieri, R.: Recursive fast algorithm and the role of the tensor product. IEEE Trans. Signal Process. 40(12), 2921–2930 (1992)CrossRef
40.
Zurück zum Zitat Gustafsson, O.: A difference based adder graph heuristic for multiple constant multiplication problems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1097–1100. IEEE (2007) Gustafsson, O.: A difference based adder graph heuristic for multiple constant multiplication problems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1097–1100. IEEE (2007)
41.
Zurück zum Zitat Gustafsson, O.: On lifting-based fixed-point complex multiplications and rotations. In: Proc. IEEE Symp. Comput. Arithmetic (2017) Gustafsson, O.: On lifting-based fixed-point complex multiplications and rotations. In: Proc. IEEE Symp. Comput. Arithmetic (2017)
42.
Zurück zum Zitat Gustafsson, O., Dempster, A.G., Johansson, K., Macleod, M.D., Wanhammar, L.: Simplified design of constant coefficient multipliers. Circuits Syst. Signal Process. 25(2), 225–251 (2006)MathSciNetCrossRef Gustafsson, O., Dempster, A.G., Johansson, K., Macleod, M.D., Wanhammar, L.: Simplified design of constant coefficient multipliers. Circuits Syst. Signal Process. 25(2), 225–251 (2006)MathSciNetCrossRef
43.
Zurück zum Zitat Gustafsson, O., Qureshi, F.: Addition aware quantization for low complexity and high precision constant multiplication. IEEE Signal Processing Letters 17(2), 173–176 (2010)CrossRef Gustafsson, O., Qureshi, F.: Addition aware quantization for low complexity and high precision constant multiplication. IEEE Signal Processing Letters 17(2), 173–176 (2010)CrossRef
44.
Zurück zum Zitat Gustafsson, O., Wanhammar, L.: Arithmetic. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018) Gustafsson, O., Wanhammar, L.: Arithmetic. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)
45.
Zurück zum Zitat He, S., Torkelson, M.: Design and implementation of a 1024-point pipeline FFT processor. pp. 131–134 (1998) He, S., Torkelson, M.: Design and implementation of a 1024-point pipeline FFT processor. pp. 131–134 (1998)
46.
Zurück zum Zitat Hsiao, C.F., Chen, Y., Lee, C.Y.: A generalized mixed-radix algorithm for memory-based FFT processors. IEEE Trans. Circuits Syst. II 57(1), 26–30 (2010)CrossRef Hsiao, C.F., Chen, Y., Lee, C.Y.: A generalized mixed-radix algorithm for memory-based FFT processors. IEEE Trans. Circuits Syst. II 57(1), 26–30 (2010)CrossRef
47.
Zurück zum Zitat Hsiao, S.F., Lee, C.H., Cheng, Y.C., Lee, A.: Designs of angle-rotation in digital frequency synthesizer/mixer using multi-stage architectures. In: Proc. Asilomar Conf. Signals Syst. Comput., pp. 2181–2185 (2011) Hsiao, S.F., Lee, C.H., Cheng, Y.C., Lee, A.: Designs of angle-rotation in digital frequency synthesizer/mixer using multi-stage architectures. In: Proc. Asilomar Conf. Signals Syst. Comput., pp. 2181–2185 (2011)
48.
Zurück zum Zitat Hu, Y., Naganathan, S.: An angle recoding method for CORDIC algorithm implementation. IEEE Trans. Comput. 42(1), 99–102 (1993)CrossRef Hu, Y., Naganathan, S.: An angle recoding method for CORDIC algorithm implementation. IEEE Trans. Comput. 42(1), 99–102 (1993)CrossRef
49.
