Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Heat Conduction

verfasst von : Paolo Podio-Guidugli

Erschienen in: Continuum Thermodynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The central purpose of this chapter is to derive the Heat Equation, that is, the equation that describes temperature evolution in rigid conductors; this is done in Sect. 1.6, after the indispensable preliminaries are covered in Sects. 1.1–1.5. This derivation, which is of interest by itself, best exemplifies how constitutive issues are dealt with in modern continuum mechanics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
More generally, a quantity is extensive if it has a density with respect to one or another measure of spatial extension of the region a material body occupies, be it the volume, area, or length, measure.
 
2
This fact was evident to Gibbs: on p. 7 of [61] we read the following pertinent quotation of Gibbs: “...heat received at one temperature is by no means the equivalent of the same amount of heat received at another temperature ...”.
 
3
An interesting discussion of time reversal transformations is found in Sect. 10.3 of [17]; see also [18].
 
4
In Sect. 96 of [67], Truesdell‘s Principle of Equipresence is stated and illustrated as follows: “a quantity present as an independent variable in one constitutive equation should be so present in all, unless, of course, its presence contradicts some law of physics or rule of invariance. This principle forbids us to eliminate any of the ‘causes’ present from interacting with any other as regards a particular ‘effect.’ It reflects on the scale of gross phenomena the fact that all observed effects result from a common structure such as the motions of molecules.”
 
5
As remarked by Gurtin ([27], p. 53), the Coleman-Noll procedure “...is based on the premise that the second law be satisfied in all conceivable processes, irrespective of the difficulties involved in producing such processes in the laboratory. The rational application of this procedure requires external forces and supplies that may be assigned arbitrarily to ensure satisfaction of the underlying balances in all processes. This may seem artificial, but it is no more artificial than theories based on virtual power, a paradigm that requires arbitrary variations, not guaranteed to be consistent with the resulting evolution equations, granted a constitutive description. The Coleman-Noll procedure makes explicit the external fields needed to support the ‘virtual processes’ used, and in so doing ensures that these external fields, whether virtual or not, enter the theory in a thermodynamically consistent manner.”
 
6
Representation (1.35) of the heat influx is granted by an application of a lemma, whose simple proof can be found in [6]:
Lemma. Let V be a finite-dimensional vector space, let \(f_o\in V\), and let f be a \(C^1\)-mapping into V from an open neighborhood \(\mathcal O\) of the origin in V, such that
$$ v\cdot (f(v)-f_o)\ge 0,\;\; \forall \, v\in {\mathcal O}. $$
Then, f has the representation
$$ f(v)=f_o+F(v)v, $$
with
$$ f(o)=f_o,\quad F(v)=\int _0^1 Df(\varepsilon v)d\varepsilon ,\quad v\cdot F(v)v\ge 0,\;\;\forall \, v\in {\mathcal O} $$
(here D denotes differentiation).
 
7
Here \(\mathbf {I}\) denotes the identity tensor.
 
8
The variational derivative \(\delta F\{P;\vartheta \}\) at \(\vartheta \) of functional F is defined as follows:
$$ \delta F\{P;\vartheta \}[\delta \vartheta ]:= \Big [\frac{d F_\alpha \{P;\vartheta \}}{d\alpha }\Big ]_{\alpha =0},\quad F_\alpha \{P;\vartheta \}:=F\{P;\vartheta +\alpha \,\delta \vartheta \}, $$
for all variation fields \(\,\delta \vartheta \;\text {such that}\; \delta \vartheta \equiv 0\;\text {over}\;\partial P\). The stationarity condition on F expressed by the vanishing of its variational derivative for whatever admissible variation leads to the Euler-Lagrange equation
$$ \delta F\{P;\vartheta \}=0. $$
In the case of the Dirichlet functional (1.44), the Euler-Lagrange equation yields, after localization, the archetypal elliptic PDE:
$$ \Delta \vartheta =0\;\;\text {in}\; P, $$
associated with the names of Poisson and Laplace.
 
9
The decay rate, in addition to the physical constants, depends on the region P in a way that, roughly speaking, can be shown to be smaller and smaller as P gets larger and larger.
 
10
For a similar discussion with similar results within the framework of the Green-Naghdi Type III theory of heat propagation, the reader is referred to [5]; see also [4].
 
11
The notion of observer change is shortly recapped in the Appendix, Sect. A.4.
 
12
For the same reason, in the case of more encompassing theories than pure heat conduction, a control field is needed for each additional balance law.
 
13
The corresponding excess inflow is:
$$\begin{aligned} {\mathcal E}(P):=-\Big (\int _{\partial {P}}(\bar{q} - \vartheta \bar{h})\mathbf {n}\Big )\cdot \mathbf w. \end{aligned}$$
(1.61)
 
Metadaten
Titel
Heat Conduction
verfasst von
Paolo Podio-Guidugli
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-11157-1_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.