Zurück zum Zitat Huang, S.J., Chen, S.G.: A high-throughput radix-16 FFT processor with parallel and normal input/output ordering for IEEE 802.15.3c systems. IEEE Trans. Circuits Syst. I 59(8), 1752–1765 (2012)MathSciNetCrossRef Huang, S.J., Chen, S.G.: A high-throughput radix-16 FFT processor with parallel and normal input/output ordering for IEEE 802.15.3c systems. IEEE Trans. Circuits Syst. I 59(8), 1752–1765 (2012)MathSciNetCrossRef
50.
Zurück zum Zitat Huang, S.J., Chen, S.G., Garrido, M., Jou, S.J.: Continuous-flow parallel bit-reversal circuit for MDF and MDC FFT architectures. IEEE Trans. Circuits Syst. I 61(10), 2869–2877 (2014)CrossRef Huang, S.J., Chen, S.G., Garrido, M., Jou, S.J.: Continuous-flow parallel bit-reversal circuit for MDF and MDC FFT architectures. IEEE Trans. Circuits Syst. I 61(10), 2869–2877 (2014)CrossRef
51.
Zurück zum Zitat Jang, J.K., Kim, M.G., Sunwoo, M.H.: Efficient scheduling scheme for eight-parallel MDC FFT processor. In: Proc. Int. SoC Design Conf., pp. 277–278 (2015) Jang, J.K., Kim, M.G., Sunwoo, M.H.: Efficient scheduling scheme for eight-parallel MDC FFT processor. In: Proc. Int. SoC Design Conf., pp. 277–278 (2015)
52.
Zurück zum Zitat Järvinen, T.: Systematic methods for designing stride permutation interconnections. Ph.D. thesis, Tampere Univ. of Technology (2004) Järvinen, T.: Systematic methods for designing stride permutation interconnections. Ph.D. thesis, Tampere Univ. of Technology (2004)
53.
Zurück zum Zitat Järvinen, T., Salmela, P., Sorokin, H., Takala, J.: Stride permutation networks for array processors. In: Proc. IEEE Int. Applicat.-Specific Syst. Arch. Processors Conf., pp. 376–386 (2004) Järvinen, T., Salmela, P., Sorokin, H., Takala, J.: Stride permutation networks for array processors. In: Proc. IEEE Int. Applicat.-Specific Syst. Arch. Processors Conf., pp. 376–386 (2004)
54.
Zurück zum Zitat Järvinen, T., Salmela, P., Sorokin, H., Takala, J.: Stride permutation networks for array processors. J. VLSI Signal Process. Syst. 49(1), 51–71 (2007)CrossRef Järvinen, T., Salmela, P., Sorokin, H., Takala, J.: Stride permutation networks for array processors. J. VLSI Signal Process. Syst. 49(1), 51–71 (2007)CrossRef
55.
Zurück zum Zitat Jo, B.G., Sunwoo, M.H.: New continuous-flow mixed-radix (CFMR) FFT processor using novel in-place strategy. IEEE Trans. Circuits Syst. I 52(5), 911–919 (2005)MathSciNetCrossRef Jo, B.G., Sunwoo, M.H.: New continuous-flow mixed-radix (CFMR) FFT processor using novel in-place strategy. IEEE Trans. Circuits Syst. I 52(5), 911–919 (2005)MathSciNetCrossRef
56.
Zurück zum Zitat Johnston, J.A.: Parallel pipeline fast Fourier transformer. In: IEE Proc. F Comm. Radar Signal Process., vol. 130, pp. 564–572 (1983) Johnston, J.A.: Parallel pipeline fast Fourier transformer. In: IEE Proc. F Comm. Radar Signal Process., vol. 130, pp. 564–572 (1983)
57.
Zurück zum Zitat Källström, P., Garrido, M., Gustafsson, O.: Low-complexity rotators for the FFT using base-3 signed stages. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 519–522 (2012) Källström, P., Garrido, M., Gustafsson, O.: Low-complexity rotators for the FFT using base-3 signed stages. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 519–522 (2012)
58.
Zurück zum Zitat Kim, M.G., Shin, S.K., Sunwoo, M.H.: New parallel MDC FFT processor with efficient scheduling scheme. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 667–670 (2014) Kim, M.G., Shin, S.K., Sunwoo, M.H.: New parallel MDC FFT processor with efficient scheduling scheme. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 667–670 (2014)
59.
Zurück zum Zitat Kristensen, F., Nilsson, P., Olsson, A.: Flexible baseband transmitter for OFDM. In: Proc. IASTED Conf. Circuits Signals Syst., pp. 356–361 (2003) Kristensen, F., Nilsson, P., Olsson, A.: Flexible baseband transmitter for OFDM. In: Proc. IASTED Conf. Circuits Signals Syst., pp. 356–361 (2003)
60.
Zurück zum Zitat Kumm, M., Hardieck, M., Zipf, P.: Optimization of constant matrix multiplication with low power and high throughput. IEEE Transactions on Computers PP(99), 1–1 (2017) Kumm, M., Hardieck, M., Zipf, P.: Optimization of constant matrix multiplication with low power and high throughput. IEEE Transactions on Computers PP(99), 1–1 (2017)
61.
Zurück zum Zitat Lee, H.Y., Park, I.C.: Balanced binary-tree decomposition for area-efficient pipelined FFT processing. IEEE Trans. Circuits Syst. I 54(4), 889–900 (2007)CrossRef Lee, H.Y., Park, I.C.: Balanced binary-tree decomposition for area-efficient pipelined FFT processing. IEEE Trans. Circuits Syst. I 54(4), 889–900 (2007)CrossRef
62.
Zurück zum Zitat Lee, J., Lee, H., in Cho, S., Choi, S.S.: A high-speed, low-complexity radix-24 FFT processor for MB-OFDM UWB systems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 210–213 (2006) Lee, J., Lee, H., in Cho, S., Choi, S.S.: A high-speed, low-complexity radix-24 FFT processor for MB-OFDM UWB systems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 210–213 (2006)
63.
Zurück zum Zitat Li, C.C., Chen, S.G.: A radix-4 redundant CORDIC algorithm with fast on-line variable scale factor compensation. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 1, pp. 639–642 (1997) Li, C.C., Chen, S.G.: A radix-4 redundant CORDIC algorithm with fast on-line variable scale factor compensation. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 1, pp. 639–642 (1997)
64.
Zurück zum Zitat Li, N., van der Meijs, N.: A radix 22 based parallel pipeline FFT processor for MB-OFDM UWB system. In: Proc. IEEE Int. SOC Conf., pp. 383–386 (2009) Li, N., van der Meijs, N.: A radix 22 based parallel pipeline FFT processor for MB-OFDM UWB system. In: Proc. IEEE Int. SOC Conf., pp. 383–386 (2009)
65.
Zurück zum Zitat Li, S., Xu, H., Fan, W., Chen, Y., Zeng, X.: A 128/256-point pipeline FFT/IFFT processor for MIMO OFDM system IEEE 802.16e. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1488–1491 (2010) Li, S., Xu, H., Fan, W., Chen, Y., Zeng, X.: A 128/256-point pipeline FFT/IFFT processor for MIMO OFDM system IEEE 802.16e. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1488–1491 (2010)
66.
Zurück zum Zitat Lin, C.H., Wu, A.Y.: Mixed-scaling-rotation CORDIC (MSR-CORDIC) algorithm and architecture for high-performance vector rotational DSP applications. IEEE Trans. Circuits Syst. I 52(11), 2385–2396 (2005)CrossRef Lin, C.H., Wu, A.Y.: Mixed-scaling-rotation CORDIC (MSR-CORDIC) algorithm and architecture for high-performance vector rotational DSP applications. IEEE Trans. Circuits Syst. I 52(11), 2385–2396 (2005)CrossRef
67.
Zurück zum Zitat Lin, Y.W., Lee, C.Y.: Design of an FFT/IFFT processor for MIMO OFDM systems. IEEE Trans. Circuits Syst. I 54(4), 807–815 (2007)MathSciNetCrossRef Lin, Y.W., Lee, C.Y.: Design of an FFT/IFFT processor for MIMO OFDM systems. IEEE Trans. Circuits Syst. I 54(4), 807–815 (2007)MathSciNetCrossRef
68.
Zurück zum Zitat Liu, H., Lee, H.: A high performance four-parallel 128/64-point radix-24 FFT/IFFT processor for MIMO-OFDM systems. In: Proc. IEEE Asia Pacific Conf. Circuits Syst., pp. 834–837 (2008) Liu, H., Lee, H.: A high performance four-parallel 128/64-point radix-24 FFT/IFFT processor for MIMO-OFDM systems. In: Proc. IEEE Asia Pacific Conf. Circuits Syst., pp. 834–837 (2008)
69.
Zurück zum Zitat Liu, L., Ren, J., Wang, X., Ye, F.: Design of low-power, 1GS/s throughput FFT processor for MIMO-OFDM UWB communication system. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 2594–2597 (2007) Liu, L., Ren, J., Wang, X., Ye, F.: Design of low-power, 1GS/s throughput FFT processor for MIMO-OFDM UWB communication system. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 2594–2597 (2007)
70.
Zurück zum Zitat Liu, X., Yu, F., Wang, Z.: A pipelined architecture for normal I/O order FFT. Journal of Zhejiang University - Science C 12(1), 76–82 (2011)CrossRef Liu, X., Yu, F., Wang, Z.: A pipelined architecture for normal I/O order FFT. Journal of Zhejiang University - Science C 12(1), 76–82 (2011)CrossRef
71.
Zurück zum Zitat Ma, Y., Wanhammar, L.: A hardware efficient control of memory addressing for high-performance FFT processors. IEEE Trans. Signal Process. 48(3), 917–921 (2000)CrossRef Ma, Y., Wanhammar, L.: A hardware efficient control of memory addressing for high-performance FFT processors. IEEE Trans. Signal Process. 48(3), 917–921 (2000)CrossRef
72.
Zurück zum Zitat Ma, Z.G., Yin, X.B., Yu, F.: A novel memory-based FFT architecture for real-valued signals based on a radix-2 decimation-in-frequency algorithm. IEEE Trans. Circuits Syst. II 62(9), 876–880 (2015)CrossRef Ma, Z.G., Yin, X.B., Yu, F.: A novel memory-based FFT architecture for real-valued signals based on a radix-2 decimation-in-frequency algorithm. IEEE Trans. Circuits Syst. II 62(9), 876–880 (2015)CrossRef
73.
Zurück zum Zitat Macleod, M.D.: Multiplierless implementation of rotators and FFTs. EURASIP J. Appl. Signal Process. 2005(17), 2903–2910 (2005)MATH Macleod, M.D.: Multiplierless implementation of rotators and FFTs. EURASIP J. Appl. Signal Process. 2005(17), 2903–2910 (2005)MATH
74.
Zurück zum Zitat Majumdar, M., Parhi, K.K.: Design of data format converters using two-dimensional register allocation. IEEE Trans. Circuits Syst. II 45(4), 504–508 (1998)CrossRef Majumdar, M., Parhi, K.K.: Design of data format converters using two-dimensional register allocation. IEEE Trans. Circuits Syst. II 45(4), 504–508 (1998)CrossRef
75.
Zurück zum Zitat Meher, P.K., Park, S.Y.: CORDIC designs for fixed angle of rotation. IEEE Trans. VLSI Syst. 21(2), 217–228 (2013)CrossRef Meher, P.K., Park, S.Y.: CORDIC designs for fixed angle of rotation. IEEE Trans. VLSI Syst. 21(2), 217–228 (2013)CrossRef
76.
Zurück zum Zitat Meher, P.K., Valls, J., Juang, T.B., Sridharan, K., Maharatna, K.: 50 years of CORDIC: Algorithms, architectures, and applications. IEEE Trans. Circuits Syst. I 56(9), 1893–1907 (2009)MathSciNetCrossRef Meher, P.K., Valls, J., Juang, T.B., Sridharan, K., Maharatna, K.: 50 years of CORDIC: Algorithms, architectures, and applications. IEEE Trans. Circuits Syst. I 56(9), 1893–1907 (2009)MathSciNetCrossRef
77.
Zurück zum Zitat Möller, K., Kumm, M., Garrido, M., Zipf, P.: Optimal shift reassignment in reconfigurable constant multiplication circuits. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. (2017). Accepted for publication Möller, K., Kumm, M., Garrido, M., Zipf, P.: Optimal shift reassignment in reconfigurable constant multiplication circuits. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. (2017). Accepted for publication
78.
Zurück zum Zitat Oh, J.Y., Lim, M.S.: New radix-2 to the 4th power pipeline FFT processor. IEICE Trans. Electron. E88-C(8), 1740–1746 (2005)CrossRef Oh, J.Y., Lim, M.S.: New radix-2 to the 4th power pipeline FFT processor. IEICE Trans. Electron. E88-C(8), 1740–1746 (2005)CrossRef
79.
Zurück zum Zitat Paeth, A.W.: A fast algorithm for general raster rotation. In: Proc. Graphics Interface, pp. 77–81 (1986) Paeth, A.W.: A fast algorithm for general raster rotation. In: Proc. Graphics Interface, pp. 77–81 (1986)
80.
Zurück zum Zitat Parhi, K.K.: Systematic synthesis of DSP data format converters using life-time analysis and forward-backward register allocation. IEEE Trans. Circuits Syst. II 39(7), 423–440 (1992)CrossRef Parhi, K.K.: Systematic synthesis of DSP data format converters using life-time analysis and forward-backward register allocation. IEEE Trans. Circuits Syst. II 39(7), 423–440 (1992)CrossRef
81.
Zurück zum Zitat Park, S.Y., Yu, Y.J.: Fixed-point analysis and parameter selections of MSR-CORDIC with applications to FFT designs. IEEE Trans. Signal Process. 60(12), 6245–6256 (2012)MathSciNetCrossRef Park, S.Y., Yu, Y.J.: Fixed-point analysis and parameter selections of MSR-CORDIC with applications to FFT designs. IEEE Trans. Signal Process. 60(12), 6245–6256 (2012)MathSciNetCrossRef
82.
Zurück zum Zitat Püschel, M., Milder, P.A., Hoe, J.C.: Permuting streaming data using RAMs. J. ACM 56(2), 10:1–10:34 (2009)MathSciNetCrossRef Püschel, M., Milder, P.A., Hoe, J.C.: Permuting streaming data using RAMs. J. ACM 56(2), 10:1–10:34 (2009)MathSciNetCrossRef
83.
Zurück zum Zitat Qureshi, F., Gustafsson, O.: Generation of all radix-2 fast Fourier transform algorithms using binary trees. In: Proc. Europ. Conf. Circuit Theory Design, pp. 677–680 (2011) Qureshi, F., Gustafsson, O.: Generation of all radix-2 fast Fourier transform algorithms using binary trees. In: Proc. Europ. Conf. Circuit Theory Design, pp. 677–680 (2011)
84.
Zurück zum Zitat Qureshi, F., Gustafsson, O.: Low-complexity constant multiplication based on trigonometric identities with applications to FFTs. IEICE Trans. Fundamentals E94-A(11), 324–326 (2011)CrossRef Qureshi, F., Gustafsson, O.: Low-complexity constant multiplication based on trigonometric identities with applications to FFTs. IEICE Trans. Fundamentals E94-A(11), 324–326 (2011)CrossRef
85.
Zurück zum Zitat Reisis, D., Vlassopoulos, N.: Conflict-free parallel memory accessing techniques for FFT architectures. IEEE Trans. Circuits Syst. I 55(11), 3438–3447 (2008)MathSciNetCrossRef Reisis, D., Vlassopoulos, N.: Conflict-free parallel memory accessing techniques for FFT architectures. IEEE Trans. Circuits Syst. I 55(11), 3438–3447 (2008)MathSciNetCrossRef
86.
Zurück zum Zitat Sánchez, M., Garrido, M., López, M., Grajal, J.: Implementing FFT-based digital channelized receivers on FPGA platforms. IEEE Trans. Aerosp. Electron. Syst. 44(4), 1567–1585 (2008)CrossRef Sánchez, M., Garrido, M., López, M., Grajal, J.: Implementing FFT-based digital channelized receivers on FPGA platforms. IEEE Trans. Aerosp. Electron. Syst. 44(4), 1567–1585 (2008)CrossRef
87.
Zurück zum Zitat Serre, F., Holenstein, T., Püschel, M.: Optimal circuits for streamed linear permutations using RAM. In: Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 215–223. ACM (2016) Serre, F., Holenstein, T., Püschel, M.: Optimal circuits for streamed linear permutations using RAM. In: Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 215–223. ACM (2016)
88.
Zurück zum Zitat Shih, X.Y., Liu, Y.Q., Chou, H.R.: 48-mode reconfigurable design of SDF FFT hardware architecture using radix-32 and radix-23 design approaches. IEEE Trans. Circuits Syst. I 64(6), 1456–1467 (2017)CrossRef Shih, X.Y., Liu, Y.Q., Chou, H.R.: 48-mode reconfigurable design of SDF FFT hardware architecture using radix-32 and radix-23 design approaches. IEEE Trans. Circuits Syst. I 64(6), 1456–1467 (2017)CrossRef
89.
90.
Zurück zum Zitat Stone, H.: Parallel processing with the perfect shuffle. IEEE Trans. Comput. C-20(2), 153–161 (1971)CrossRef Stone, H.: Parallel processing with the perfect shuffle. IEEE Trans. Comput. C-20(2), 153–161 (1971)CrossRef
91.
Zurück zum Zitat Takagi, N., Asada, T., Yajima, S.: Redundant CORDIC methods with a constant scale factor for sine and cosine computation. IEEE Trans. Comput. 40(9), 989–995 (1991)MathSciNetCrossRef Takagi, N., Asada, T., Yajima, S.: Redundant CORDIC methods with a constant scale factor for sine and cosine computation. IEEE Trans. Comput. 40(9), 989–995 (1991)MathSciNetCrossRef
92.
Zurück zum Zitat Takala, J., Järvinen, T.: Stride Permutation Access In Interleaved Memory Systems. Domain-Specific Processors: Systems, Architectures, Modeling, and Simulation, S. Bhattacharyya, E. Deprettere and J. Teich. CRC Press (2003)CrossRef Takala, J., Järvinen, T.: Stride Permutation Access In Interleaved Memory Systems. Domain-Specific Processors: Systems, Architectures, Modeling, and Simulation, S. Bhattacharyya, E. Deprettere and J. Teich. CRC Press (2003)CrossRef
93.
Zurück zum Zitat Takala, J., Jarvinen, T., Sorokin, H.: Conflict-free parallel memory access scheme for FFT processors. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 4, pp. 524–527 (2003) Takala, J., Jarvinen, T., Sorokin, H.: Conflict-free parallel memory access scheme for FFT processors. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 4, pp. 524–527 (2003)
94.
Zurück zum Zitat Tang, S.N., Tsai, J.W., Chang, T.Y.: A 2.4-GS/s FFT processor for OFDM-based WPAN applications. IEEE Trans. Circuits Syst. II 57(6), 451–455 (2010)CrossRef Tang, S.N., Tsai, J.W., Chang, T.Y.: A 2.4-GS/s FFT processor for OFDM-based WPAN applications. IEEE Trans. Circuits Syst. II 57(6), 451–455 (2010)CrossRef
95.
Zurück zum Zitat Tsai, P.Y., Lin, C.Y.: A generalized conflict-free memory addressing scheme for continuous-flow parallel-processing FFT processors with rescheduling. IEEE Trans. VLSI Syst. 19(12), 2290–2302 (2011)CrossRef Tsai, P.Y., Lin, C.Y.: A generalized conflict-free memory addressing scheme for continuous-flow parallel-processing FFT processors with rescheduling. IEEE Trans. VLSI Syst. 19(12), 2290–2302 (2011)CrossRef
96.
Zurück zum Zitat Tummeltshammer, P., Hoe, J.C., Püschel, M.: Time-multiplexed multiple-constant multiplication. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 26(9), 1551–1563 (2007)CrossRef Tummeltshammer, P., Hoe, J.C., Püschel, M.: Time-multiplexed multiple-constant multiplication. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 26(9), 1551–1563 (2007)CrossRef
97.
Zurück zum Zitat Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. Electronic Computing EC-8, 330–334 (1959)CrossRef Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. Electronic Computing EC-8, 330–334 (1959)CrossRef
98.
Zurück zum Zitat Voronenko, Y., Püschel, M.: Multiplierless multiple constant multiplication. ACM Trans. Algorithms 3, 1–39 (2007)MathSciNetCrossRef Voronenko, Y., Püschel, M.: Multiplierless multiple constant multiplication. ACM Trans. Algorithms 3, 1–39 (2007)MathSciNetCrossRef
99.
Zurück zum Zitat Wang, J., Xiong, C., Zhang, K., Wei, J.: A mixed-decimation MDF architecture for radix- 2k parallel FFT. IEEE Trans. VLSI Syst. 24(1), 67–78 (2016)CrossRef Wang, J., Xiong, C., Zhang, K., Wei, J.: A mixed-decimation MDF architecture for radix- 2k parallel FFT. IEEE Trans. VLSI Syst. 24(1), 67–78 (2016)CrossRef
100.
Zurück zum Zitat Wang, Z., Liu, X., He, B., Yu, F.: A combined SDC-SDF architecture for normal I/O pipelined radix-2 FFT. IEEE Trans. VLSI Syst. 23(5), 973–977 (2015)CrossRef Wang, Z., Liu, X., He, B., Yu, F.: A combined SDC-SDF architecture for normal I/O pipelined radix-2 FFT. IEEE Trans. VLSI Syst. 23(5), 973–977 (2015)CrossRef
101.
Zurück zum Zitat Wenzler, A., Luder, E.: New structures for complex multipliers and their noise analysis. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1432–1435 (1995) Wenzler, A., Luder, E.: New structures for complex multipliers and their noise analysis. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1432–1435 (1995)
102.
Zurück zum Zitat Wold, E., Despain, A.: Pipeline and parallel-pipeline FFT processors for VLSI implementations. IEEE Trans. Comput. C-33(5), 414–426 (1984)CrossRef Wold, E., Despain, A.: Pipeline and parallel-pipeline FFT processors for VLSI implementations. IEEE Trans. Comput. C-33(5), 414–426 (1984)CrossRef
103.
Zurück zum Zitat Wu, C.S., Wu, A.Y.: Modified vector rotational CORDIC (MVR-CORDIC) algorithm and architecture. IEEE Trans. Circuits Syst. II 48(6), 548–561 (2001)CrossRef Wu, C.S., Wu, A.Y.: Modified vector rotational CORDIC (MVR-CORDIC) algorithm and architecture. IEEE Trans. Circuits Syst. II 48(6), 548–561 (2001)CrossRef
104.
Zurück zum Zitat Wu, C.S., Wu, A.Y., Lin, C.H.: A high-performance/low-latency vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes. IEEE Trans. Circuits Syst. II 50(9), 589–601 (2003)CrossRef Wu, C.S., Wu, A.Y., Lin, C.H.: A high-performance/low-latency vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes. IEEE Trans. Circuits Syst. II 50(9), 589–601 (2003)CrossRef
105.
Zurück zum Zitat Xia, K.F., Wu, B., Xiong, T., Ye, T.C.: A memory-based FFT processor design with generalized efficient conflict-free address schemes. IEEE Trans. VLSI Syst. 25(6), 1919–1929 (2017)CrossRef Xia, K.F., Wu, B., Xiong, T., Ye, T.C.: A memory-based FFT processor design with generalized efficient conflict-free address schemes. IEEE Trans. VLSI Syst. 25(6), 1919–1929 (2017)CrossRef
106.
Zurück zum Zitat Xing, Q., Ma, Z., Xu, Y.: A novel conflict-free parallel memory access scheme for FFT processors. IEEE Trans. Circuits Syst. II (2017) Xing, Q., Ma, Z., Xu, Y.: A novel conflict-free parallel memory access scheme for FFT processors. IEEE Trans. Circuits Syst. II (2017)
107.
Zurück zum Zitat Xudong, W., Yu, L.: Special-purpose computer for 64-point FFT based on FPGA. In: Proc. Int. Conf. Wireless Comm. Signal Process., pp. 1–3 (2009) Xudong, W., Yu, L.: Special-purpose computer for 64-point FFT based on FPGA. In: Proc. Int. Conf. Wireless Comm. Signal Process., pp. 1–3 (2009)
108.
Zurück zum Zitat Yang, K.J., Tsai, S.H., Chuang, G.: MDC FFT/IFFT processor with variable length for MIMO-OFDM systems. IEEE Trans. VLSI Syst. 21(4), 720–731 (2013)CrossRef Yang, K.J., Tsai, S.H., Chuang, G.: MDC FFT/IFFT processor with variable length for MIMO-OFDM systems. IEEE Trans. VLSI Syst. 21(4), 720–731 (2013)CrossRef
109.
Zurück zum Zitat Yang, L., Zhang, K., Liu, H., Huang, J., Huang, S.: An efficient locally pipelined FFT processor. IEEE Trans. Circuits Syst. II 53(7), 585–589 (2006)CrossRef Yang, L., Zhang, K., Liu, H., Huang, J., Huang, S.: An efficient locally pipelined FFT processor. IEEE Trans. Circuits Syst. II 53(7), 585–589 (2006)CrossRef
110.
Zurück zum Zitat Yeh, W.C., Jen, C.W.: High-speed and low-power split-radix FFT. IEEE Trans. Signal Process. 51(3), 864–874 (2003)MathSciNetCrossRef Yeh, W.C., Jen, C.W.: High-speed and low-power split-radix FFT. IEEE Trans. Signal Process. 51(3), 864–874 (2003)MathSciNetCrossRef
111.
Zurück zum Zitat Yu, C., Yen, M.H.: Area-efficient 128- to 2048∕1536-point pipeline FFT processor for LTE and mobile WiMAX systems. IEEE Trans. VLSI Syst. 23(9), 1793–1800 (2015)MathSciNetCrossRef Yu, C., Yen, M.H.: Area-efficient 128- to 2048∕1536-point pipeline FFT processor for LTE and mobile WiMAX systems. IEEE Trans. VLSI Syst. 23(9), 1793–1800 (2015)MathSciNetCrossRef
112.
Zurück zum Zitat Zheng, W., Li, K.: Split radix algorithm for length 6m DFT. IEEE Signal Process. Lett. 20(7), 713–716 (2013)CrossRef Zheng, W., Li, K.: Split radix algorithm for length 6m DFT. IEEE Signal Process. Lett. 20(7), 713–716 (2013)CrossRef
Metadaten
Titel
Hardware architectures for the fast Fourier transform
verfasst von
Mario Garrido
Fahad Qureshi
Jarmo Takala
Oscar Gustafsson
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-91734-4_17

Neuer Inhalt